Newer
Older
// Copyright 2017-2019 Parity Technologies (UK) Ltd.
// This file is part of Substrate.
// Substrate is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Substrate is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Substrate. If not, see <http://www.gnu.org/licenses/>.
//!
//! The Staking module is used to manage funds at stake by network maintainers.
//!
//! - [`staking::Trait`](./trait.Trait.html)
//! - [`Call`](./enum.Call.html)
//! - [`Module`](./struct.Module.html)
//!
//! ## Overview
//! The Staking module is the means by which a set of network maintainers (known as _authorities_
//! in some contexts and _validators_ in others) are chosen based upon those who voluntarily place
//! funds under deposit. Under deposit, those funds are rewarded under normal operation but are
//! held at pain of _slash_ (expropriation) should the staked maintainer be found not to be
//! discharging its duties properly.
//! ### Terminology
//! <!-- Original author of paragraph: @gavofyork -->
//!
//! - Staking: The process of locking up funds for some time, placing them at risk of slashing
//! (loss) in order to become a rewarded maintainer of the network.
//! - Validating: The process of running a node to actively maintain the network, either by
//! producing blocks or guaranteeing finality of the chain.
//! - Nominating: The process of placing staked funds behind one or more validators in order to
//! share in any reward, and punishment, they take.
//! - Stash account: The account holding an owner's funds used for staking.
//! - Controller account: The account that controls an owner's funds for staking.
//! - Era: A (whole) number of sessions, which is the period that the validator set (and each
//! validator's active nominator set) is recalculated and where rewards are paid out.
//! - Slash: The punishment of a staker by reducing its funds.
//!
//! ### Goals
//! <!-- Original author of paragraph: @gavofyork -->
//!
//! The staking system in Substrate NPoS is designed to make the following possible:
//! - Stake funds that are controlled by a cold wallet.
//! - Withdraw some, or deposit more, funds without interrupting the role of an entity.
//! - Switch between roles (nominator, validator, idle) with minimal overhead.
//!
//! ### Scenarios
//!
//! #### Staking
//!
//! Almost any interaction with the Staking module requires a process of _**bonding**_ (also known
//! as being a _staker_). To become *bonded*, a fund-holding account known as the _stash account_,
//! which holds some or all of the funds that become frozen in place as part of the staking process,
//! is paired with an active **controller** account, which issues instructions on how they shall be
//! used.
//! An account pair can become bonded using the [`bond`](./enum.Call.html#variant.bond) call.
//!
//! Stash accounts can change their associated controller using the
//! [`set_controller`](./enum.Call.html#variant.set_controller) call.
//! There are three possible roles that any staked account pair can be in: `Validator`, `Nominator`
//! and `Idle` (defined in [`StakerStatus`](./enum.StakerStatus.html)). There are three
//! corresponding instructions to change between roles, namely:
//! [`validate`](./enum.Call.html#variant.validate), [`nominate`](./enum.Call.html#variant.nominate),
//! and [`chill`](./enum.Call.html#variant.chill).
//!
//! #### Validating
//!
//! A **validator** takes the role of either validating blocks or ensuring their finality,
//! maintaining the veracity of the network. A validator should avoid both any sort of malicious
//! misbehavior and going offline. Bonded accounts that state interest in being a validator do NOT
//! get immediately chosen as a validator. Instead, they are declared as a _candidate_ and they
//! _might_ get elected at the _next era_ as a validator. The result of the election is determined
//! by nominators and their votes.
//! An account can become a validator candidate via the
//! [`validate`](./enum.Call.html#variant.validate) call.
//!
//! #### Nomination
//!
//! A **nominator** does not take any _direct_ role in maintaining the network, instead, it votes on
//! a set of validators to be elected. Once interest in nomination is stated by an account, it
//! takes effect at the next election round. The funds in the nominator's stash account indicate the
//! _weight_ of its vote. Both the rewards and any punishment that a validator earns are shared
//! between the validator and its nominators. This rule incentivizes the nominators to NOT vote for
//! the misbehaving/offline validators as much as possible, simply because the nominators will also
//! lose funds if they vote poorly.
//!
//! An account can become a nominator via the [`nominate`](enum.Call.html#variant.nominate) call.
//!
//! #### Rewards and Slash
//!
//! The **reward and slashing** procedure is the core of the Staking module, attempting to _embrace
//! valid behavior_ while _punishing any misbehavior or lack of availability_.
//! Slashing can occur at any point in time, once misbehavior is reported. Once slashing is
//! determined, a value is deducted from the balance of the validator and all the nominators who
//! voted for this validator (values are deducted from the _stash_ account of the slashed entity).
//!
//! Similar to slashing, rewards are also shared among a validator and its associated nominators.
//! Yet, the reward funds are not always transferred to the stash account and can be configured.
//! See [Reward Calculation](#reward-calculation) for more details.
