Newer
Older
// This file is part of Substrate.
// Copyright (C) 2017-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! # Staking Pallet
//! The Staking pallet is used to manage funds at stake by network maintainers.
//! The Staking pallet is the means by which a set of network maintainers (known as _authorities_ in
//! some contexts and _validators_ in others) are chosen based upon those who voluntarily place
//! funds under deposit. Under deposit, those funds are rewarded under normal operation but are held
//! at pain of _slash_ (expropriation) should the staked maintainer be found not to be discharging
//! its duties properly.
//! ### Terminology
//! <!-- Original author of paragraph: @gavofyork -->
//!
//! - Staking: The process of locking up funds for some time, placing them at risk of slashing
//! (loss) in order to become a rewarded maintainer of the network.
//! - Validating: The process of running a node to actively maintain the network, either by
//! producing blocks or guaranteeing finality of the chain.
//! - Nominating: The process of placing staked funds behind one or more validators in order to
//! share in any reward, and punishment, they take.
//! - Stash account: The account holding an owner's funds used for staking.
//! - Controller account: The account that controls an owner's funds for staking.
//! - Era: A (whole) number of sessions, which is the period that the validator set (and each
//! validator's active nominator set) is recalculated and where rewards are paid out.
//! - Slash: The punishment of a staker by reducing its funds.
//!
//! ### Goals
//! <!-- Original author of paragraph: @gavofyork -->
//!
//! The staking system in Substrate NPoS is designed to make the following possible:
//! - Stake funds that are controlled by a cold wallet.
//! - Withdraw some, or deposit more, funds without interrupting the role of an entity.
//! - Switch between roles (nominator, validator, idle) with minimal overhead.
//!
//! ### Scenarios
//!
//! #### Staking
//!
//! Almost any interaction with the Staking pallet requires a process of _**bonding**_ (also known
//! as being a _staker_). To become *bonded*, a fund-holding register known as the _stash account_,
//! which holds some or all of the funds that become frozen in place as part of the staking process,
//! is paired with an active **controller** account, which issues instructions on how they shall be
//! used.
//! An account pair can become bonded using the [`bond`](Call::bond) call.
//! Stash accounts can change their associated controller using the
//! There are three possible roles that any staked account pair can be in: `Validator`, `Nominator`
//! and `Idle` (defined in [`StakerStatus`]). There are three
//! corresponding instructions to change between roles, namely:
//! [`validate`](Call::validate),
//! [`nominate`](Call::nominate), and [`chill`](Call::chill).
//!
//! #### Validating
//!
//! A **validator** takes the role of either validating blocks or ensuring their finality,
//! maintaining the veracity of the network. A validator should avoid both any sort of malicious
//! misbehavior and going offline. Bonded accounts that state interest in being a validator do NOT
//! get immediately chosen as a validator. Instead, they are declared as a _candidate_ and they
//! _might_ get elected at the _next era_ as a validator. The result of the election is determined
//! by nominators and their votes.
//! An account can become a validator candidate via the
//!
//! #### Nomination
//!
//! A **nominator** does not take any _direct_ role in maintaining the network, instead, it votes on
//! a set of validators to be elected. Once interest in nomination is stated by an account, it
//! takes effect at the next election round. The funds in the nominator's stash account indicate the
//! _weight_ of its vote. Both the rewards and any punishment that a validator earns are shared
//! between the validator and its nominators. This rule incentivizes the nominators to NOT vote for
//! the misbehaving/offline validators as much as possible, simply because the nominators will also
//! lose funds if they vote poorly.
//! An account can become a nominator via the [`nominate`](Call::nominate) call.
//! #### Voting
//!
//! Staking is closely related to elections; actual validators are chosen from among all potential
//! validators via election by the potential validators and nominators. To reduce use of the phrase
//! "potential validators and nominators", we often use the term **voters**, who are simply
//! the union of potential validators and nominators.
//!
//! #### Rewards and Slash
//!
