Newer
Older
// This file is part of Substrate.
// Copyright (C) 2017-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//!
//! The Staking module is used to manage funds at stake by network maintainers.
//!
//! - [`staking::Config`](./trait.Config.html)
//! - [`Call`](./enum.Call.html)
//! - [`Module`](./struct.Module.html)
//!
//! ## Overview
//! The Staking module is the means by which a set of network maintainers (known as _authorities_ in
//! some contexts and _validators_ in others) are chosen based upon those who voluntarily place
//! funds under deposit. Under deposit, those funds are rewarded under normal operation but are held
//! at pain of _slash_ (expropriation) should the staked maintainer be found not to be discharging
//! its duties properly.
//! ### Terminology
//! <!-- Original author of paragraph: @gavofyork -->
//!
//! - Staking: The process of locking up funds for some time, placing them at risk of slashing
//! (loss) in order to become a rewarded maintainer of the network.
//! - Validating: The process of running a node to actively maintain the network, either by
//! producing blocks or guaranteeing finality of the chain.
//! - Nominating: The process of placing staked funds behind one or more validators in order to
//! share in any reward, and punishment, they take.
//! - Stash account: The account holding an owner's funds used for staking.
//! - Controller account: The account that controls an owner's funds for staking.
//! - Era: A (whole) number of sessions, which is the period that the validator set (and each
//! validator's active nominator set) is recalculated and where rewards are paid out.
//! - Slash: The punishment of a staker by reducing its funds.
//!
//! ### Goals
//! <!-- Original author of paragraph: @gavofyork -->
//!
//! The staking system in Substrate NPoS is designed to make the following possible:
//! - Stake funds that are controlled by a cold wallet.
//! - Withdraw some, or deposit more, funds without interrupting the role of an entity.
//! - Switch between roles (nominator, validator, idle) with minimal overhead.
//!
//! ### Scenarios
//!
//! #### Staking
//!
//! Almost any interaction with the Staking module requires a process of _**bonding**_ (also known
//! as being a _staker_). To become *bonded*, a fund-holding account known as the _stash account_,
//! which holds some or all of the funds that become frozen in place as part of the staking process,
//! is paired with an active **controller** account, which issues instructions on how they shall be
//! used.
//! An account pair can become bonded using the [`bond`](./enum.Call.html#variant.bond) call.
//!
//! Stash accounts can change their associated controller using the
//! [`set_controller`](./enum.Call.html#variant.set_controller) call.
//! There are three possible roles that any staked account pair can be in: `Validator`, `Nominator`
//! and `Idle` (defined in [`StakerStatus`](./enum.StakerStatus.html)). There are three
//! corresponding instructions to change between roles, namely:
//! [`validate`](./enum.Call.html#variant.validate),
//! [`nominate`](./enum.Call.html#variant.nominate), and [`chill`](./enum.Call.html#variant.chill).
//!
//! #### Validating
//!
//! A **validator** takes the role of either validating blocks or ensuring their finality,
//! maintaining the veracity of the network. A validator should avoid both any sort of malicious
//! misbehavior and going offline. Bonded accounts that state interest in being a validator do NOT
//! get immediately chosen as a validator. Instead, they are declared as a _candidate_ and they
//! _might_ get elected at the _next era_ as a validator. The result of the election is determined
//! by nominators and their votes.
//! An account can become a validator candidate via the
//! [`validate`](./enum.Call.html#variant.validate) call.
//!
//! #### Nomination
//!
//! A **nominator** does not take any _direct_ role in maintaining the network, instead, it votes on
//! a set of validators to be elected. Once interest in nomination is stated by an account, it
//! takes effect at the next election round. The funds in the nominator's stash account indicate the
//! _weight_ of its vote. Both the rewards and any punishment that a validator earns are shared
//! between the validator and its nominators. This rule incentivizes the nominators to NOT vote for
//! the misbehaving/offline validators as much as possible, simply because the nominators will also
//! lose funds if they vote poorly.
//!
//! An account can become a nominator via the [`nominate`](enum.Call.html#variant.nominate) call.
//!
//! #### Rewards and Slash
//!
//! The **reward and slashing** procedure is the core of the Staking module, attempting to _embrace
//! valid behavior_ while _punishing any misbehavior or lack of availability_.
//! Rewards must be claimed for each era before it gets too old by `$HISTORY_DEPTH` using the
//! `payout_stakers` call. Any account can call `payout_stakers`, which pays the reward to the
//! validator as well as its nominators. Only the [`Config::MaxNominatorRewardedPerValidator`]
//! biggest stakers can claim their reward. This is to limit the i/o cost to mutate storage for each
//! nominator's account.