//!
//! #### Chilling
//! Finally, any of the roles above can choose to step back temporarily and just chill for a while.
//! This means that if they are a nominator, they will not be considered as voters anymore and if
//! they are validators, they will no longer be a candidate for the next election.
//! An account can step back via the [`chill`](enum.Call.html#variant.chill) call.
//! The dispatchable functions of the Staking module enable the steps needed for entities to accept
//! and change their role, alongside some helper functions to get/set the metadata of the module.
//! The Staking module contains many public storage items and (im)mutable functions.
//! ### Example: Reporting Misbehavior
//!
//! ```
//! use srml_support::{decl_module, dispatch::Result};
//! use system::ensure_signed;
//! use srml_staking::{self as staking};
//!
//! pub trait Trait: staking::Trait {}
//!
//! decl_module! {
//! pub struct Module<T: Trait> for enum Call where origin: T::Origin {
//! /// Report whoever calls this function as offline once.
//! pub fn report_sender(origin) -> Result {
//! let reported = ensure_signed(origin)?;
//! <staking::Module<T>>::on_offline_validator(reported, 1);
//! Ok(())
//! }
//! }
//! }
//! # fn main() { }
//! ```
//!
//! ## Implementation Details
//!
//! ### Slot Stake
//!
//! The term [`SlotStake`](./struct.Module.html#method.slot_stake) will be used throughout this
//! section. It refers to a value calculated at the end of each era, containing the _minimum value
//! at stake among all validators._ Note that a validator's value at stake might be a combination
//! of the validator's own stake and the votes it received. See [`Exposure`](./struct.Exposure.html)
//! for more details.
//!
//! ### Reward Calculation
//!
//! Rewards are recorded **per-session** and paid **per-era**. The value of the reward for each
//! session is calculated at the end of the session based on the timeliness of the session, then
//! accumulated to be paid later. The value of the new _per-session-reward_ is calculated at the end
//! of each era by multiplying `SlotStake` and `SessionReward` (`SessionReward` is the
//! multiplication factor, represented by a number between 0 and 1). Once a new era is triggered,
//! rewards are paid to the validators and their associated nominators.
//! The validator can declare an amount, named
//! [`validator_payment`](./struct.ValidatorPrefs.html#structfield.validator_payment), that does not
//! get shared with the nominators at each reward payout through its
//! [`ValidatorPrefs`](./struct.ValidatorPrefs.html). This value gets deducted from the total reward
//! that can be paid. The remaining portion is split among the validator and all of the nominators
//! that nominated the validator, proportional to the value staked behind this validator (_i.e._
//! dividing the [`own`](./struct.Exposure.html#structfield.own) or
//! [`others`](./struct.Exposure.html#structfield.others) by
//! [`total`](./struct.Exposure.html#structfield.total) in [`Exposure`](./struct.Exposure.html)).
//! All entities who receive a reward have the option to choose their reward destination
//! through the [`Payee`](./struct.Payee.html) storage item (see
//! [`set_payee`](enum.Call.html#variant.set_payee)), to be one of the following:
//!
//! - Controller account, (obviously) not increasing the staked value.
//! - Stash account, not increasing the staked value.
//! - Stash account, also increasing the staked value.
//!
//! ### Slashing details
//!
//! A validator can be _reported_ to be offline at any point via the public function
//! [`on_offline_validator`](enum.Call.html#variant.on_offline_validator). Each validator declares
//! how many times it can be _reported_ before it actually gets slashed via its
//! [`ValidatorPrefs::unstake_threshold`](./struct.ValidatorPrefs.html#structfield.unstake_threshold).
//! On top of this, the Staking module also introduces an
//! [`OfflineSlashGrace`](./struct.Module.html#method.offline_slash_grace), which applies
//! to all validators and prevents them from getting immediately slashed.
//! Essentially, a validator gets slashed once they have been reported more than
//! [`OfflineSlashGrace`] + [`ValidatorPrefs::unstake_threshold`] times. Getting slashed due to
//! offline report always leads to being _unstaked_ (_i.e._ removed as a validator candidate) as
//! the consequence.
//! The base slash value is computed _per slash-event_ by multiplying
//! [`OfflineSlash`](./struct.Module.html#method.offline_slash) and the `total` `Exposure`. This
//! value is then multiplied by `2.pow(unstake_threshold)` to obtain the final slash value. All
//! individual accounts' punishments are capped at their total stake (NOTE: This cap should never
//! come into force in a correctly implemented, non-corrupted, well-configured system).
//!
//! ### Additional Fund Management Operations
//!
//! Any funds already placed into stash can be the target of the following operations:
//!
