Newer
Older
// Copyright 2017-2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! Primitive types used on the node-side.
//!
//! Unlike the `polkadot-primitives` crate, these primitives are only used on the node-side,
//! not shared between the node and the runtime. This crate builds on top of the primitives defined
//! there.
use std::{convert::TryFrom, pin::Pin, time::Duration};
use bounded_vec::BoundedVec;
use futures::Future;
use parity_scale_codec::{Decode, Encode, Error as CodecError, Input};
use serde::{de, Deserialize, Deserializer, Serialize, Serializer};
pub use sp_consensus_babe::{
AllowedSlots as BabeAllowedSlots, BabeEpochConfiguration, Epoch as BabeEpoch,
};
use polkadot_primitives::v1::{
BlakeTwo256, CandidateCommitments, CandidateHash, CollatorPair, CommittedCandidateReceipt,
CompactStatement, EncodeAs, Hash, HashT, HeadData, Id as ParaId, OutboundHrmpMessage,
PersistedValidationData, SessionIndex, Signed, UncheckedSigned, UpwardMessage, ValidationCode,
ValidatorIndex, MAX_CODE_SIZE, MAX_POV_SIZE,
pub use polkadot_parachain::primitives::BlockData;
/// Disputes related types.
pub mod disputes;
pub use disputes::{
CandidateVotes, DisputeMessage, DisputeMessageCheckError, InvalidDisputeVote,
SignedDisputeStatement, UncheckedDisputeMessage, ValidDisputeVote,
// For a 16-ary Merkle Prefix Trie, we can expect at most 16 32-byte hashes per node
// plus some overhead:
// header 1 + bitmap 2 + max partial_key 8 + children 16 * (32 + len 1) + value 32 + value len 1
const MERKLE_NODE_MAX_SIZE: usize = 512 + 100;
// 16-ary Merkle Prefix Trie for 32-bit ValidatorIndex has depth at most 8.
const MERKLE_PROOF_MAX_DEPTH: usize = 8;
/// The bomb limit for decompressing code blobs.
Shawn Tabrizi
committed
pub const VALIDATION_CODE_BOMB_LIMIT: usize = (MAX_CODE_SIZE * 4u32) as usize;
/// The bomb limit for decompressing PoV blobs.
Shawn Tabrizi
committed
pub const POV_BOMB_LIMIT: usize = (MAX_POV_SIZE * 4u32) as usize;
/// The amount of time to spend on execution during backing.
pub const BACKING_EXECUTION_TIMEOUT: Duration = Duration::from_secs(2);
/// The amount of time to spend on execution during approval or disputes.
///
/// This is deliberately much longer than the backing execution timeout to
/// ensure that in the absence of extremely large disparities between hardware,
/// blocks that pass backing are considerd executable by approval checkers or
/// dispute participants.
pub const APPROVAL_EXECUTION_TIMEOUT: Duration = Duration::from_secs(6);
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/// Type of a session window size.
///
/// We are not using `NonZeroU32` here because `expect` and `unwrap` are not yet const, so global
/// constants of `SessionWindowSize` would require `lazy_static` in that case.
///
/// See: https://github.com/rust-lang/rust/issues/67441
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
pub struct SessionWindowSize(SessionIndex);
#[macro_export]
/// Create a new checked `SessionWindowSize`
///
/// which cannot be 0.
macro_rules! new_session_window_size {
(0) => {
compile_error!("Must be non zero");
};
(0_u32) => {
compile_error!("Must be non zero");
};
(0 as u32) => {
compile_error!("Must be non zero");
};
(0 as _) => {
compile_error!("Must be non zero");
};
($l:literal) => {
SessionWindowSize::unchecked_new($l as _)
};
}
/// It would be nice to draw this from the chain state, but we have no tools for it right now.
/// On Polkadot this is 1 day, and on Kusama it's 6 hours.
///
/// Number of sessions we want to consider in disputes.
pub const DISPUTE_WINDOW: SessionWindowSize = new_session_window_size!(6);
impl SessionWindowSize {
/// Get the value as `SessionIndex` for doing comparisons with those.
pub fn get(self) -> SessionIndex {
self.0
}
/// Helper function for `new_session_window_size`.