//! Slashing can occur at any point in time, once misbehavior is reported. Once slashing is
//! determined, a value is deducted from the balance of the validator and all the nominators who
//! voted for this validator (values are deducted from the _stash_ account of the slashed entity).
//! Slashing logic is further described in the documentation of the `slashing` module.
//!
//! Similar to slashing, rewards are also shared among a validator and its associated nominators.
//! Yet, the reward funds are not always transferred to the stash account and can be configured. See
//! [Reward Calculation](#reward-calculation) for more details.
//!
//! #### Chilling
//! Finally, any of the roles above can choose to step back temporarily and just chill for a while.
//! This means that if they are a nominator, they will not be considered as voters anymore and if
//! they are validators, they will no longer be a candidate for the next election.
//! An account can step back via the [`chill`](enum.Call.html#variant.chill) call.
//! ### Session managing
//!
//! The module implement the trait `SessionManager`. Which is the only API to query new validator
//! set and allowing these validator set to be rewarded once their era is ended.
//!
//! The dispatchable functions of the Staking module enable the steps needed for entities to accept
//! and change their role, alongside some helper functions to get/set the metadata of the module.
//! The Staking module contains many public storage items and (im)mutable functions.
//! ### Example: Rewarding a validator by id.
//! use frame_support::{decl_module, dispatch};
Shaopeng Wang
committed
//! use frame_system::ensure_signed;
//! use pallet_staking::{self as staking};
//! pub trait Config: staking::Config {}
//!
//! decl_module! {
//! pub struct Module<T: Config> for enum Call where origin: T::Origin {
//! /// Reward a validator.
//! #[weight = 0]
//! pub fn reward_myself(origin) -> dispatch::DispatchResult {
//! let reported = ensure_signed(origin)?;
//! <staking::Module<T>>::reward_by_ids(vec![(reported, 10)]);
//! Ok(())
//! }
//! }
//! }
//! # fn main() { }
//! ```
//!
//! ## Implementation Details
//!
//! ### Era payout
//!
//! The era payout is computed using yearly inflation curve defined at
//! [`T::RewardCurve`](./trait.Config.html#associatedtype.RewardCurve) as such:
//!
//! ```nocompile
//! staker_payout = yearly_inflation(npos_token_staked / total_tokens) * total_tokens / era_per_year
//! ```
//! This payout is used to reward stakers as defined in next section
//!
//! ```nocompile
//! remaining_payout = max_yearly_inflation * total_tokens / era_per_year - staker_payout
//! ```
//! The remaining reward is send to the configurable end-point
//! [`T::RewardRemainder`](./trait.Config.html#associatedtype.RewardRemainder).
//! ### Reward Calculation
//!
//! Validators and nominators are rewarded at the end of each era. The total reward of an era is
//! calculated using the era duration and the staking rate (the total amount of tokens staked by
//! nominators and validators, divided by the total token supply). It aims to incentivize toward a
//! defined staking rate. The full specification can be found
//! [here](https://research.web3.foundation/en/latest/polkadot/Token%20Economics.html#inflation-model).
//!
//! Total reward is split among validators and their nominators depending on the number of points
//! they received during the era. Points are added to a validator using
//! [`reward_by_ids`](./enum.Call.html#variant.reward_by_ids) or
//! [`reward_by_indices`](./enum.Call.html#variant.reward_by_indices).
//!
//! [`Module`](./struct.Module.html) implements
//! [`pallet_authorship::EventHandler`](../pallet_authorship/trait.EventHandler.html) to add reward
//! points to block producer and block producer of referenced uncles.
//!
//! The validator and its nominator split their reward as following:
//! The validator can declare an amount, named
//! [`commission`](./struct.ValidatorPrefs.html#structfield.commission), that does not get shared
//! with the nominators at each reward payout through its
//! [`ValidatorPrefs`](./struct.ValidatorPrefs.html). This value gets deducted from the total reward
//! that is paid to the validator and its nominators. The remaining portion is split among the
//! validator and all of the nominators that nominated the validator, proportional to the value
//! staked behind this validator (_i.e._ dividing the
//! [`own`](./struct.Exposure.html#structfield.own) or
//! [`others`](./struct.Exposure.html#structfield.others) by
//! [`total`](./struct.Exposure.html#structfield.total) in [`Exposure`](./struct.Exposure.html)).
//! All entities who receive a reward have the option to choose their reward destination through the
//! [`Payee`](./struct.Payee.html) storage item (see
//! [`set_payee`](enum.Call.html#variant.set_payee)), to be one of the following:
//!
//! - Controller account, (obviously) not increasing the staked value.