//! The controller account can free a portion (or all) of the funds using the
//! [`unbond`](enum.Call.html#variant.unbond) call. Note that the funds are not immediately
//! accessible. Instead, a duration denoted by [`BondingDuration`](./struct.BondingDuration.html)
//! (in number of eras) must pass until the funds can actually be removed. Once the
//! `BondingDuration` is over, the [`withdraw_unbonded`](./enum.Call.html#variant.withdraw_unbonded)
//! call can be used to actually withdraw the funds.
//! Note that there is a limitation to the number of fund-chunks that can be scheduled to be
//! unlocked in the future via [`unbond`](enum.Call.html#variant.unbond). In case this maximum
//! (`MAX_UNLOCKING_CHUNKS`) is reached, the bonded account _must_ first wait until a successful
//! call to `withdraw_unbonded` to remove some of the chunks.
//!
//!
//! The current election algorithm is implemented based on Phragmén.
//! The reference implementation can be found
//! [here](https://github.com/w3f/consensus/tree/master/NPoS).
//! The election algorithm, aside from electing the validators with the most stake value and votes,
//! tries to divide the nominator votes among candidates in an equal manner. To further assure this,
//! an optional post-processing can be applied that iteratively normalizes the nominator staked
//! values until the total difference among votes of a particular nominator are less than a
//! threshold.
//!
//! ## GenesisConfig
//!
//! The Staking module depends on the [`GenesisConfig`](./struct.GenesisConfig.html).
//!
//! ## Related Modules
//!
//! - [Balances](../srml_balances/index.html): Used to manage values at stake.
//! - [Session](../srml_session/index.html): Used to manage sessions. Also, a list of new validators
//! is stored in the Session module's `Validators` at the end of each era.
#![cfg_attr(all(feature = "bench", test), feature(test))]
#[cfg(all(feature = "bench", test))]
extern crate test;
#[cfg(any(feature = "bench", test))]
mod mock;
#[cfg(test)]
mod tests;
mod phragmen;
#[cfg(all(feature = "bench", test))]
mod benches;
#[cfg(feature = "std")]
use runtime_io::with_storage;
use rstd::{prelude::*, result, collections::btree_map::BTreeMap};
use parity_codec::{HasCompact, Encode, Decode};
use srml_support::{
StorageValue, StorageMap, EnumerableStorageMap, decl_module, decl_event,
decl_storage, ensure, traits::{
Currency, OnFreeBalanceZero, OnDilution, LockIdentifier, LockableCurrency,
WithdrawReasons, OnUnbalanced, Imbalance, Get
use session::{OnSessionEnding, SelectInitialValidators, SessionIndex};
use primitives::Perbill;
Convert, Zero, One, StaticLookup, CheckedSub, CheckedShl, Saturating, Bounded
#[cfg(feature = "std")]
use primitives::{Serialize, Deserialize};
use phragmen::{elect, ACCURACY, ExtendedBalance, equalize};
const RECENT_OFFLINE_COUNT: usize = 32;
const MAX_NOMINATIONS: usize = 16;
const MAX_UNSTAKE_THRESHOLD: u32 = 10;
const MAX_UNLOCKING_CHUNKS: usize = 32;
const STAKING_ID: LockIdentifier = *b"staking ";
/// Counter for the number of eras that have passed.
pub type EraIndex = u32;
/// Indicates the initial status of the staker.
#[cfg_attr(feature = "std", derive(Debug, Serialize, Deserialize))]
pub enum StakerStatus<AccountId> {
/// Chilling.
Idle,
/// Declared desire in validating or already participating in it.
Validator,
/// Nominating for a group of other stakers.
Nominator(Vec<AccountId>),
}
/// A destination account for payment.
#[derive(PartialEq, Eq, Copy, Clone, Encode, Decode)]
#[cfg_attr(feature = "std", derive(Debug))]
pub enum RewardDestination {
/// Pay into the stash account, increasing the amount at stake accordingly.
Staked,
/// Pay into the stash account, not increasing the amount at stake.
Stash,
/// Pay into the controller account.
Controller,
}
impl Default for RewardDestination {
fn default() -> Self {
RewardDestination::Staked
}
#[derive(PartialEq, Eq, Clone, Encode, Decode)]
#[cfg_attr(feature = "std", derive(Debug))]
pub struct ValidatorPrefs<Balance: HasCompact> {
/// Validator should ensure this many more slashes than is necessary before being unstaked.
/// Reward that validator takes up-front; only the rest is split between themselves and
/// nominators.
impl<B: Default + HasCompact + Copy> Default for ValidatorPrefs<B> {
validator_payment: Default::default(),
/// Just a Balance/BlockNumber tuple to encode when a chunk of funds will be unlocked.
#[derive(PartialEq, Eq, Clone, Encode, Decode)]
#[cfg_attr(feature = "std", derive(Debug))]
pub struct UnlockChunk<Balance: HasCompact> {
/// Amount of funds to be unlocked.
