Newer
Older
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! Primitive types used on the node-side.
//!
//! Unlike the `polkadot-primitives` crate, these primitives are only used on the node-side,
//! not shared between the node and the runtime. This crate builds on top of the primitives defined
//! there.
use bounded_vec::BoundedVec;
use codec::{Decode, Encode, Error as CodecError, Input};
use futures::Future;
use serde::{de, Deserialize, Deserializer, Serialize, Serializer};
use polkadot_primitives::{
BlakeTwo256, BlockNumber, CandidateCommitments, CandidateHash, ChunkIndex, CollatorPair,
Andrei Sandu
committed
CommittedCandidateReceipt, CompactStatement, CoreIndex, EncodeAs, Hash, HashT, HeadData,
Id as ParaId, PersistedValidationData, SessionIndex, Signed, UncheckedSigned, ValidationCode,
ValidationCodeHash, MAX_CODE_SIZE, MAX_POV_SIZE,
pub use sp_consensus_babe::{
AllowedSlots as BabeAllowedSlots, BabeEpochConfiguration, Epoch as BabeEpoch,
Randomness as BabeRandomness,
pub use polkadot_parachain_primitives::primitives::{
BlockData, HorizontalMessages, UpwardMessages,
};
/// Disputes related types.
pub mod disputes;
pub use disputes::{
dispute_is_inactive, CandidateVotes, DisputeMessage, DisputeMessageCheckError, DisputeStatus,
InvalidDisputeVote, SignedDisputeStatement, Timestamp, UncheckedDisputeMessage,
ValidDisputeVote, ACTIVE_DURATION_SECS,
/// The current node version, which takes the basic SemVer form `<major>.<minor>.<patch>`.
/// In general, minor should be bumped on every release while major or patch releases are
/// relatively rare.
///
/// The associated worker binaries should use the same version as the node that spawns them.
pub const NODE_VERSION: &'static str = "1.16.3";
// For a 16-ary Merkle Prefix Trie, we can expect at most 16 32-byte hashes per node
// plus some overhead:
// header 1 + bitmap 2 + max partial_key 8 + children 16 * (32 + len 1) + value 32 + value len 1
const MERKLE_NODE_MAX_SIZE: usize = 512 + 100;
// 16-ary Merkle Prefix Trie for 32-bit ValidatorIndex has depth at most 8.
const MERKLE_PROOF_MAX_DEPTH: usize = 8;
/// The bomb limit for decompressing code blobs.
Shawn Tabrizi
committed
pub const VALIDATION_CODE_BOMB_LIMIT: usize = (MAX_CODE_SIZE * 4u32) as usize;
/// The bomb limit for decompressing PoV blobs.
Shawn Tabrizi
committed
pub const POV_BOMB_LIMIT: usize = (MAX_POV_SIZE * 4u32) as usize;
/// How many blocks after finalization an information about backed/included candidate should be
/// pre-loaded (when scraping onchain votes) and kept locally (when pruning).
///
/// We don't want to remove scraped candidates on finalization because we want to
/// be sure that disputes will conclude on abandoned forks.
/// Removing the candidate on finalization creates a possibility for an attacker to
/// avoid slashing. If a bad fork is abandoned too quickly because another
/// better one gets finalized the entries for the bad fork will be pruned and we
/// might never participate in a dispute for it.
///
/// Why pre-load finalized blocks? I dispute might be raised against finalized candidate. In most
/// of the cases it will conclude valid (otherwise we are in big trouble) but never the less the
/// node must participate. It's possible to see a vote for such dispute onchain before we have it
/// imported by `dispute-distribution`. In this case we won't have `CandidateReceipt` and the import
/// will fail unless we keep them preloaded.