//! - Stash account, not increasing the staked value.
//! - Stash account, also increasing the staked value.
//!
//! ### Additional Fund Management Operations
//!
//! Any funds already placed into stash can be the target of the following operations:
//!
//! The controller account can free a portion (or all) of the funds using the
//! [`unbond`](enum.Call.html#variant.unbond) call. Note that the funds are not immediately
//! accessible. Instead, a duration denoted by
//! [`BondingDuration`](./trait.Config.html#associatedtype.BondingDuration) (in number of eras) must
//! pass until the funds can actually be removed. Once the `BondingDuration` is over, the
//! [`withdraw_unbonded`](./enum.Call.html#variant.withdraw_unbonded) call can be used to actually
//! withdraw the funds.
//! Note that there is a limitation to the number of fund-chunks that can be scheduled to be
//! unlocked in the future via [`unbond`](enum.Call.html#variant.unbond). In case this maximum
//! (`MAX_UNLOCKING_CHUNKS`) is reached, the bonded account _must_ first wait until a successful
//! call to `withdraw_unbonded` to remove some of the chunks.
//!
//! The current election algorithm is implemented based on Phragmén. The reference implementation
//! can be found [here](https://github.com/w3f/consensus/tree/master/NPoS).
//! The election algorithm, aside from electing the validators with the most stake value and votes,
//! tries to divide the nominator votes among candidates in an equal manner. To further assure this,
//! an optional post-processing can be applied that iteratively normalizes the nominator staked
//! values until the total difference among votes of a particular nominator are less than a
//! threshold.
//!
//! ## GenesisConfig
//!
//! The Staking module depends on the [`GenesisConfig`](./struct.GenesisConfig.html). The
//! `GenesisConfig` is optional and allow to set some initial stakers.
//!
//! ## Related Modules
//!
//! - [Balances](../pallet_balances/index.html): Used to manage values at stake.
//! - [Session](../pallet_session/index.html): Used to manage sessions. Also, a list of new
//! validators is stored in the Session module's `Validators` at the end of each era.
mod mock;
#[cfg(test)]
mod tests;
#[cfg(any(feature = "runtime-benchmarks", test))]
#[cfg(any(feature = "runtime-benchmarks", test))]
pub mod benchmarking;
pub mod inflation;
use sp_std::{
result,
prelude::*,
collections::btree_map::BTreeMap,
convert::{TryInto, From},
mem::size_of,
};
use codec::{HasCompact, Encode, Decode};
decl_module, decl_event, decl_storage, ensure, decl_error,
weights::{
Weight,
constants::{WEIGHT_PER_MICROS, WEIGHT_PER_NANOS},
Kian Paimani
committed
},
storage::IterableStorageMap,
dispatch::{DispatchResult, DispatchResultWithPostInfo},
traits::{
Currency, LockIdentifier, LockableCurrency, WithdrawReasons, OnUnbalanced, Imbalance, Get,
UnixTime, EstimateNextNewSession, EnsureOrigin, CurrencyToVote,
},
Percent, Perbill, PerU16, RuntimeDebug, DispatchError,
curve::PiecewiseLinear,
traits::{
Convert, Zero, StaticLookup, CheckedSub, Saturating, SaturatedConversion,
AtLeast32BitUnsigned,
offence::{OnOffenceHandler, OffenceDetails, Offence, ReportOffence, OffenceError},
self as system, ensure_signed, ensure_root,
use frame_election_provider_support::{ElectionProvider, VoteWeight, Supports, data_provider};
const STAKING_ID: LockIdentifier = *b"staking ";
pub(crate) const LOG_TARGET: &'static str = "runtime::staking";
// syntactic sugar for logging.
#[macro_export]
macro_rules! log {
($level:tt, $patter:expr $(, $values:expr)* $(,)?) => {
log::$level!(
concat!("[{:?}] 💸 ", $patter), <frame_system::Pallet<T>>::block_number() $(, $values)*
)
};
}
/// Data type used to index nominators in the compact type
pub type NominatorIndex = u32;
/// Data type used to index validators in the compact type.
pub type ValidatorIndex = u16;
// Ensure the size of both ValidatorIndex and NominatorIndex. They both need to be well below usize.
static_assertions::const_assert!(size_of::<ValidatorIndex>() <= size_of::<usize>());
static_assertions::const_assert!(size_of::<NominatorIndex>() <= size_of::<usize>());
static_assertions::const_assert!(size_of::<ValidatorIndex>() <= size_of::<u32>());
static_assertions::const_assert!(size_of::<NominatorIndex>() <= size_of::<u32>());
/// Maximum number of stakers that can be stored in a snapshot.
pub const MAX_NOMINATIONS: usize =
<CompactAssignments as sp_npos_elections::CompactSolution>::LIMIT;
pub const MAX_UNLOCKING_CHUNKS: usize = 32;
/// Counter for the number of eras that have passed.
pub type EraIndex = u32;
/// Counter for the number of "reward" points earned by a given validator.