#[codec(compact)]
value: Balance,
/// Era number at which point it'll be unlocked.
#[codec(compact)]
}
/// The ledger of a (bonded) stash.
#[derive(PartialEq, Eq, Clone, Encode, Decode)]
#[cfg_attr(feature = "std", derive(Debug))]
pub struct StakingLedger<AccountId, Balance: HasCompact> {
/// The stash account whose balance is actually locked and at stake.
pub stash: AccountId,
/// The total amount of the stash's balance that we are currently accounting for.
/// It's just `active` plus all the `unlocking` balances.
#[codec(compact)]
pub total: Balance,
/// The total amount of the stash's balance that will be at stake in any forthcoming
/// rounds.
#[codec(compact)]
pub active: Balance,
/// Any balance that is becoming free, which may eventually be transferred out
/// of the stash (assuming it doesn't get slashed first).
pub unlocking: Vec<UnlockChunk<Balance>>,
impl<
AccountId,
Balance: HasCompact + Copy + Saturating,
> StakingLedger<AccountId, Balance> {
/// Remove entries from `unlocking` that are sufficiently old and reduce the
/// total by the sum of their balances.
fn consolidate_unlocked(self, current_era: EraIndex) -> Self {
let mut total = self.total;
let unlocking = self.unlocking.into_iter()
.filter(|chunk| if chunk.era > current_era {
true
} else {
total = total.saturating_sub(chunk.value);
false
})
.collect();
Self { total, active: self.active, stash: self.stash, unlocking }
}
}
/// The amount of exposure (to slashing) than an individual nominator has.
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Encode, Decode)]
#[cfg_attr(feature = "std", derive(Debug))]
pub struct IndividualExposure<AccountId, Balance: HasCompact> {
/// The stash account of the nominator in question.
who: AccountId,
/// Amount of funds exposed.
#[codec(compact)]
value: Balance,
}
/// A snapshot of the stake backing a single validator in the system.
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Encode, Decode, Default)]
#[cfg_attr(feature = "std", derive(Debug))]
pub struct Exposure<AccountId, Balance: HasCompact> {
/// The total balance backing this validator.
#[codec(compact)]
pub total: Balance,
/// The validator's own stash that is exposed.
#[codec(compact)]
pub own: Balance,
/// The portions of nominators stashes that are exposed.
pub others: Vec<IndividualExposure<AccountId, Balance>>,
}
type BalanceOf<T> = <<T as Trait>::Currency as Currency<<T as system::Trait>::AccountId>>::Balance;
type PositiveImbalanceOf<T> =
<<T as Trait>::Currency as Currency<<T as system::Trait>::AccountId>>::PositiveImbalance;
type NegativeImbalanceOf<T> =
<<T as Trait>::Currency as Currency<<T as system::Trait>::AccountId>>::NegativeImbalance;
type RawAssignment<T> = (<T as system::Trait>::AccountId, ExtendedBalance);
type Assignment<T> = (<T as system::Trait>::AccountId, ExtendedBalance, BalanceOf<T>);
type ExpoMap<T> = BTreeMap<
<T as system::Trait>::AccountId,
Exposure<<T as system::Trait>::AccountId, BalanceOf<T>>
>;
pub const DEFAULT_SESSIONS_PER_ERA: u32 = 3;
pub const DEFAULT_BONDING_DURATION: u32 = 1;
pub trait Trait: system::Trait + session::Trait {
/// The staking balance.
type Currency: LockableCurrency<Self::AccountId, Moment=Self::BlockNumber>;
/// Convert a balance into a number used for election calculation.
/// This must fit into a `u64` but is allowed to be sensibly lossy.
/// TODO: #1377
/// The backward convert should be removed as the new Phragmen API returns ratio.
/// The post-processing needs it but will be moved to off-chain.
type CurrencyToVote: Convert<BalanceOf<Self>, u64> + Convert<u128, BalanceOf<Self>>;
type OnRewardMinted: OnDilution<BalanceOf<Self>>;
type Event: From<Event<Self>> + Into<<Self as system::Trait>::Event>;
/// Handler for the unbalanced reduction when slashing a staker.
type Slash: OnUnbalanced<NegativeImbalanceOf<Self>>;
/// Handler for the unbalanced increment when rewarding a staker.
type Reward: OnUnbalanced<PositiveImbalanceOf<Self>>;
/// Number of sessions per era.
type SessionsPerEra: Get<SessionIndex>;
/// Number of eras that staked funds must remain bonded for.
type BondingDuration: Get<EraIndex>;
decl_storage! {
trait Store for Module<T: Trait> as Staking {
/// The ideal number of staking participants.
pub ValidatorCount get(validator_count) config(): u32;
/// Minimum number of staking participants before emergency conditions are imposed.