///
/// This value should consider the timeout we allow for participation in approval-voting. In
/// particular, the following condition should hold:
///
/// slot time * `DISPUTE_CANDIDATE_LIFETIME_AFTER_FINALIZATION` > `APPROVAL_EXECUTION_TIMEOUT`
/// + slot time
pub const DISPUTE_CANDIDATE_LIFETIME_AFTER_FINALIZATION: BlockNumber = 10;
/// Linked to `MAX_FINALITY_LAG` in relay chain selection,
/// `MAX_HEADS_LOOK_BACK` in `approval-voting` and
/// `MAX_BATCH_SCRAPE_ANCESTORS` in `dispute-coordinator`
pub const MAX_FINALITY_LAG: u32 = 500;
/// Type of a session window size.
///
/// We are not using `NonZeroU32` here because `expect` and `unwrap` are not yet const, so global
/// constants of `SessionWindowSize` would require `lazy_static` in that case.
///
Bernhard Schuster
committed
/// See: <https://github.com/rust-lang/rust/issues/67441>
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
pub struct SessionWindowSize(SessionIndex);
#[macro_export]
/// Create a new checked `SessionWindowSize` which cannot be 0.
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
macro_rules! new_session_window_size {
(0) => {
compile_error!("Must be non zero");
};
(0_u32) => {
compile_error!("Must be non zero");
};
(0 as u32) => {
compile_error!("Must be non zero");
};
(0 as _) => {
compile_error!("Must be non zero");
};
($l:literal) => {
SessionWindowSize::unchecked_new($l as _)
};
}
/// It would be nice to draw this from the chain state, but we have no tools for it right now.
/// On Polkadot this is 1 day, and on Kusama it's 6 hours.
///
/// Number of sessions we want to consider in disputes.
pub const DISPUTE_WINDOW: SessionWindowSize = new_session_window_size!(6);
impl SessionWindowSize {
/// Get the value as `SessionIndex` for doing comparisons with those.
pub fn get(self) -> SessionIndex {
self.0
}
/// Helper function for `new_session_window_size`.
///
/// Don't use it. The only reason it is public, is because otherwise the
/// `new_session_window_size` macro would not work outside of this module.
#[doc(hidden)]
pub const fn unchecked_new(size: SessionIndex) -> Self {
Self(size)
}
}
/// The cumulative weight of a block in a fork-choice rule.
pub type BlockWeight = u32;
/// A statement, where the candidate receipt is included in the `Seconded` variant.
///
/// This is the committed candidate receipt instead of the bare candidate receipt. As such,
/// it gives access to the commitments to validators who have not executed the candidate. This
/// is necessary to allow a block-producing validator to include candidates from outside the para
#[derive(Clone, PartialEq, Eq, Encode, Decode)]
pub enum Statement {
/// A statement that a validator seconds a candidate.
#[codec(index = 1)]
/// A statement that a validator has deemed a candidate valid.
#[codec(index = 2)]
impl std::fmt::Debug for Statement {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Statement::Seconded(seconded) => write!(f, "Seconded: {:?}", seconded.descriptor),
Statement::Valid(hash) => write!(f, "Valid: {:?}", hash),
}
}
}
impl Statement {

asynchronous rob
committed
/// Get the candidate hash referenced by this statement.
///
/// If this is a `Statement::Seconded`, this does hash the candidate receipt, which may be
/// expensive for large candidates.

asynchronous rob
committed
pub fn candidate_hash(&self) -> CandidateHash {
match *self {

asynchronous rob
committed
Statement::Seconded(ref c) => c.hash(),
}
}
/// Transform this statement into its compact version, which references only the hash
/// of the candidate.
pub fn to_compact(&self) -> CompactStatement {
match *self {
Statement::Seconded(ref c) => CompactStatement::Seconded(c.hash()),
Statement::Valid(hash) => CompactStatement::Valid(hash),
}
}
/// Add the [`PersistedValidationData`] to the statement, if seconded.
pub fn supply_pvd(self, pvd: PersistedValidationData) -> StatementWithPVD {
match self {
Statement::Seconded(c) => StatementWithPVD::Seconded(c, pvd),
Statement::Valid(hash) => StatementWithPVD::Valid(hash),
}
}
impl From<&'_ Statement> for CompactStatement {
fn from(stmt: &Statement) -> Self {
stmt.to_compact()
}
}
impl EncodeAs<CompactStatement> for Statement {
fn encode_as(&self) -> Vec<u8> {
self.to_compact().encode()
}
}
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
/// A statement, exactly the same as [`Statement`] but where seconded messages carry
/// the [`PersistedValidationData`].