// Note: Maximum nomination limit is set here -- 16.
sp_npos_elections::generate_solution_type!(
#[compact]
pub struct CompactAssignments::<NominatorIndex, ValidatorIndex, OffchainAccuracy>(16)
);
/// Accuracy used for off-chain election. This better be small.
pub type OffchainAccuracy = PerU16;
/// The balance type of this module.
pub type BalanceOf<T> =
<<T as Config>::Currency as Currency<<T as frame_system::Config>::AccountId>>::Balance;
type PositiveImbalanceOf<T> = <<T as Config>::Currency as Currency<
<T as frame_system::Config>::AccountId,
>>::PositiveImbalance;
type NegativeImbalanceOf<T> = <<T as Config>::Currency as Currency<
<T as frame_system::Config>::AccountId,
>>::NegativeImbalance;
/// Information regarding the active era (era in used in session).
#[derive(Encode, Decode, RuntimeDebug)]
pub struct ActiveEraInfo {
/// Index of era.
pub index: EraIndex,
/// Moment of start expressed as millisecond from `$UNIX_EPOCH`.
///
/// Start can be none if start hasn't been set for the era yet,
/// Start is set on the first on_finalize of the era to guarantee usage of `Time`.
start: Option<u64>,
}
/// Reward points of an era. Used to split era total payout between validators.
///
/// This points will be used to reward validators and their respective nominators.
#[derive(PartialEq, Encode, Decode, Default, RuntimeDebug)]
/// Total number of points. Equals the sum of reward points for each validator.
total: RewardPoint,
/// The reward points earned by a given validator.
individual: BTreeMap<AccountId, RewardPoint>,
/// Indicates the initial status of the staker.
#[derive(RuntimeDebug)]
#[cfg_attr(feature = "std", derive(Serialize, Deserialize))]
pub enum StakerStatus<AccountId> {
/// Chilling.
Idle,
/// Declared desire in validating or already participating in it.
Validator,
/// Nominating for a group of other stakers.
Nominator(Vec<AccountId>),
}
/// A destination account for payment.
#[derive(PartialEq, Eq, Copy, Clone, Encode, Decode, RuntimeDebug)]
pub enum RewardDestination<AccountId> {
/// Pay into the stash account, increasing the amount at stake accordingly.
Staked,
/// Pay into the stash account, not increasing the amount at stake.
Stash,
/// Pay into the controller account.
Controller,
/// Pay into a specified account.
Account(AccountId),
Wei Tang
committed
/// Receive no reward.
None,
impl<AccountId> Default for RewardDestination<AccountId> {
fn default() -> Self {
RewardDestination::Staked
}
/// Preference of what happens regarding validation.
#[derive(PartialEq, Eq, Clone, Encode, Decode, RuntimeDebug)]
pub struct ValidatorPrefs {
/// Reward that validator takes up-front; only the rest is split between themselves and
/// nominators.
pub commission: Perbill,
/// Whether or not this validator is accepting more nominations. If `true`, then no nominator
/// who is not already nominating this validator may nominate them. By default, validators
/// are accepting nominations.
pub blocked: bool,
impl Default for ValidatorPrefs {
commission: Default::default(),
blocked: false,
/// Just a Balance/BlockNumber tuple to encode when a chunk of funds will be unlocked.
#[derive(PartialEq, Eq, Clone, Encode, Decode, RuntimeDebug)]
pub struct UnlockChunk<Balance: HasCompact> {
/// Amount of funds to be unlocked.
#[codec(compact)]
value: Balance,
/// Era number at which point it'll be unlocked.
#[codec(compact)]
}
/// The ledger of a (bonded) stash.
#[derive(PartialEq, Eq, Clone, Encode, Decode, RuntimeDebug)]
pub struct StakingLedger<AccountId, Balance: HasCompact> {
/// The stash account whose balance is actually locked and at stake.
pub stash: AccountId,
/// The total amount of the stash's balance that we are currently accounting for.
/// It's just `active` plus all the `unlocking` balances.
#[codec(compact)]
pub total: Balance,
/// The total amount of the stash's balance that will be at stake in any forthcoming
/// rounds.