pub MinimumValidatorCount get(minimum_validator_count) config():
u32 = DEFAULT_MINIMUM_VALIDATOR_COUNT;
/// Maximum reward, per validator, that is provided per acceptable session.
pub SessionReward get(session_reward) config(): Perbill = Perbill::from_parts(60);
/// Slash, per validator that is taken for the first time they are found to be offline.
pub OfflineSlash get(offline_slash) config(): Perbill = Perbill::from_millionths(1000);
/// Number of instances of offline reports before slashing begins for validators.
pub OfflineSlashGrace get(offline_slash_grace) config(): u32;
/// Any validators that may never be slashed or forcibly kicked. It's a Vec since they're
/// easy to initialize and the performance hit is minimal (we expect no more than four
/// invulnerables) and restricted to testnets.
pub Invulnerables get(invulnerables) config(): Vec<T::AccountId>;
/// Map from all locked "stash" accounts to the controller account.
pub Bonded get(bonded): map T::AccountId => Option<T::AccountId>;
/// Map from all (unlocked) "controller" accounts to the info regarding the staking.
pub Ledger get(ledger):
map T::AccountId => Option<StakingLedger<T::AccountId, BalanceOf<T>>>;
/// Where the reward payment should be made. Keyed by stash.
pub Payee get(payee): map T::AccountId => RewardDestination;
/// The map from (wannabe) validator stash key to the preferences of that validator.
pub Validators get(validators): linked_map T::AccountId => ValidatorPrefs<BalanceOf<T>>;
/// The map from nominator stash key to the set of stash keys of all validators to nominate.
pub Nominators get(nominators): linked_map T::AccountId => Vec<T::AccountId>;
/// Nominators for a particular account that is in action right now. You can't iterate
/// through validators here, but you can find them in the Session module.
///
/// This is keyed by the stash account.
pub Stakers get(stakers): map T::AccountId => Exposure<T::AccountId, BalanceOf<T>>;
// The historical validators and their nominations for a given era. Stored as a trie root
// of the mapping `T::AccountId` => `Exposure<T::AccountId, BalanceOf<T>>`, which is just
// the contents of `Stakers`, under a key that is the `era`.
// Every era change, this will be appended with the trie root of the contents of `Stakers`,
// and the oldest entry removed down to a specific number of entries (probably around 90 for
// a 3 month history).
// pub HistoricalStakers get(historical_stakers): map T::BlockNumber => Option<H256>;
/// The currently elected validator set keyed by stash account ID.
pub CurrentElected get(current_elected): Vec<T::AccountId>;
pub CurrentEra get(current_era) config(): EraIndex;
/// Maximum reward, per validator, that is provided per acceptable session.
pub CurrentSessionReward get(current_session_reward) config(): BalanceOf<T>;
/// The accumulated reward for the current era. Reset to zero at the beginning of the era
/// and increased for every successfully finished session.
pub CurrentEraReward get(current_era_reward): BalanceOf<T>;
/// The amount of balance actively at stake for each validator slot, currently.
///
/// This is used to derive rewards and punishments.
pub SlotStake get(slot_stake) build(|config: &GenesisConfig<T>| {
config.stakers.iter().map(|&(_, _, value, _)| value).min().unwrap_or_default()
/// The number of times a given validator has been reported offline. This gets decremented
/// by one each era that passes.
pub SlashCount get(slash_count): map T::AccountId => u32;
/// Most recent `RECENT_OFFLINE_COUNT` instances. (Who it was, when it was reported, how
/// many instances they were offline for).
pub RecentlyOffline get(recently_offline): Vec<(T::AccountId, T::BlockNumber, u32)>;
/// True if the next session change will be a new era regardless of index.
pub ForceNewEra get(forcing_new_era): bool;
config(stakers):
Vec<(T::AccountId, T::AccountId, BalanceOf<T>, StakerStatus<T::AccountId>)>;
build(|
storage: &mut primitives::StorageOverlay,
_: &mut primitives::ChildrenStorageOverlay,
config: &GenesisConfig<T>
| {
with_storage(storage, || {
for &(ref stash, ref controller, balance, ref status) in &config.stakers {
assert!(T::Currency::free_balance(&stash) >= balance);
let _ = <Module<T>>::bond(
T::Origin::from(Some(stash.clone()).into()),
T::Lookup::unlookup(controller.clone()),
balance,
RewardDestination::Staked
);
let _ = match status {
StakerStatus::Validator => {
<Module<T>>::validate(
T::Origin::from(Some(controller.clone()).into()),
Default::default()
)
}, StakerStatus::Nominator(votes) => {
<Module<T>>::nominate(
T::Origin::from(Some(controller.clone()).into()),
votes.iter().map(|l| {T::Lookup::unlookup(l.clone())}).collect()
)
}, _ => Ok(())
};
}
});
});
decl_event!(
pub enum Event<T> where Balance = BalanceOf<T>, <T as system::Trait>::AccountId {
/// All validators have been rewarded by the given balance.