//! The **reward and slashing** procedure is the core of the Staking pallet, attempting to _embrace
//! valid behavior_ while _punishing any misbehavior or lack of availability_.
//! Rewards must be claimed for each era before it gets too old by `$HISTORY_DEPTH` using the
//! `payout_stakers` call. Any account can call `payout_stakers`, which pays the reward to the
//! validator as well as its nominators. Only the [`Config::MaxNominatorRewardedPerValidator`]
//! biggest stakers can claim their reward. This is to limit the i/o cost to mutate storage for each
//! nominator's account.
//! Slashing can occur at any point in time, once misbehavior is reported. Once slashing is
//! determined, a value is deducted from the balance of the validator and all the nominators who
//! voted for this validator (values are deducted from the _stash_ account of the slashed entity).
//! Slashing logic is further described in the documentation of the `slashing` pallet.
//! Similar to slashing, rewards are also shared among a validator and its associated nominators.
//! Yet, the reward funds are not always transferred to the stash account and can be configured. See
//! [Reward Calculation](#reward-calculation) for more details.
//!
//! #### Chilling
//! Finally, any of the roles above can choose to step back temporarily and just chill for a while.
//! This means that if they are a nominator, they will not be considered as voters anymore and if
//! they are validators, they will no longer be a candidate for the next election.
//! An account can step back via the [`chill`](Call::chill) call.
//! The pallet implement the trait `SessionManager`. Which is the only API to query new validator
//! set and allowing these validator set to be rewarded once their era is ended.
//!
//! The dispatchable functions of the Staking pallet enable the steps needed for entities to accept
//! and change their role, alongside some helper functions to get/set the metadata of the pallet.
//! The Staking pallet contains many public storage items and (im)mutable functions.
//! ### Example: Rewarding a validator by id.
//! use pallet_staking::{self as staking};
//! #[frame_support::pallet]
//! pub mod pallet {
//! use super::*;
//! use frame_support::pallet_prelude::*;
//! use frame_system::pallet_prelude::*;
//! #[pallet::pallet]
//! pub struct Pallet<T>(_);
//!
//! #[pallet::config]
//! pub trait Config: frame_system::Config + staking::Config {}
//!
//! #[pallet::call]
//! impl<T: Config> Pallet<T> {
//! #[pallet::weight(0)]
//! pub fn reward_myself(origin: OriginFor<T>) -> DispatchResult {
//! let reported = ensure_signed(origin)?;
//! <staking::Pallet<T>>::reward_by_ids(vec![(reported, 10)]);
//! Ok(())
//! }
//! }
//! }
//! # fn main() { }
//! ```
//!
//! ## Implementation Details
//!
//! ### Era payout
//!
//! The era payout is computed using yearly inflation curve defined at
//!
//! ```nocompile
//! staker_payout = yearly_inflation(npos_token_staked / total_tokens) * total_tokens / era_per_year
//! ```
//! This payout is used to reward stakers as defined in next section
//!
//! ```nocompile
//! remaining_payout = max_yearly_inflation * total_tokens / era_per_year - staker_payout
//! ```
//! The remaining reward is send to the configurable end-point
//! ### Reward Calculation
//!
//! Validators and nominators are rewarded at the end of each era. The total reward of an era is
//! calculated using the era duration and the staking rate (the total amount of tokens staked by
//! nominators and validators, divided by the total token supply). It aims to incentivize toward a
//! defined staking rate. The full specification can be found
//! [here](https://research.web3.foundation/en/latest/polkadot/Token%20Economics.html#inflation-model).
//!
//! Total reward is split among validators and their nominators depending on the number of points
//! they received during the era. Points are added to a validator using
//! [`reward_by_ids`](Pallet::reward_by_ids).
//! [`Pallet`] implements
//! points to block producer and block producer of referenced uncles.
//!