///
/// Don't use it. The only reason it is public, is because otherwise the
/// `new_session_window_size` macro would not work outside of this module.
#[doc(hidden)]
pub const fn unchecked_new(size: SessionIndex) -> Self {
Self(size)
}
}
/// The cumulative weight of a block in a fork-choice rule.
pub type BlockWeight = u32;
/// A statement, where the candidate receipt is included in the `Seconded` variant.
///
/// This is the committed candidate receipt instead of the bare candidate receipt. As such,
/// it gives access to the commitments to validators who have not executed the candidate. This
/// is necessary to allow a block-producing validator to include candidates from outside the para
#[derive(Clone, PartialEq, Eq, Encode, Decode)]
pub enum Statement {
/// A statement that a validator seconds a candidate.
#[codec(index = 1)]
/// A statement that a validator has deemed a candidate valid.
#[codec(index = 2)]
impl std::fmt::Debug for Statement {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Statement::Seconded(seconded) => write!(f, "Seconded: {:?}", seconded.descriptor),
Statement::Valid(hash) => write!(f, "Valid: {:?}", hash),
}
}
}
impl Statement {

asynchronous rob
committed
/// Get the candidate hash referenced by this statement.
///
/// If this is a `Statement::Seconded`, this does hash the candidate receipt, which may be expensive
/// for large candidates.
pub fn candidate_hash(&self) -> CandidateHash {
match *self {

asynchronous rob
committed
Statement::Seconded(ref c) => c.hash(),
}
}
/// Transform this statement into its compact version, which references only the hash
/// of the candidate.
pub fn to_compact(&self) -> CompactStatement {
match *self {
Statement::Seconded(ref c) => CompactStatement::Seconded(c.hash()),
Statement::Valid(hash) => CompactStatement::Valid(hash),
}
}
}
impl From<&'_ Statement> for CompactStatement {
fn from(stmt: &Statement) -> Self {
stmt.to_compact()
}
}
impl EncodeAs<CompactStatement> for Statement {
fn encode_as(&self) -> Vec<u8> {
self.to_compact().encode()
}
}
/// A statement, the corresponding signature, and the index of the sender.
///
/// Signing context and validator set should be apparent from context.
///
/// This statement is "full" in the sense that the `Seconded` variant includes the candidate receipt.
/// Only the compact `SignedStatement` is suitable for submission to the chain.
pub type SignedFullStatement = Signed<Statement, CompactStatement>;
/// Variant of `SignedFullStatement` where the signature has not yet been verified.
pub type UncheckedSignedFullStatement = UncheckedSigned<Statement, CompactStatement>;
/// Candidate invalidity details
#[derive(Debug)]
pub enum InvalidCandidate {
/// Failed to execute.`validate_block`. This includes function panicking.
ExecutionError(String),
/// Validation outputs check doesn't pass.
InvalidOutputs,
/// Execution timeout.
Timeout,
/// Validation input is over the limit.
ParamsTooLarge(u64),
/// Code size is over the limit.
CodeTooLarge(u64),
/// Code does not decompress correctly.
CodeDecompressionFailure,
/// PoV does not decompress correctly.
PoVDecompressionFailure,
/// Validation function returned invalid data.
BadReturn,
/// Invalid relay chain parent.
BadParent,
/// POV hash does not match.
/// Bad collator signature.
BadSignature,
/// Para head hash does not match.
ParaHeadHashMismatch,
/// Validation code hash does not match.
CodeHashMismatch,
/// Result of the validation of the candidate.
#[derive(Debug)]
pub enum ValidationResult {
/// Candidate is valid. The validation process yields these outputs and the persisted validation
/// data used to form inputs.

asynchronous rob
committed
Valid(CandidateCommitments, PersistedValidationData),
/// A Proof-of-Validity
#[derive(PartialEq, Eq, Clone, Encode, Decode, Debug)]
pub struct PoV {
/// The block witness data.
pub block_data: BlockData,
}
impl PoV {
/// Get the blake2-256 hash of the PoV.
pub fn hash(&self) -> Hash {
BlakeTwo256::hash_of(self)
}
}
/// The output of a collator.