Reward(Balance),
/// One validator (and its nominators) has been given an offline-warning (it is still
/// within its grace). The accrued number of slashes is recorded, too.
OfflineWarning(AccountId, u32),
/// One validator (and its nominators) has been slashed by the given amount.
OfflineSlash(AccountId, Balance),
}
);
pub struct Module<T: Trait> for enum Call where origin: T::Origin {
/// Number of sessions per era.
const SessionsPerEra: SessionIndex = T::SessionsPerEra::get();
/// Number of eras that staked funds must remain bonded for.
const BondingDuration: EraIndex = T::BondingDuration::get();
fn deposit_event<T>() = default;
/// Take the origin account as a stash and lock up `value` of its balance. `controller` will
/// be the account that controls it.
/// The dispatch origin for this call must be _Signed_ by the stash account.
///
/// # <weight>
/// - Independent of the arguments. Moderate complexity.
/// - O(1).
/// - Three extra DB entries.
///
/// NOTE: Two of the storage writes (`Self::bonded`, `Self::payee`) are _never_ cleaned unless
/// the `origin` falls below _existential deposit_ and gets removed as dust.
///
/// NOTE: At the moment, there are no financial restrictions to bond
/// (which creates a bunch of storage items for an account). In essence, nothing prevents many accounts from
/// spamming `Staking` storage by bonding 1 UNIT. See test case: `bond_with_no_staked_value`.
/// # </weight>
fn bond(origin,
controller: <T::Lookup as StaticLookup>::Source,
#[compact] value: BalanceOf<T>,
payee: RewardDestination
) {
let stash = ensure_signed(origin)?;
if <Bonded<T>>::exists(&stash) {
return Err("stash already bonded")
let controller = T::Lookup::lookup(controller)?;
if <Ledger<T>>::exists(&controller) {
return Err("controller already paired")
}
// You're auto-bonded forever, here. We might improve this by only bonding when
// you actually validate/nominate and remove once you unbond __everything__.
<Bonded<T>>::insert(&stash, controller.clone());
<Payee<T>>::insert(&stash, payee);
let stash_balance = T::Currency::free_balance(&stash);
let value = value.min(stash_balance);
let item = StakingLedger { stash, total: value, active: value, unlocking: vec![] };
Self::update_ledger(&controller, &item);
/// Add some extra amount that have appeared in the stash `free_balance` into the balance up
/// for staking.
/// Use this if there are additional funds in your stash account that you wish to bond.
/// The dispatch origin for this call must be _Signed_ by the stash, not the controller.
///
/// # <weight>
/// - Independent of the arguments. Insignificant complexity.
/// - O(1).
/// - One DB entry.
/// # </weight>
fn bond_extra(origin, #[compact] max_additional: BalanceOf<T>) {
let stash = ensure_signed(origin)?;
let controller = Self::bonded(&stash).ok_or("not a stash")?;
let mut ledger = Self::ledger(&controller).ok_or("not a controller")?;
let stash_balance = T::Currency::free_balance(&stash);
if let Some(extra) = stash_balance.checked_sub(&ledger.total) {
let extra = extra.min(max_additional);
ledger.total += extra;
ledger.active += extra;
Self::update_ledger(&controller, &ledger);
/// Schedule a portion of the stash to be unlocked ready for transfer out after the bond
/// period ends. If this leaves an amount actively bonded less than
/// T::Currency::existential_deposit(), then it is increased to the full amount.
/// Once the unlock period is done, you can call `withdraw_unbonded` to actually move
/// the funds out of management ready for transfer.
///
/// No more than a limited number of unlocking chunks (see `MAX_UNLOCKING_CHUNKS`)
/// can co-exists at the same time. In that case, [`Call::withdraw_unbonded`] need
/// to be called first to remove some of the chunks (if possible).
///
/// The dispatch origin for this call must be _Signed_ by the controller, not the stash.
///
/// See also [`Call::withdraw_unbonded`].
///
/// # <weight>
/// - Independent of the arguments. Limited but potentially exploitable complexity.
/// - Contains a limited number of reads.
/// - Each call (requires the remainder of the bonded balance to be above `minimum_balance`)
/// will cause a new entry to be inserted into a vector (`Ledger.unlocking`) kept in storage.
/// The only way to clean the aforementioned storage item is also user-controlled via `withdraw_unbonded`.
/// - One DB entry.