//! The validator and its nominator split their reward as following:
//! The validator can declare an amount, named [`commission`](ValidatorPrefs::commission), that does
//! not get shared with the nominators at each reward payout through its [`ValidatorPrefs`]. This
//! value gets deducted from the total reward that is paid to the validator and its nominators. The
//! remaining portion is split pro rata among the validator and the top
//! [`Config::MaxNominatorRewardedPerValidator`] nominators that nominated the validator,
//! proportional to the value staked behind the validator (_i.e._ dividing the
//! [`own`](Exposure::own) or [`others`](Exposure::others) by [`total`](Exposure::total) in
//! [`Exposure`]). Note that the pro rata division of rewards uses the total exposure behind the
//! validator, *not* just the exposure of the validator and the top
//! [`Config::MaxNominatorRewardedPerValidator`] nominators.
//! All entities who receive a reward have the option to choose their reward destination through the
//! [`Payee`] storage item (see
//! [`set_payee`](Call::set_payee)), to be one of the following:
//!
//! - Controller account, (obviously) not increasing the staked value.
//! - Stash account, not increasing the staked value.
//! - Stash account, also increasing the staked value.
//!
//! ### Additional Fund Management Operations
//!
//! Any funds already placed into stash can be the target of the following operations:
//!
//! The controller account can free a portion (or all) of the funds using the
//! [`unbond`](Call::unbond) call. Note that the funds are not immediately
//! accessible. Instead, a duration denoted by
//! [`Config::BondingDuration`] (in number of eras) must
//! pass until the funds can actually be removed. Once the `BondingDuration` is over, the
//! [`withdraw_unbonded`](Call::withdraw_unbonded) call can be used to actually
//! withdraw the funds.
//! Note that there is a limitation to the number of fund-chunks that can be scheduled to be
//! unlocked in the future via [`unbond`](Call::unbond). In case this maximum
//! (`MAX_UNLOCKING_CHUNKS`) is reached, the bonded account _must_ first wait until a successful
//! call to `withdraw_unbonded` to remove some of the chunks.
//!
//! The current election algorithm is implemented based on Phragmén. The reference implementation
//! can be found [here](https://github.com/w3f/consensus/tree/master/NPoS).
//! The election algorithm, aside from electing the validators with the most stake value and votes,
//! tries to divide the nominator votes among candidates in an equal manner. To further assure this,
//! an optional post-processing can be applied that iteratively normalizes the nominator staked
//! values until the total difference among votes of a particular nominator are less than a
//! threshold.
//!
//! ## GenesisConfig
//!
//! The Staking pallet depends on the [`GenesisConfig`]. The
//! `GenesisConfig` is optional and allow to set some initial stakers.
//!
//! ## Related Modules
//!
//! - [Balances](../pallet_balances/index.html): Used to manage values at stake.
//! - [Session](../pallet_session/index.html): Used to manage sessions. Also, a list of new
//! validators is stored in the Session pallet's `Validators` at the end of each era.
#[cfg(feature = "runtime-benchmarks")]
#[cfg(any(feature = "runtime-benchmarks", test))]
#[cfg(test)]
pub(crate) mod mock;
#[cfg(test)]
mod tests;
pub mod inflation;
pub mod migrations;
mod pallet;
use codec::{Decode, Encode, HasCompact};
traits::{Currency, Defensive, Get},
weights::Weight,
BoundedVec, EqNoBound, PartialEqNoBound, RuntimeDebugNoBound,
traits::{AtLeast32BitUnsigned, Convert, Saturating, Zero},
Perbill, Perquintill, RuntimeDebug,
offence::{Offence, OffenceError, ReportOffence},
use sp_std::{collections::btree_map::BTreeMap, prelude::*};
pub use pallet::{pallet::*, *};
pub(crate) const LOG_TARGET: &str = "runtime::staking";
// syntactic sugar for logging.
#[macro_export]
macro_rules! log {
($level:tt, $patter:expr $(, $values:expr)* $(,)?) => {
log::$level!(
concat!("[{:?}] 💸 ", $patter), <frame_system::Pallet<T>>::block_number() $(, $values)*
)
};
}
/// Counter for the number of "reward" points earned by a given validator.