#[derive(Clone, PartialEq, Eq)]
pub enum StatementWithPVD {
/// A statement that a validator seconds a candidate.
Seconded(CommittedCandidateReceipt, PersistedValidationData),
/// A statement that a validator has deemed a candidate valid.
Valid(CandidateHash),
}
impl std::fmt::Debug for StatementWithPVD {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
StatementWithPVD::Seconded(seconded, _) =>
write!(f, "Seconded: {:?}", seconded.descriptor),
StatementWithPVD::Valid(hash) => write!(f, "Valid: {:?}", hash),
}
}
}
impl StatementWithPVD {
/// Get the candidate hash referenced by this statement.
///
/// If this is a `Statement::Seconded`, this does hash the candidate receipt, which may be
/// expensive for large candidates.
pub fn candidate_hash(&self) -> CandidateHash {
match *self {
StatementWithPVD::Valid(ref h) => *h,
StatementWithPVD::Seconded(ref c, _) => c.hash(),
}
}
/// Transform this statement into its compact version, which references only the hash
/// of the candidate.
pub fn to_compact(&self) -> CompactStatement {
match *self {
StatementWithPVD::Seconded(ref c, _) => CompactStatement::Seconded(c.hash()),
StatementWithPVD::Valid(hash) => CompactStatement::Valid(hash),
}
}
/// Drop the [`PersistedValidationData`] from the statement.
pub fn drop_pvd(self) -> Statement {
match self {
StatementWithPVD::Seconded(c, _) => Statement::Seconded(c),
StatementWithPVD::Valid(c_h) => Statement::Valid(c_h),
}
}
/// Drop the [`PersistedValidationData`] from the statement in a signed
/// variant.
pub fn drop_pvd_from_signed(signed: SignedFullStatementWithPVD) -> SignedFullStatement {
signed
.convert_to_superpayload_with(|s| s.drop_pvd())
.expect("persisted_validation_data doesn't affect encode_as; qed")
}
/// Converts the statement to a compact signed statement by dropping the
/// [`CommittedCandidateReceipt`] and the [`PersistedValidationData`].
pub fn signed_to_compact(signed: SignedFullStatementWithPVD) -> Signed<CompactStatement> {
signed
.convert_to_superpayload_with(|s| s.to_compact())
.expect("doesn't affect encode_as; qed")
}
}
impl From<&'_ StatementWithPVD> for CompactStatement {
fn from(stmt: &StatementWithPVD) -> Self {
stmt.to_compact()
}
}
impl EncodeAs<CompactStatement> for StatementWithPVD {
fn encode_as(&self) -> Vec<u8> {
self.to_compact().encode()
}
}
/// A statement, the corresponding signature, and the index of the sender.
///
/// Signing context and validator set should be apparent from context.
/// This statement is "full" in the sense that the `Seconded` variant includes the candidate
/// receipt. Only the compact `SignedStatement` is suitable for submission to the chain.
pub type SignedFullStatement = Signed<Statement, CompactStatement>;
/// Variant of `SignedFullStatement` where the signature has not yet been verified.
pub type UncheckedSignedFullStatement = UncheckedSigned<Statement, CompactStatement>;
/// A statement, the corresponding signature, and the index of the sender.
///
/// Seconded statements are accompanied by the [`PersistedValidationData`]
///
/// Signing context and validator set should be apparent from context.
pub type SignedFullStatementWithPVD = Signed<StatementWithPVD, CompactStatement>;
/// Candidate invalidity details
#[derive(Debug)]
pub enum InvalidCandidate {
/// Failed to execute `validate_block`. This includes function panicking.