#[codec(compact)]
pub active: Balance,
/// Any balance that is becoming free, which may eventually be transferred out
/// of the stash (assuming it doesn't get slashed first).
pub unlocking: Vec<UnlockChunk<Balance>>,
/// List of eras for which the stakers behind a validator have claimed rewards. Only updated
/// for validators.
pub claimed_rewards: Vec<EraIndex>,
impl<
AccountId,
Balance: HasCompact + Copy + Saturating + AtLeast32BitUnsigned,
> StakingLedger<AccountId, Balance> {
/// Remove entries from `unlocking` that are sufficiently old and reduce the
/// total by the sum of their balances.
fn consolidate_unlocked(self, current_era: EraIndex) -> Self {
let mut total = self.total;
let unlocking = self.unlocking.into_iter()
.filter(|chunk| if chunk.era > current_era {
true
} else {
total = total.saturating_sub(chunk.value);
false
})
.collect();
Self {
stash: self.stash,
total,
active: self.active,
unlocking,
/// Re-bond funds that were scheduled for unlocking.
fn rebond(mut self, value: Balance) -> Self {
let mut unlocking_balance: Balance = Zero::zero();
while let Some(last) = self.unlocking.last_mut() {
if unlocking_balance + last.value <= value {
unlocking_balance += last.value;
self.active += last.value;
self.unlocking.pop();
} else {
let diff = value - unlocking_balance;
unlocking_balance += diff;
self.active += diff;
last.value -= diff;
}
if unlocking_balance >= value {
break
}
}
self
}
}
impl<AccountId, Balance> StakingLedger<AccountId, Balance> where
Balance: AtLeast32BitUnsigned + Saturating + Copy,
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
{
/// Slash the validator for a given amount of balance. This can grow the value
/// of the slash in the case that the validator has less than `minimum_balance`
/// active funds. Returns the amount of funds actually slashed.
///
/// Slashes from `active` funds first, and then `unlocking`, starting with the
/// chunks that are closest to unlocking.
fn slash(
&mut self,
mut value: Balance,
minimum_balance: Balance,
) -> Balance {
let pre_total = self.total;
let total = &mut self.total;
let active = &mut self.active;
let slash_out_of = |
total_remaining: &mut Balance,
target: &mut Balance,
value: &mut Balance,
| {
let mut slash_from_target = (*value).min(*target);
if !slash_from_target.is_zero() {
*target -= slash_from_target;
// don't leave a dust balance in the staking system.
if *target <= minimum_balance {
slash_from_target += *target;
*value += sp_std::mem::replace(target, Zero::zero());
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
}
*total_remaining = total_remaining.saturating_sub(slash_from_target);
*value -= slash_from_target;
}
};
slash_out_of(total, active, &mut value);
let i = self.unlocking.iter_mut()
.map(|chunk| {
slash_out_of(total, &mut chunk.value, &mut value);
chunk.value
})
.take_while(|value| value.is_zero()) // take all fully-consumed chunks out.
.count();
// kill all drained chunks.
let _ = self.unlocking.drain(..i);
pre_total.saturating_sub(*total)
}
}
/// A record of the nominations made by a specific account.
#[derive(PartialEq, Eq, Clone, Encode, Decode, RuntimeDebug)]
pub struct Nominations<AccountId> {
/// The targets of nomination.
pub targets: Vec<AccountId>,
/// The era the nominations were submitted.
///
/// Except for initial nominations which are considered submitted at era 0.
/// Whether the nominations have been suppressed. This can happen due to slashing of the
/// validators, or other events that might invalidate the nomination.
///
/// NOTE: this for future proofing and is thus far not used.
}
/// The amount of exposure (to slashing) than an individual nominator has.
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Encode, Decode, RuntimeDebug)]
pub struct IndividualExposure<AccountId, Balance: HasCompact> {
/// The stash account of the nominator in question.
/// Amount of funds exposed.
#[codec(compact)]
}
/// A snapshot of the stake backing a single validator in the system.
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Encode, Decode, Default, RuntimeDebug)]
pub struct Exposure<AccountId, Balance: HasCompact> {
/// The total balance backing this validator.
#[codec(compact)]
pub total: Balance,
/// The validator's own stash that is exposed.
#[codec(compact)]
pub own: Balance,
/// The portions of nominators stashes that are exposed.
pub others: Vec<IndividualExposure<AccountId, Balance>>,
}
/// A pending slash record. The value of the slash has been computed but not applied yet,
/// rather deferred for several eras.
#[derive(Encode, Decode, Default, RuntimeDebug)]
pub struct UnappliedSlash<AccountId, Balance: HasCompact> {
/// The stash ID of the offending validator.
validator: AccountId,
/// The validator's own slash.
own: Balance,
/// All other slashed stakers and amounts.
others: Vec<(AccountId, Balance)>,
/// Reporters of the offence; bounty payout recipients.
reporters: Vec<AccountId>,
/// The amount of payout.
payout: Balance,
/// Means for interacting with a specialized version of the `session` trait.