/// The balance type of this pallet.
pub type BalanceOf<T> = <T as Config>::CurrencyBalance;
type PositiveImbalanceOf<T> = <<T as Config>::Currency as Currency<
<T as frame_system::Config>::AccountId,
>>::PositiveImbalance;
type NegativeImbalanceOf<T> = <<T as Config>::Currency as Currency<
<T as frame_system::Config>::AccountId,
>>::NegativeImbalance;
parameter_types! {
pub MaxUnlockingChunks: u32 = 32;
}
/// Information regarding the active era (era in used in session).
#[derive(Encode, Decode, RuntimeDebug, TypeInfo)]
pub struct ActiveEraInfo {
/// Index of era.
pub index: EraIndex,
/// Moment of start expressed as millisecond from `$UNIX_EPOCH`.
///
/// Start can be none if start hasn't been set for the era yet,
/// Start is set on the first on_finalize of the era to guarantee usage of `Time`.
start: Option<u64>,
}
/// Reward points of an era. Used to split era total payout between validators.
///
/// This points will be used to reward validators and their respective nominators.
#[derive(PartialEq, Encode, Decode, RuntimeDebug, TypeInfo)]
/// Total number of points. Equals the sum of reward points for each validator.
pub individual: BTreeMap<AccountId, RewardPoint>,
impl<AccountId: Ord> Default for EraRewardPoints<AccountId> {
fn default() -> Self {
EraRewardPoints { total: Default::default(), individual: BTreeMap::new() }
}
}
/// Indicates the initial status of the staker.
#[derive(RuntimeDebug, TypeInfo)]
#[cfg_attr(feature = "std", derive(serde::Serialize, serde::Deserialize, Clone))]
pub enum StakerStatus<AccountId> {
/// Chilling.
Idle,
/// Declared desire in validating or already participating in it.
Validator,
/// Nominating for a group of other stakers.
Nominator(Vec<AccountId>),
}
/// A destination account for payment.
#[derive(PartialEq, Eq, Copy, Clone, Encode, Decode, RuntimeDebug, TypeInfo)]
pub enum RewardDestination<AccountId> {
/// Pay into the stash account, increasing the amount at stake accordingly.
Staked,
/// Pay into the stash account, not increasing the amount at stake.
Stash,
/// Pay into the controller account.
Controller,
/// Pay into a specified account.
Account(AccountId),
Wei Tang
committed
/// Receive no reward.
None,
impl<AccountId> Default for RewardDestination<AccountId> {
fn default() -> Self {
RewardDestination::Staked
}
/// Preference of what happens regarding validation.
#[derive(PartialEq, Eq, Clone, Encode, Decode, RuntimeDebug, TypeInfo, Default)]
pub struct ValidatorPrefs {
/// Reward that validator takes up-front; only the rest is split between themselves and
/// nominators.
pub commission: Perbill,
/// Whether or not this validator is accepting more nominations. If `true`, then no nominator
/// who is not already nominating this validator may nominate them. By default, validators
/// are accepting nominations.
pub blocked: bool,
/// Just a Balance/BlockNumber tuple to encode when a chunk of funds will be unlocked.
#[derive(PartialEq, Eq, Clone, Encode, Decode, RuntimeDebug, TypeInfo)]
pub struct UnlockChunk<Balance: HasCompact> {
/// Amount of funds to be unlocked.
#[codec(compact)]
value: Balance,
/// Era number at which point it'll be unlocked.
#[codec(compact)]
}
/// The ledger of a (bonded) stash.
#[derive(PartialEq, Eq, Clone, Encode, Decode, RuntimeDebugNoBound, TypeInfo)]
#[scale_info(skip_type_params(T))]
pub struct StakingLedger<T: Config> {
/// The stash account whose balance is actually locked and at stake.
/// The total amount of the stash's balance that we are currently accounting for.
/// It's just `active` plus all the `unlocking` balances.
#[codec(compact)]
/// The total amount of the stash's balance that will be at stake in any forthcoming
/// rounds.