/// Validation outputs check doesn't pass.
InvalidOutputs,
/// Execution timeout.
Timeout,
/// Validation input is over the limit.
ParamsTooLarge(u64),
/// Code size is over the limit.
CodeTooLarge(u64),
/// PoV does not decompress correctly.
PoVDecompressionFailure,
/// Validation function returned invalid data.
BadReturn,
/// Invalid relay chain parent.
BadParent,
/// POV hash does not match.
/// Bad collator signature.
BadSignature,
/// Para head hash does not match.
ParaHeadHashMismatch,
/// Validation code hash does not match.
CodeHashMismatch,
Andrei Sandu
committed
/// Validation has generated different candidate commitments.
CommitmentsHashMismatch,
/// Result of the validation of the candidate.
#[derive(Debug)]
pub enum ValidationResult {
/// Candidate is valid. The validation process yields these outputs and the persisted
/// validation data used to form inputs.

asynchronous rob
committed
Valid(CandidateCommitments, PersistedValidationData),
/// A Proof-of-Validity
#[derive(PartialEq, Eq, Clone, Encode, Decode, Debug)]
pub struct PoV {
/// The block witness data.
pub block_data: BlockData,
}
impl PoV {
/// Get the blake2-256 hash of the PoV.
pub fn hash(&self) -> Hash {
BlakeTwo256::hash_of(self)
}
}
/// A type that represents a maybe compressed [`PoV`].
#[derive(Clone, Encode, Decode)]
#[cfg(not(target_os = "unknown"))]
pub enum MaybeCompressedPoV {
/// A raw [`PoV`], aka not compressed.
Raw(PoV),
/// The given [`PoV`] is already compressed.
Compressed(PoV),
}
#[cfg(not(target_os = "unknown"))]
impl std::fmt::Debug for MaybeCompressedPoV {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let (variant, size) = match self {
MaybeCompressedPoV::Raw(pov) => ("Raw", pov.block_data.0.len()),
MaybeCompressedPoV::Compressed(pov) => ("Compressed", pov.block_data.0.len()),
};
write!(f, "{} PoV ({} bytes)", variant, size)
}
}
#[cfg(not(target_os = "unknown"))]
impl MaybeCompressedPoV {
/// Convert into a compressed [`PoV`].
///
/// If `self == Raw` it is compressed using [`maybe_compress_pov`].
pub fn into_compressed(self) -> PoV {
match self {
Self::Raw(raw) => maybe_compress_pov(raw),
Self::Compressed(compressed) => compressed,
}
}
}
/// The output of a collator.
///
/// This differs from `CandidateCommitments` in two ways:
///
/// - does not contain the erasure root; that's computed at the Polkadot level, not at Cumulus
/// - contains a proof of validity.
#[derive(Debug, Clone, Encode, Decode)]
#[cfg(not(target_os = "unknown"))]
pub struct Collation<BlockNumber = polkadot_primitives::BlockNumber> {
/// Messages destined to be interpreted by the Relay chain itself.
pub upward_messages: UpwardMessages,
/// The horizontal messages sent by the parachain.
pub horizontal_messages: HorizontalMessages,
/// New validation code.
pub new_validation_code: Option<ValidationCode>,
/// The head-data produced as a result of execution.
pub head_data: HeadData,
/// Proof to verify the state transition of the parachain.
pub proof_of_validity: MaybeCompressedPoV,
/// The number of messages processed from the DMQ.
pub processed_downward_messages: u32,
/// The mark which specifies the block number up to which all inbound HRMP messages are
/// processed.
/// Signal that is being returned when a collation was seconded by a validator.
Bastian Köcher
committed
#[derive(Debug)]
#[cfg(not(target_os = "unknown"))]
Bastian Köcher
committed
pub struct CollationSecondedSignal {
/// The hash of the relay chain block that was used as context to sign [`Self::statement`].
pub relay_parent: Hash,
/// The statement about seconding the collation.
///
/// Anything else than [`Statement::Seconded`] is forbidden here.