///
/// This is needed because `Staking` sets the `ValidatorIdOf` of the `pallet_session::Config`
pub trait SessionInterface<AccountId>: frame_system::Config {
/// Disable a given validator by stash ID.
///
/// Returns `true` if new era should be forced at the end of this session.
/// This allows preventing a situation where there is too many validators
/// disabled and block production stalls.
fn disable_validator(validator: &AccountId) -> Result<bool, ()>;
/// Get the validators from session.
fn validators() -> Vec<AccountId>;
/// Prune historical session tries up to but not including the given index.
fn prune_historical_up_to(up_to: SessionIndex);
impl<T: Config> SessionInterface<<T as frame_system::Config>::AccountId> for T where
T: pallet_session::Config<ValidatorId = <T as frame_system::Config>::AccountId>,
T: pallet_session::historical::Config<
FullIdentification = Exposure<<T as frame_system::Config>::AccountId, BalanceOf<T>>,
FullIdentificationOf = ExposureOf<T>,
>,
T::SessionHandler: pallet_session::SessionHandler<<T as frame_system::Config>::AccountId>,
T::SessionManager: pallet_session::SessionManager<<T as frame_system::Config>::AccountId>,
Convert<<T as frame_system::Config>::AccountId, Option<<T as frame_system::Config>::AccountId>>,
fn disable_validator(validator: &<T as frame_system::Config>::AccountId) -> Result<bool, ()> {
<pallet_session::Module<T>>::disable(validator)
fn validators() -> Vec<<T as frame_system::Config>::AccountId> {
<pallet_session::Module<T>>::validators()
fn prune_historical_up_to(up_to: SessionIndex) {
<pallet_session::historical::Module<T>>::prune_up_to(up_to);
/// Handler for determining how much of a balance should be paid out on the current era.
pub trait EraPayout<Balance> {
/// Determine the payout for this era.
///
/// Returns the amount to be paid to stakers in this era, as well as whatever else should be
/// paid out ("the rest").
fn era_payout(
total_staked: Balance,
total_issuance: Balance,
era_duration_millis: u64,
) -> (Balance, Balance);
}
impl<Balance: Default> EraPayout<Balance> for () {
fn era_payout(
_total_staked: Balance,
_total_issuance: Balance,
_era_duration_millis: u64,
) -> (Balance, Balance) {
(Default::default(), Default::default())
}
}
/// Adaptor to turn a `PiecewiseLinear` curve definition into an `EraPayout` impl, used for
/// backwards compatibility.
pub struct ConvertCurve<T>(sp_std::marker::PhantomData<T>);
impl<
Balance: AtLeast32BitUnsigned + Clone,
T: Get<&'static PiecewiseLinear<'static>>,
> EraPayout<Balance> for ConvertCurve<T> {
fn era_payout(
total_staked: Balance,
total_issuance: Balance,
era_duration_millis: u64,
) -> (Balance, Balance) {
let (validator_payout, max_payout) = inflation::compute_total_payout(
&T::get(),
total_staked,
total_issuance,
// Duration of era; more than u64::MAX is rewarded as u64::MAX.
era_duration_millis,
);
let rest = max_payout.saturating_sub(validator_payout.clone());
(validator_payout, rest)
}
}
pub trait Config: frame_system::Config + SendTransactionTypes<Call<Self>> {
type Currency: LockableCurrency<Self::AccountId, Moment = Self::BlockNumber>;
/// Time used for computing era duration.
///
/// It is guaranteed to start being called from the first `on_finalize`. Thus value at genesis
/// is not used.
type UnixTime: UnixTime;
/// Convert a balance into a number used for election calculation. This must fit into a `u64`
/// but is allowed to be sensibly lossy. The `u64` is used to communicate with the
/// [`sp_npos_elections`] crate which accepts u64 numbers and does operations in 128.
/// Consequently, the backward convert is used convert the u128s from sp-elections back to a
/// [`BalanceOf`].
type CurrencyToVote: CurrencyToVote<BalanceOf<Self>>;
/// Something that provides the election functionality.
type ElectionProvider: frame_election_provider_support::ElectionProvider<
Self::AccountId,
Self::BlockNumber,
// we only accept an election provider that has staking as data provider.
DataProvider = Module<Self>,
>;
/// Tokens have been minted and are unused for validator-reward.