#[codec(compact)]
/// Any balance that is becoming free, which may eventually be transferred out of the stash
/// (assuming it doesn't get slashed first). It is assumed that this will be treated as a first
/// in, first out queue where the new (higher value) eras get pushed on the back.
pub unlocking: BoundedVec<UnlockChunk<BalanceOf<T>>, MaxUnlockingChunks>,
/// List of eras for which the stakers behind a validator have claimed rewards. Only updated
/// for validators.
pub claimed_rewards: Vec<EraIndex>,
impl<T: Config> StakingLedger<T> {
/// Initializes the default object using the given `validator`.
pub fn default_from(stash: T::AccountId) -> Self {
Self {
stash,
total: Zero::zero(),
active: Zero::zero(),
unlocking: Default::default(),
claimed_rewards: vec![],
}
}
/// Remove entries from `unlocking` that are sufficiently old and reduce the
/// total by the sum of their balances.
fn consolidate_unlocked(self, current_era: EraIndex) -> Self {
let unlocking: BoundedVec<_, _> = self
.unlocking
.into_iter()
.filter(|chunk| {
if chunk.era > current_era {
true
} else {
total = total.saturating_sub(chunk.value);
false
}
.collect::<Vec<_>>()
.try_into()
.expect(
"filtering items from a bounded vec always leaves length less than bounds. qed",
);
Self {
stash: self.stash,
total,
active: self.active,
unlocking,
claimed_rewards: self.claimed_rewards,
/// Re-bond funds that were scheduled for unlocking.
///
/// Returns the updated ledger, and the amount actually rebonded.
fn rebond(mut self, value: BalanceOf<T>) -> (Self, BalanceOf<T>) {
let mut unlocking_balance = BalanceOf::<T>::zero();
while let Some(last) = self.unlocking.last_mut() {
if unlocking_balance + last.value <= value {
unlocking_balance += last.value;
self.active += last.value;
self.unlocking.pop();
} else {
let diff = value - unlocking_balance;
unlocking_balance += diff;
self.active += diff;
last.value -= diff;
}
if unlocking_balance >= value {
break
}
}
/// Slash the staker for a given amount of balance. This can grow the value of the slash in the
/// case that either the active bonded or some unlocking chunks become dust after slashing.
/// Returns the amount of funds actually slashed.
/// `slash_era` is the era in which the slash (which is being enacted now) actually happened.
///
/// This calls `Config::OnStakerSlash::on_slash` with information as to how the slash was
/// applied.
fn slash(
&mut self,
slash_amount: BalanceOf<T>,
minimum_balance: BalanceOf<T>,
slash_era: EraIndex,
) -> BalanceOf<T> {
use sp_staking::OnStakerSlash as _;
if slash_amount.is_zero() {
return Zero::zero()
}
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
let mut remaining_slash = slash_amount;
let pre_slash_total = self.total;
let era_after_slash = slash_era + 1;
let chunk_unlock_era_after_slash = era_after_slash + T::BondingDuration::get();
// Calculate the total balance of active funds and unlocking funds in the affected range.
let (affected_balance, slash_chunks_priority): (_, Box<dyn Iterator<Item = usize>>) = {
if let Some(start_index) =
self.unlocking.iter().position(|c| c.era >= chunk_unlock_era_after_slash)
{
// The indices of the first chunk after the slash up through the most recent chunk.
// (The most recent chunk is at greatest from this era)
let affected_indices = start_index..self.unlocking.len();
let unbonding_affected_balance =
affected_indices.clone().fold(BalanceOf::<T>::zero(), |sum, i| {
if let Some(chunk) = self.unlocking.get_mut(i).defensive() {
sum.saturating_add(chunk.value)
} else {
sum
}
});
(
self.active.saturating_add(unbonding_affected_balance),
Box::new(affected_indices.chain((0..start_index).rev())),
)
} else {
(self.active, Box::new((0..self.unlocking.len()).rev()))
}
};
// Helper to update `target` and the ledgers total after accounting for slashing `target`.
let ratio = Perquintill::from_rational(slash_amount, affected_balance);
let mut slash_out_of = |target: &mut BalanceOf<T>, slash_remaining: &mut BalanceOf<T>| {
let mut slash_from_target =
if slash_amount < affected_balance { ratio * (*target) } else { *slash_remaining }
.min(*target);
// slash out from *target exactly `slash_from_target`.