///
/// This differs from `CandidateCommitments` in two ways:
///
/// - does not contain the erasure root; that's computed at the Polkadot level, not at Cumulus
/// - contains a proof of validity.
#[derive(Clone, Encode, Decode)]
pub struct Collation<BlockNumber = polkadot_primitives::v1::BlockNumber> {
/// Messages destined to be interpreted by the Relay chain itself.
pub upward_messages: Vec<UpwardMessage>,
/// The horizontal messages sent by the parachain.
pub horizontal_messages: Vec<OutboundHrmpMessage<ParaId>>,
/// New validation code.
pub new_validation_code: Option<ValidationCode>,
/// The head-data produced as a result of execution.
pub head_data: HeadData,
/// Proof to verify the state transition of the parachain.
pub proof_of_validity: PoV,
/// The number of messages processed from the DMQ.
pub processed_downward_messages: u32,
/// The mark which specifies the block number up to which all inbound HRMP messages are processed.
pub hrmp_watermark: BlockNumber,
/// Signal that is being returned when a collation was seconded by a validator.
Bastian Köcher
committed
#[derive(Debug)]
pub struct CollationSecondedSignal {
/// The hash of the relay chain block that was used as context to sign [`Self::statement`].
pub relay_parent: Hash,
/// The statement about seconding the collation.
///
/// Anything else than [`Statement::Seconded`](Statement::Seconded) is forbidden here.
pub statement: SignedFullStatement,
}
/// Result of the [`CollatorFn`] invocation.
pub struct CollationResult {
/// The collation that was build.
pub collation: Collation,
/// An optional result sender that should be informed about a successfully seconded collation.
///
/// There is no guarantee that this sender is informed ever about any result, it is completely okay to just drop it.
/// However, if it is called, it should be called with the signed statement of a parachain validator seconding the
/// collation.
Bastian Köcher
committed
pub result_sender: Option<futures::channel::oneshot::Sender<CollationSecondedSignal>>,
}
impl CollationResult {
/// Convert into the inner values.
Bastian Köcher
committed
) -> (Collation, Option<futures::channel::oneshot::Sender<CollationSecondedSignal>>) {
(self.collation, self.result_sender)
}
}
/// Will be called with the hash of the relay chain block the parachain block should be build on and the
/// [`ValidationData`] that provides information about the state of the parachain on the relay chain.
///
/// Returns an optional [`CollationResult`].
dyn Fn(
Hash,
&PersistedValidationData,
) -> Pin<Box<dyn Future<Output = Option<CollationResult>> + Send>>
/// Configuration for the collation generator
pub struct CollationGenerationConfig {
/// Collator's authentication key, so it can sign things.
pub key: CollatorPair,
/// Collation function. See [`CollatorFn`] for more details.
pub collator: CollatorFn,
/// The parachain that this collator collates for
pub para_id: ParaId,
}
impl std::fmt::Debug for CollationGenerationConfig {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "CollationGenerationConfig {{ ... }}")
}
}
/// This is the data we keep available for each candidate included in the relay chain.
#[derive(Clone, Encode, Decode, PartialEq, Eq, Debug)]
pub struct AvailableData {
/// The Proof-of-Validation of the candidate.
pub pov: std::sync::Arc<PoV>,
/// The persisted validation data needed for secondary checks.
pub validation_data: PersistedValidationData,
}
/// This is a convenience type to allow the Erasure chunk proof to Decode into a nested BoundedVec
#[derive(PartialEq, Eq, Clone, Debug, Hash)]
pub struct Proof(BoundedVec<BoundedVec<u8, 1, MERKLE_NODE_MAX_SIZE>, 1, MERKLE_PROOF_MAX_DEPTH>);
impl Proof {
/// This function allows to convert back to the standard nested Vec format
pub fn iter(&self) -> impl Iterator<Item = &[u8]> {
self.0.iter().map(|v| v.as_slice())
}
/// Construct an invalid dummy proof
///
/// Useful for testing, should absolutely not be used in production.