/// </weight>
fn unbond(origin, #[compact] value: BalanceOf<T>) {
let controller = ensure_signed(origin)?;
let mut ledger = Self::ledger(&controller).ok_or("not a controller")?;
ensure!(
ledger.unlocking.len() < MAX_UNLOCKING_CHUNKS,
"can not schedule more unlock chunks"
);
let mut value = value.min(ledger.active);
if !value.is_zero() {
ledger.active -= value;
// Avoid there being a dust balance left in the staking system.
if ledger.active < T::Currency::minimum_balance() {
value += ledger.active;
ledger.active = Zero::zero();
}
let era = Self::current_era() + T::BondingDuration::get();
ledger.unlocking.push(UnlockChunk { value, era });
Self::update_ledger(&controller, &ledger);
/// Remove any unlocked chunks from the `unlocking` queue from our management.
/// This essentially frees up that balance to be used by the stash account to do
/// whatever it wants.
/// The dispatch origin for this call must be _Signed_ by the controller, not the stash.
///
/// # <weight>
/// - Could be dependent on the `origin` argument and how much `unlocking` chunks exist. It implies
/// `consolidate_unlocked` which loops over `Ledger.unlocking`, which is indirectly
/// user-controlled. See [`unbond`] for more detail.
/// - Contains a limited number of reads, yet the size of which could be large based on `ledger`.
/// - Writes are limited to the `origin` account key.
/// # </weight>
fn withdraw_unbonded(origin) {
let controller = ensure_signed(origin)?;
let ledger = Self::ledger(&controller).ok_or("not a controller")?;
let ledger = ledger.consolidate_unlocked(Self::current_era());
Self::update_ledger(&controller, &ledger);
/// Declare the desire to validate for the origin controller.
///
/// Effects will be felt at the beginning of the next era.
/// The dispatch origin for this call must be _Signed_ by the controller, not the stash.
///
/// # <weight>
/// - Independent of the arguments. Insignificant complexity.
/// - Contains a limited number of reads.
/// - Writes are limited to the `origin` account key.
/// # </weight>
fn validate(origin, prefs: ValidatorPrefs<BalanceOf<T>>) {
let controller = ensure_signed(origin)?;
let ledger = Self::ledger(&controller).ok_or("not a controller")?;
let stash = &ledger.stash;
ensure!(
prefs.unstake_threshold <= MAX_UNSTAKE_THRESHOLD,
"unstake threshold too large"
);
<Nominators<T>>::remove(stash);
<Validators<T>>::insert(stash, prefs);
/// Declare the desire to nominate `targets` for the origin controller.
///
/// Effects will be felt at the beginning of the next era.
/// The dispatch origin for this call must be _Signed_ by the controller, not the stash.
///
/// # <weight>
/// - The transaction's complexity is proportional to the size of `targets`,
/// which is capped at `MAX_NOMINATIONS`.
/// - Both the reads and writes follow a similar pattern.
/// # </weight>
fn nominate(origin, targets: Vec<<T::Lookup as StaticLookup>::Source>) {
let controller = ensure_signed(origin)?;
let ledger = Self::ledger(&controller).ok_or("not a controller")?;
let stash = &ledger.stash;
ensure!(!targets.is_empty(), "targets cannot be empty");
let targets = targets.into_iter()
.take(MAX_NOMINATIONS)
.map(T::Lookup::lookup)
.collect::<result::Result<Vec<T::AccountId>, &'static str>>()?;
<Validators<T>>::remove(stash);
<Nominators<T>>::insert(stash, targets);
/// Declare no desire to either validate or nominate.
/// Effects will be felt at the beginning of the next era.
/// The dispatch origin for this call must be _Signed_ by the controller, not the stash.
///
/// # <weight>
/// - Independent of the arguments. Insignificant complexity.
/// - Contains one read.
/// - Writes are limited to the `origin` account key.
/// # </weight>
fn chill(origin) {
let controller = ensure_signed(origin)?;
let ledger = Self::ledger(&controller).ok_or("not a controller")?;
let stash = &ledger.stash;
<Validators<T>>::remove(stash);
<Nominators<T>>::remove(stash);
/// (Re-)set the payment target for a controller.
///
/// Effects will be felt at the beginning of the next era.
/// The dispatch origin for this call must be _Signed_ by the controller, not the stash.
///
/// # <weight>
/// - Independent of the arguments. Insignificant complexity.
/// - Contains a limited number of reads.
/// - Writes are limited to the `origin` account key.
/// # </weight>
fn set_payee(origin, payee: RewardDestination) {
let controller = ensure_signed(origin)?;
let ledger = Self::ledger(&controller).ok_or("not a controller")?;
let stash = &ledger.stash;
<Payee<T>>::insert(stash, payee);
}
/// (Re-)set the payment target for a controller.
///
/// Effects will be felt at the beginning of the next era.
///
/// The dispatch origin for this call must be _Signed_ by the stash, not the controller.
///
/// # <weight>
/// - Independent of the arguments. Insignificant complexity.
/// - Contains a limited number of reads.
/// - Writes are limited to the `origin` account key.