*target = *target - slash_from_target;
if *target < minimum_balance {
// Slash the rest of the target if its dust
slash_from_target =
sp_std::mem::replace(target, Zero::zero()).saturating_add(slash_from_target)
}
self.total = self.total.saturating_sub(slash_from_target);
*slash_remaining = slash_remaining.saturating_sub(slash_from_target);
};
// If this is *not* a proportional slash, the active will always wiped to 0.
slash_out_of(&mut self.active, &mut remaining_slash);
let mut slashed_unlocking = BTreeMap::<_, _>::new();
for i in slash_chunks_priority {
if let Some(chunk) = self.unlocking.get_mut(i).defensive() {
if remaining_slash.is_zero() {
break
}
slash_out_of(&mut chunk.value, &mut remaining_slash);
// write the new slashed value of this chunk to the map.
slashed_unlocking.insert(chunk.era, chunk.value);
} else {
break
}
}
self.unlocking.retain(|c| !c.value.is_zero());
T::OnStakerSlash::on_slash(&self.stash, self.active, &slashed_unlocking);
pre_slash_total.saturating_sub(self.total)
}
}
/// A record of the nominations made by a specific account.
#[derive(PartialEqNoBound, EqNoBound, Clone, Encode, Decode, RuntimeDebugNoBound, TypeInfo)]
#[scale_info(skip_type_params(T))]
pub struct Nominations<T: Config> {
/// The targets of nomination.
pub targets: BoundedVec<T::AccountId, T::MaxNominations>,
/// The era the nominations were submitted.
///
/// Except for initial nominations which are considered submitted at era 0.
/// Whether the nominations have been suppressed. This can happen due to slashing of the
/// validators, or other events that might invalidate the nomination.
///
/// NOTE: this for future proofing and is thus far not used.
}
/// The amount of exposure (to slashing) than an individual nominator has.
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Encode, Decode, RuntimeDebug, TypeInfo)]
pub struct IndividualExposure<AccountId, Balance: HasCompact> {
/// The stash account of the nominator in question.
/// Amount of funds exposed.
#[codec(compact)]
}
/// A snapshot of the stake backing a single validator in the system.
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Encode, Decode, RuntimeDebug, TypeInfo)]
pub struct Exposure<AccountId, Balance: HasCompact> {
/// The total balance backing this validator.
#[codec(compact)]
pub total: Balance,
/// The validator's own stash that is exposed.
#[codec(compact)]
pub own: Balance,
/// The portions of nominators stashes that are exposed.
pub others: Vec<IndividualExposure<AccountId, Balance>>,
}
impl<AccountId, Balance: Default + HasCompact> Default for Exposure<AccountId, Balance> {
fn default() -> Self {
Self { total: Default::default(), own: Default::default(), others: vec![] }
}
}
/// A pending slash record. The value of the slash has been computed but not applied yet,
/// rather deferred for several eras.
#[derive(Encode, Decode, RuntimeDebug, TypeInfo)]
pub struct UnappliedSlash<AccountId, Balance: HasCompact> {
/// The stash ID of the offending validator.
validator: AccountId,
/// The validator's own slash.
own: Balance,
/// All other slashed stakers and amounts.
others: Vec<(AccountId, Balance)>,
/// Reporters of the offence; bounty payout recipients.
reporters: Vec<AccountId>,
/// The amount of payout.
payout: Balance,
impl<AccountId, Balance: HasCompact + Zero> UnappliedSlash<AccountId, Balance> {
/// Initializes the default object using the given `validator`.
pub fn default_from(validator: AccountId) -> Self {
Self {
validator,
own: Zero::zero(),
others: vec![],
reporters: vec![],
payout: Zero::zero(),
}
}
}
/// Means for interacting with a specialized version of the `session` trait.