Bastian Köcher
committed
pub statement: SignedFullStatement,
}
/// Result of the [`CollatorFn`] invocation.
#[cfg(not(target_os = "unknown"))]
pub struct CollationResult {
/// The collation that was build.
pub collation: Collation,
/// An optional result sender that should be informed about a successfully seconded collation.
///
/// There is no guarantee that this sender is informed ever about any result, it is completely
/// okay to just drop it. However, if it is called, it should be called with the signed
/// statement of a parachain validator seconding the collation.
Bastian Köcher
committed
pub result_sender: Option<futures::channel::oneshot::Sender<CollationSecondedSignal>>,
#[cfg(not(target_os = "unknown"))]
impl CollationResult {
/// Convert into the inner values.
Bastian Köcher
committed
) -> (Collation, Option<futures::channel::oneshot::Sender<CollationSecondedSignal>>) {
(self.collation, self.result_sender)
}
}
/// Will be called with the hash of the relay chain block the parachain block should be build on and
/// the [`PersistedValidationData`] that provides information about the state of the parachain on
/// the relay chain.
///
/// Returns an optional [`CollationResult`].
#[cfg(not(target_os = "unknown"))]
dyn Fn(
Hash,
&PersistedValidationData,
) -> Pin<Box<dyn Future<Output = Option<CollationResult>> + Send>>
/// Configuration for the collation generator
#[cfg(not(target_os = "unknown"))]
pub struct CollationGenerationConfig {
/// Collator's authentication key, so it can sign things.
pub key: CollatorPair,
/// Collation function. See [`CollatorFn`] for more details.
///
/// If this is `None`, it implies that collations are intended to be submitted
/// out-of-band and not pulled out of the function.
pub collator: Option<CollatorFn>,
/// The parachain that this collator collates for
pub para_id: ParaId,
}
#[cfg(not(target_os = "unknown"))]
impl std::fmt::Debug for CollationGenerationConfig {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "CollationGenerationConfig {{ ... }}")
}
}
/// Parameters for `CollationGenerationMessage::SubmitCollation`.
#[derive(Debug)]
pub struct SubmitCollationParams {
/// The relay-parent the collation is built against.
pub relay_parent: Hash,
/// The collation itself (PoV and commitments)
pub collation: Collation,
/// The parent block's head-data.
pub parent_head: HeadData,
/// The hash of the validation code the collation was created against.
pub validation_code_hash: ValidationCodeHash,
/// An optional result sender that should be informed about a successfully seconded collation.
///
/// There is no guarantee that this sender is informed ever about any result, it is completely
/// okay to just drop it. However, if it is called, it should be called with the signed
/// statement of a parachain validator seconding the collation.
pub result_sender: Option<futures::channel::oneshot::Sender<CollationSecondedSignal>>,
Andrei Sandu
committed
/// The core index on which the resulting candidate should be backed
pub core_index: CoreIndex,
/// This is the data we keep available for each candidate included in the relay chain.
#[derive(Clone, Encode, Decode, PartialEq, Eq, Debug)]
pub struct AvailableData {
/// The Proof-of-Validation of the candidate.
pub pov: std::sync::Arc<PoV>,
/// The persisted validation data needed for approval checks.
pub validation_data: PersistedValidationData,
}
/// This is a convenience type to allow the Erasure chunk proof to Decode into a nested BoundedVec
#[derive(PartialEq, Eq, Clone, Debug, Hash)]
pub struct Proof(BoundedVec<BoundedVec<u8, 1, MERKLE_NODE_MAX_SIZE>, 1, MERKLE_PROOF_MAX_DEPTH>);
impl Proof {
/// This function allows to convert back to the standard nested Vec format
pub fn iter(&self) -> impl Iterator<Item = &[u8]> {
self.0.iter().map(|v| v.as_slice())
}
/// Construct an invalid dummy proof
///
/// Useful for testing, should absolutely not be used in production.
pub fn dummy_proof() -> Proof {
Proof(BoundedVec::from_vec(vec![BoundedVec::from_vec(vec![0]).unwrap()]).unwrap())
}
}
/// Possible errors when converting from `Vec<Vec<u8>>` into [`Proof`].