/// # </weight>
fn set_controller(origin, controller: <T::Lookup as StaticLookup>::Source) {
let stash = ensure_signed(origin)?;
let old_controller = Self::bonded(&stash).ok_or("not a stash")?;
let controller = T::Lookup::lookup(controller)?;
if <Ledger<T>>::exists(&controller) {
return Err("controller already paired")
}
if controller != old_controller {
<Bonded<T>>::insert(&stash, &controller);
if let Some(l) = <Ledger<T>>::take(&old_controller) {
<Ledger<T>>::insert(&controller, l);
}
/// The ideal number of validators.
fn set_validator_count(#[compact] new: u32) {
ValidatorCount::put(new);
/// Force there to be a new era. This also forces a new session immediately after.
/// `apply_rewards` should be true for validators to get the session reward.
///
/// # <weight>
/// - Independent of the arguments.
/// - Triggers the Phragmen election. Expensive but not user-controlled.
/// - Depends on state: `O(|edges| * |validators|)`.
/// # </weight>
fn force_new_era() {
Self::apply_force_new_era()
}
/// Set the offline slash grace period.
fn set_offline_slash_grace(#[compact] new: u32) {
OfflineSlashGrace::put(new);
/// Set the validators who cannot be slashed (if any).
fn set_invulnerables(validators: Vec<T::AccountId>) {
<Invulnerables<T>>::put(validators);
}
}
impl<T: Trait> Module<T> {
// PUBLIC IMMUTABLES
/// The total balance that can be slashed from a validator controller account as of
/// right now.
pub fn slashable_balance(who: &T::AccountId) -> BalanceOf<T> {
// MUTABLES (DANGEROUS)
/// Update the ledger for a controller. This will also update the stash lock.
fn update_ledger(
controller: &T::AccountId,
ledger: &StakingLedger<T::AccountId, BalanceOf<T>>
) {
T::Currency::set_lock(
STAKING_ID,
&ledger.stash,
ledger.total,
T::BlockNumber::max_value(),
WithdrawReasons::all()
);
<Ledger<T>>::insert(controller, ledger);
}
/// Slash a given validator by a specific amount. Removes the slash from the validator's
/// balance by preference, and reduces the nominators' balance if needed.
fn slash_validator(stash: &T::AccountId, slash: BalanceOf<T>) {
// The exposure (backing stake) information of the validator to be slashed.
let exposure = Self::stakers(stash);
// The amount we are actually going to slash (can't be bigger than the validator's total
// exposure)
let slash = slash.min(exposure.total);
// The amount we'll slash from the validator's stash directly.
let own_slash = exposure.own.min(slash);
let (mut imbalance, missing) = T::Currency::slash(stash, own_slash);
let own_slash = own_slash - missing;
// The amount remaining that we can't slash from the validator, that must be taken from the
// nominators.
let rest_slash = slash - own_slash;
if !rest_slash.is_zero() {
// The total to be slashed from the nominators.
let total = exposure.total - exposure.own;
let per_u64 = Perbill::from_rational_approximation(i.value, total);
// best effort - not much that can be done on fail.
imbalance.subsume(T::Currency::slash(&i.who, per_u64 * rest_slash).0)
T::Slash::on_unbalanced(imbalance);
/// Actually make a payment to a staker. This uses the currency's reward function
/// to pay the right payee for the given staker account.
fn make_payout(stash: &T::AccountId, amount: BalanceOf<T>) -> Option<PositiveImbalanceOf<T>> {
let dest = Self::payee(stash);
match dest {
RewardDestination::Controller => Self::bonded(stash)
.and_then(|controller|
T::Currency::deposit_into_existing(&controller, amount).ok()
),
RewardDestination::Stash =>
T::Currency::deposit_into_existing(stash, amount).ok(),
RewardDestination::Staked => Self::bonded(stash)
.and_then(|c| Self::ledger(&c).map(|l| (c, l)))
.and_then(|(controller, mut l)| {
l.active += amount;
l.total += amount;
let r = T::Currency::deposit_into_existing(stash, amount).ok();
Self::update_ledger(&controller, &l);
/// Reward a given validator by a specific amount. Add the reward to the validator's, and its
/// nominators' balance, pro-rata based on their exposure, after having removed the validator's
/// pre-payout cut.
fn reward_validator(stash: &T::AccountId, reward: BalanceOf<T>) {
let off_the_table = reward.min(Self::validators(stash).validator_payment);
let mut imbalance = <PositiveImbalanceOf<T>>::zero();
let validator_cut = if reward.is_zero() {
Zero::zero()
} else {
let exposure = Self::stakers(stash);
let total = exposure.total.max(One::one());
let per_u64 = Perbill::from_rational_approximation(i.value, total);
imbalance.maybe_subsume(Self::make_payout(&i.who, per_u64 * reward));
let per_u64 = Perbill::from_rational_approximation(exposure.own, total);
per_u64 * reward