///
/// This is needed because `Staking` sets the `ValidatorIdOf` of the `pallet_session::Config`
pub trait SessionInterface<AccountId> {
André Silva
committed
/// Disable the validator at the given index, returns `false` if the validator was already
/// disabled or the index is out of bounds.
fn disable_validator(validator_index: u32) -> bool;
/// Get the validators from session.
fn validators() -> Vec<AccountId>;
/// Prune historical session tries up to but not including the given index.
fn prune_historical_up_to(up_to: SessionIndex);
impl<T: Config> SessionInterface<<T as frame_system::Config>::AccountId> for T
where
T: pallet_session::Config<ValidatorId = <T as frame_system::Config>::AccountId>,
T: pallet_session::historical::Config<
FullIdentification = Exposure<<T as frame_system::Config>::AccountId, BalanceOf<T>>,
FullIdentificationOf = ExposureOf<T>,
>,
T::SessionHandler: pallet_session::SessionHandler<<T as frame_system::Config>::AccountId>,
T::SessionManager: pallet_session::SessionManager<<T as frame_system::Config>::AccountId>,
T::ValidatorIdOf: Convert<
<T as frame_system::Config>::AccountId,
Option<<T as frame_system::Config>::AccountId>,
>,
André Silva
committed
fn disable_validator(validator_index: u32) -> bool {
<pallet_session::Pallet<T>>::disable_index(validator_index)
fn validators() -> Vec<<T as frame_system::Config>::AccountId> {
<pallet_session::Pallet<T>>::validators()
fn prune_historical_up_to(up_to: SessionIndex) {
<pallet_session::historical::Pallet<T>>::prune_up_to(up_to);
impl<AccountId> SessionInterface<AccountId> for () {
fn disable_validator(_: u32) -> bool {
true
}
fn validators() -> Vec<AccountId> {
Vec::new()
}
fn prune_historical_up_to(_: SessionIndex) {
()
}
}
/// Handler for determining how much of a balance should be paid out on the current era.
pub trait EraPayout<Balance> {
/// Determine the payout for this era.
///
/// Returns the amount to be paid to stakers in this era, as well as whatever else should be
/// paid out ("the rest").
fn era_payout(
total_staked: Balance,
total_issuance: Balance,
era_duration_millis: u64,
) -> (Balance, Balance);
}
impl<Balance: Default> EraPayout<Balance> for () {
fn era_payout(
_total_staked: Balance,
_total_issuance: Balance,
_era_duration_millis: u64,
) -> (Balance, Balance) {
(Default::default(), Default::default())
}
}
/// Adaptor to turn a `PiecewiseLinear` curve definition into an `EraPayout` impl, used for
/// backwards compatibility.
pub struct ConvertCurve<T>(sp_std::marker::PhantomData<T>);
impl<Balance: AtLeast32BitUnsigned + Clone, T: Get<&'static PiecewiseLinear<'static>>>
EraPayout<Balance> for ConvertCurve<T>
{
fn era_payout(
total_staked: Balance,
total_issuance: Balance,
era_duration_millis: u64,
) -> (Balance, Balance) {
let (validator_payout, max_payout) = inflation::compute_total_payout(
total_staked,
total_issuance,
// Duration of era; more than u64::MAX is rewarded as u64::MAX.
era_duration_millis,
);
let rest = max_payout.saturating_sub(validator_payout.clone());
(validator_payout, rest)
}
}
/// Mode of era-forcing.
#[derive(Copy, Clone, PartialEq, Eq, Encode, Decode, RuntimeDebug, TypeInfo)]
#[cfg_attr(feature = "std", derive(serde::Serialize, serde::Deserialize))]
pub enum Forcing {
/// Not forcing anything - just let whatever happen.