/// See [Era payout](./index.html#era-payout).
type RewardRemainder: OnUnbalanced<NegativeImbalanceOf<Self>>;
type Event: From<Event<Self>> + Into<<Self as frame_system::Config>::Event>;
/// Handler for the unbalanced reduction when slashing a staker.
type Slash: OnUnbalanced<NegativeImbalanceOf<Self>>;
/// Handler for the unbalanced increment when rewarding a staker.
type Reward: OnUnbalanced<PositiveImbalanceOf<Self>>;
/// Number of sessions per era.
type SessionsPerEra: Get<SessionIndex>;
/// Number of eras that staked funds must remain bonded for.
type BondingDuration: Get<EraIndex>;
/// Number of eras that slashes are deferred by, after computation.
///
/// This should be less than the bonding duration. Set to 0 if slashes
/// should be applied immediately, without opportunity for intervention.
type SlashDeferDuration: Get<EraIndex>;
/// The origin which can cancel a deferred slash. Root can always do this.
type SlashCancelOrigin: EnsureOrigin<Self::Origin>;
/// Interface for interacting with a session module.
type SessionInterface: self::SessionInterface<Self::AccountId>;
/// The payout for validators and the system for the current era.
/// See [Era payout](./index.html#era-payout).
type EraPayout: EraPayout<BalanceOf<Self>>;
/// Something that can estimate the next session change, accurately or as a best effort guess.
type NextNewSession: EstimateNextNewSession<Self::BlockNumber>;
/// The maximum number of nominators rewarded for each validator.
///
/// For each validator only the `$MaxNominatorRewardedPerValidator` biggest stakers can claim
/// their reward. This used to limit the i/o cost for the nominator payout.
type MaxNominatorRewardedPerValidator: Get<u32>;
/// Weight information for extrinsics in this pallet.
type WeightInfo: WeightInfo;
/// Mode of era-forcing.
#[derive(Copy, Clone, PartialEq, Eq, Encode, Decode, RuntimeDebug)]
#[cfg_attr(feature = "std", derive(Serialize, Deserialize))]
pub enum Forcing {
/// Not forcing anything - just let whatever happen.
NotForcing,
/// Force a new era, then reset to `NotForcing` as soon as it is done.
ForceNew,
/// Avoid a new era indefinitely.
ForceNone,
/// Force a new era at the end of all sessions indefinitely.
ForceAlways,
}
impl Default for Forcing {
fn default() -> Self {
Forcing::NotForcing
}
// A value placed in storage that represents the current version of the Staking storage. This value
// is used by the `on_runtime_upgrade` logic to determine whether we run storage migration logic.
// This should match directly with the semantic versions of the Rust crate.
#[derive(Encode, Decode, Clone, Copy, PartialEq, Eq, RuntimeDebug)]
enum Releases {
V5_0_0, // blockable validators.
V6_0_0, // removal of all storage associated with offchain phragmen.
}
impl Default for Releases {
fn default() -> Self {
Releases::V6_0_0
trait Store for Module<T: Config> as Staking {
/// Information is kept for eras in `[current_era - history_depth; current_era]`.
/// Must be more than the number of eras delayed by session otherwise. I.e. active era must
/// always be in history. I.e. `active_era > current_era - history_depth` must be
/// guaranteed.
HistoryDepth get(fn history_depth) config(): u32 = 84;
/// The ideal number of staking participants.
pub ValidatorCount get(fn validator_count) config(): u32;
/// Minimum number of staking participants before emergency conditions are imposed.
pub MinimumValidatorCount get(fn minimum_validator_count) config(): u32;
/// Any validators that may never be slashed or forcibly kicked. It's a Vec since they're
/// easy to initialize and the performance hit is minimal (we expect no more than four
/// invulnerables) and restricted to testnets.
pub Invulnerables get(fn invulnerables) config(): Vec<T::AccountId>;
/// Map from all locked "stash" accounts to the controller account.
pub Bonded get(fn bonded): map hasher(twox_64_concat) T::AccountId => Option<T::AccountId>;
/// Map from all (unlocked) "controller" accounts to the info regarding the staking.
pub Ledger get(fn ledger):
map hasher(blake2_128_concat) T::AccountId
=> Option<StakingLedger<T::AccountId, BalanceOf<T>>>;
/// Where the reward payment should be made. Keyed by stash.
pub Payee get(fn payee): map hasher(twox_64_concat) T::AccountId => RewardDestination<T::AccountId>;
/// The map from (wannabe) validator stash key to the preferences of that validator.
map hasher(twox_64_concat) T::AccountId => ValidatorPrefs;
/// The map from nominator stash key to the set of stash keys of all validators to nominate.
map hasher(twox_64_concat) T::AccountId => Option<Nominations<T::AccountId>>;
/// This is the latest planned era, depending on how the Session pallet queues the validator
/// set, it might be active or not.
pub CurrentEra get(fn current_era): Option<EraIndex>;
/// The active era information, it holds index and start.