pub fn dummy_proof() -> Proof {
Proof(BoundedVec::from_vec(vec![BoundedVec::from_vec(vec![0]).unwrap()]).unwrap())
}
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
}
#[derive(thiserror::Error, Debug)]
///
pub enum MerkleProofError {
#[error("Merkle max proof depth exceeded {0} > {} .", MERKLE_PROOF_MAX_DEPTH)]
/// This error signifies that the Proof length exceeds the trie's max depth
MerkleProofDepthExceeded(usize),
#[error("Merkle node max size exceeded {0} > {} .", MERKLE_NODE_MAX_SIZE)]
/// This error signifies that a Proof node exceeds the 16-ary max node size
MerkleProofNodeSizeExceeded(usize),
}
impl TryFrom<Vec<Vec<u8>>> for Proof {
type Error = MerkleProofError;
fn try_from(input: Vec<Vec<u8>>) -> Result<Self, Self::Error> {
if input.len() > MERKLE_PROOF_MAX_DEPTH {
return Err(Self::Error::MerkleProofDepthExceeded(input.len()))
}
let mut out = Vec::new();
for element in input.into_iter() {
let length = element.len();
let data: BoundedVec<u8, 1, MERKLE_NODE_MAX_SIZE> = BoundedVec::from_vec(element)
.map_err(|_| Self::Error::MerkleProofNodeSizeExceeded(length))?;
out.push(data);
}
Ok(Proof(BoundedVec::from_vec(out).expect("Buffer size is deterined above. qed")))
}
}
impl Decode for Proof {
fn decode<I: Input>(value: &mut I) -> Result<Self, CodecError> {
let temp: Vec<Vec<u8>> = Decode::decode(value)?;
let mut out = Vec::new();
for element in temp.into_iter() {
let bounded_temp: Result<BoundedVec<u8, 1, MERKLE_NODE_MAX_SIZE>, CodecError> =
BoundedVec::from_vec(element)
.map_err(|_| "Inner node exceeds maximum node size.".into());
out.push(bounded_temp?);
}
BoundedVec::from_vec(out)
.map(Self)
.map_err(|_| "Merkle proof depth exceeds maximum trie depth".into())
}
}
impl Encode for Proof {
fn size_hint(&self) -> usize {
MERKLE_NODE_MAX_SIZE * MERKLE_PROOF_MAX_DEPTH
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
let temp = self.0.iter().map(|v| v.as_vec()).collect::<Vec<_>>();
temp.using_encoded(f)
}
}
impl Serialize for Proof {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_bytes(&self.encode())
}
}
impl<'de> Deserialize<'de> for Proof {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
// Deserialize the string and get individual components
let s = Vec::<u8>::deserialize(deserializer)?;
let mut slice = s.as_slice();
Decode::decode(&mut slice).map_err(de::Error::custom)
}
}
/// A chunk of erasure-encoded block data.
#[derive(PartialEq, Eq, Clone, Encode, Decode, Serialize, Deserialize, Debug, Hash)]
pub struct ErasureChunk {
/// The erasure-encoded chunk of data belonging to the candidate block.
pub chunk: Vec<u8>,
/// The index of this erasure-encoded chunk of data.
pub index: ValidatorIndex,
/// Proof for this chunk's branch in the Merkle tree.
pub proof: Proof,
}
impl ErasureChunk {
/// Convert bounded Vec Proof to regular Vec<Vec<u8>>
pub fn proof(&self) -> &Proof {
&self.proof
}
/// Compress a PoV, unless it exceeds the [`POV_BOMB_LIMIT`].
#[cfg(not(target_os = "unknown"))]
pub fn maybe_compress_pov(pov: PoV) -> PoV {
let PoV { block_data: BlockData(raw) } = pov;
let raw = sp_maybe_compressed_blob::compress(&raw, POV_BOMB_LIMIT).unwrap_or(raw);
let pov = PoV { block_data: BlockData(raw) };
pov