NotForcing,
/// Force a new era, then reset to `NotForcing` as soon as it is done.
thiolliere
committed
/// Note that this will force to trigger an election until a new era is triggered, if the
/// election failed, the next session end will trigger a new election again, until success.
ForceNew,
/// Avoid a new era indefinitely.
ForceNone,
/// Force a new era at the end of all sessions indefinitely.
ForceAlways,
}
impl Default for Forcing {
fn default() -> Self {
Forcing::NotForcing
}
// A value placed in storage that represents the current version of the Staking storage. This value
// is used by the `on_runtime_upgrade` logic to determine whether we run storage migration logic.
// This should match directly with the semantic versions of the Rust crate.
#[derive(Encode, Decode, Clone, Copy, PartialEq, Eq, RuntimeDebug, TypeInfo)]
V5_0_0, // blockable validators.
V6_0_0, // removal of all storage associated with offchain phragmen.
V7_0_0, // keep track of number of nominators / validators in map
Kian Paimani
committed
V8_0_0, // populate `VoterList`.
V9_0_0, // inject validators into `VoterList` as well.
}
impl Default for Releases {
fn default() -> Self {
Releases::V8_0_0
/// A `Convert` implementation that finds the stash of the given controller account,
/// if any.
pub struct StashOf<T>(sp_std::marker::PhantomData<T>);
impl<T: Config> Convert<T::AccountId, Option<T::AccountId>> for StashOf<T> {
fn convert(controller: T::AccountId) -> Option<T::AccountId> {
<Pallet<T>>::ledger(&controller).map(|l| l.stash)
/// A typed conversion from stash account ID to the active exposure of nominators
/// on that account.
///
/// Active exposure is the exposure of the validator set currently validating, i.e. in
/// `active_era`. It can differ from the latest planned exposure in `current_era`.
pub struct ExposureOf<T>(sp_std::marker::PhantomData<T>);
impl<T: Config> Convert<T::AccountId, Option<Exposure<T::AccountId, BalanceOf<T>>>>
for ExposureOf<T>
{
fn convert(validator: T::AccountId) -> Option<Exposure<T::AccountId, BalanceOf<T>>> {
<Pallet<T>>::active_era()
.map(|active_era| <Pallet<T>>::eras_stakers(active_era.index, &validator))
/// Filter historical offences out and only allow those from the bonding period.
pub struct FilterHistoricalOffences<T, R> {
_inner: sp_std::marker::PhantomData<(T, R)>,
}
impl<T, Reporter, Offender, R, O> ReportOffence<Reporter, Offender, O>
for FilterHistoricalOffences<Pallet<T>, R>
where
T: Config,
R: ReportOffence<Reporter, Offender, O>,
O: Offence<Offender>,
{
fn report_offence(reporters: Vec<Reporter>, offence: O) -> Result<(), OffenceError> {
// Disallow any slashing from before the current bonding period.
let offence_session = offence.session_index();
let bonded_eras = BondedEras::<T>::get();
if bonded_eras.first().filter(|(_, start)| offence_session >= *start).is_some() {
R::report_offence(reporters, offence)
} else {
<Pallet<T>>::deposit_event(Event::<T>::OldSlashingReportDiscarded(offence_session));
Ok(())
fn is_known_offence(offenders: &[Offender], time_slot: &O::TimeSlot) -> bool {
R::is_known_offence(offenders, time_slot)
/// Configurations of the benchmarking of the pallet.
pub trait BenchmarkingConfig {
/// The maximum number of validators to use.
type MaxValidators: Get<u32>;
/// The maximum number of nominators to use.
type MaxNominators: Get<u32>;
}
/// A mock benchmarking config for pallet-staking.
///
/// Should only be used for testing.
#[cfg(feature = "std")]
pub struct TestBenchmarkingConfig;
#[cfg(feature = "std")]
impl BenchmarkingConfig for TestBenchmarkingConfig {
Georges
committed
type MaxValidators = frame_support::traits::ConstU32<100>;
type MaxNominators = frame_support::traits::ConstU32<100>;