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
#[derive(thiserror::Error, Debug)]
pub enum MerkleProofError {
#[error("Merkle max proof depth exceeded {0} > {} .", MERKLE_PROOF_MAX_DEPTH)]
/// This error signifies that the Proof length exceeds the trie's max depth
MerkleProofDepthExceeded(usize),
#[error("Merkle node max size exceeded {0} > {} .", MERKLE_NODE_MAX_SIZE)]
/// This error signifies that a Proof node exceeds the 16-ary max node size
MerkleProofNodeSizeExceeded(usize),
}
impl TryFrom<Vec<Vec<u8>>> for Proof {
type Error = MerkleProofError;
fn try_from(input: Vec<Vec<u8>>) -> Result<Self, Self::Error> {
if input.len() > MERKLE_PROOF_MAX_DEPTH {
return Err(Self::Error::MerkleProofDepthExceeded(input.len()))
}
let mut out = Vec::new();
for element in input.into_iter() {
let length = element.len();
let data: BoundedVec<u8, 1, MERKLE_NODE_MAX_SIZE> = BoundedVec::from_vec(element)
.map_err(|_| Self::Error::MerkleProofNodeSizeExceeded(length))?;
out.push(data);
}
Ok(Proof(BoundedVec::from_vec(out).expect("Buffer size is deterined above. qed")))
}
}
impl Decode for Proof {
fn decode<I: Input>(value: &mut I) -> Result<Self, CodecError> {
let temp: Vec<Vec<u8>> = Decode::decode(value)?;
let mut out = Vec::new();
for element in temp.into_iter() {
let bounded_temp: Result<BoundedVec<u8, 1, MERKLE_NODE_MAX_SIZE>, CodecError> =
BoundedVec::from_vec(element)
.map_err(|_| "Inner node exceeds maximum node size.".into());
out.push(bounded_temp?);
}
BoundedVec::from_vec(out)
.map(Self)
.map_err(|_| "Merkle proof depth exceeds maximum trie depth".into())
}
}
impl Encode for Proof {
fn size_hint(&self) -> usize {
MERKLE_NODE_MAX_SIZE * MERKLE_PROOF_MAX_DEPTH
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
let temp = self.0.iter().map(|v| v.as_vec()).collect::<Vec<_>>();
temp.using_encoded(f)
}
}
impl Serialize for Proof {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_bytes(&self.encode())
}
}
impl<'de> Deserialize<'de> for Proof {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
// Deserialize the string and get individual components
let s = Vec::<u8>::deserialize(deserializer)?;
let mut slice = s.as_slice();
Decode::decode(&mut slice).map_err(de::Error::custom)
}
}
/// A chunk of erasure-encoded block data.
#[derive(PartialEq, Eq, Clone, Encode, Decode, Serialize, Deserialize, Debug, Hash)]
pub struct ErasureChunk {
/// The erasure-encoded chunk of data belonging to the candidate block.
pub chunk: Vec<u8>,
/// The index of this erasure-encoded chunk of data.
pub index: ChunkIndex,
/// Proof for this chunk's branch in the Merkle tree.
pub proof: Proof,
}
impl ErasureChunk {
/// Convert bounded Vec Proof to regular `Vec<Vec<u8>>`
pub fn proof(&self) -> &Proof {
&self.proof
}
/// Compress a PoV, unless it exceeds the [`POV_BOMB_LIMIT`].
#[cfg(not(target_os = "unknown"))]
pub fn maybe_compress_pov(pov: PoV) -> PoV {
let PoV { block_data: BlockData(raw) } = pov;
let raw = sp_maybe_compressed_blob::compress(&raw, POV_BOMB_LIMIT).unwrap_or(raw);
let pov = PoV { block_data: BlockData(raw) };
pov