///
/// The active era is the era being currently rewarded. Validator set of this era must be
/// equal to [`SessionInterface::validators`].
pub ActiveEra get(fn active_era): Option<ActiveEraInfo>;
/// The session index at which the era start for the last `HISTORY_DEPTH` eras.
///
/// Note: This tracks the starting session (i.e. session index when era start being active)
/// for the eras in `[CurrentEra - HISTORY_DEPTH, CurrentEra]`.
pub ErasStartSessionIndex get(fn eras_start_session_index):
map hasher(twox_64_concat) EraIndex => Option<SessionIndex>;
/// Exposure of validator at era.
///
/// This is keyed first by the era index to allow bulk deletion and then the stash account.
///
/// Is it removed after `HISTORY_DEPTH` eras.
/// If stakers hasn't been set or has been removed then empty exposure is returned.
pub ErasStakers get(fn eras_stakers):
double_map hasher(twox_64_concat) EraIndex, hasher(twox_64_concat) T::AccountId
=> Exposure<T::AccountId, BalanceOf<T>>;
/// This is similar to [`ErasStakers`] but number of nominators exposed is reduced to the
/// `T::MaxNominatorRewardedPerValidator` biggest stakers.
/// (Note: the field `total` and `own` of the exposure remains unchanged).
/// This is used to limit the i/o cost for the nominator payout.
///
/// This is keyed fist by the era index to allow bulk deletion and then the stash account.
///
/// Is it removed after `HISTORY_DEPTH` eras.
/// If stakers hasn't been set or has been removed then empty exposure is returned.
pub ErasStakersClipped get(fn eras_stakers_clipped):
double_map hasher(twox_64_concat) EraIndex, hasher(twox_64_concat) T::AccountId
=> Exposure<T::AccountId, BalanceOf<T>>;
/// Similar to `ErasStakers`, this holds the preferences of validators.
/// This is keyed first by the era index to allow bulk deletion and then the stash account.
///
/// Is it removed after `HISTORY_DEPTH` eras.
// If prefs hasn't been set or has been removed then 0 commission is returned.
pub ErasValidatorPrefs get(fn eras_validator_prefs):
double_map hasher(twox_64_concat) EraIndex, hasher(twox_64_concat) T::AccountId
=> ValidatorPrefs;
/// The total validator era payout for the last `HISTORY_DEPTH` eras.
/// Eras that haven't finished yet or has been removed doesn't have reward.
pub ErasValidatorReward get(fn eras_validator_reward):
map hasher(twox_64_concat) EraIndex => Option<BalanceOf<T>>;
/// Rewards for the last `HISTORY_DEPTH` eras.
/// If reward hasn't been set or has been removed then 0 reward is returned.
pub ErasRewardPoints get(fn eras_reward_points):
map hasher(twox_64_concat) EraIndex => EraRewardPoints<T::AccountId>;
/// The total amount staked for the last `HISTORY_DEPTH` eras.
/// If total hasn't been set or has been removed then 0 stake is returned.
pub ErasTotalStake get(fn eras_total_stake):
map hasher(twox_64_concat) EraIndex => BalanceOf<T>;
pub ForceEra get(fn force_era) config(): Forcing;
/// The percentage of the slash that is distributed to reporters.
///
/// The rest of the slashed value is handled by the `Slash`.
pub SlashRewardFraction get(fn slash_reward_fraction) config(): Perbill;
/// The amount of currency given to reporters of a slash event which was
/// canceled by extraordinary circumstances (e.g. governance).
pub CanceledSlashPayout get(fn canceled_payout) config(): BalanceOf<T>;
/// All unapplied slashes that are queued for later.
map hasher(twox_64_concat) EraIndex => Vec<UnappliedSlash<T::AccountId, BalanceOf<T>>>;
/// A mapping from still-bonded eras to the first session index of that era.
///
/// Must contains information for eras for the range:
/// `[active_era - bounding_duration; active_era]`
BondedEras: Vec<(EraIndex, SessionIndex)>;
/// All slashing events on validators, mapped by era to the highest slash proportion
/// and slash value of the era.
ValidatorSlashInEra:
double_map hasher(twox_64_concat) EraIndex, hasher(twox_64_concat) T::AccountId
/// All slashing events on nominators, mapped by era to the highest slash value of the era.
NominatorSlashInEra:
double_map hasher(twox_64_concat) EraIndex, hasher(twox_64_concat) T::AccountId