Skip to content
paras.rs 103 KiB
Newer Older
// Copyright 2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! The paras pallet is responsible for storing data on parachains and parathreads.
//!
//! It tracks which paras are parachains, what their current head data is in
//! this fork of the relay chain, what their validation code is, and what their past and upcoming
//! validation code is.
//!
//! A para is not considered live until it is registered and activated in this pallet. Activation can
//! only occur at session boundaries.

use crate::{configuration, initializer::SessionChangeNotification, shared};
use bitvec::{order::Lsb0 as BitOrderLsb0, vec::BitVec};
use frame_support::{pallet_prelude::*, traits::EstimateNextSessionRotation};
use frame_system::pallet_prelude::*;
use parity_scale_codec::{Decode, Encode};
use primitives::v1::{
	ConsensusLog, HeadData, Id as ParaId, PvfCheckStatement, SessionIndex, UpgradeGoAhead,
	UpgradeRestriction, ValidationCode, ValidationCodeHash, ValidatorSignature,
use sp_core::RuntimeDebug;
use sp_runtime::{
	traits::{AppVerify, One},
	DispatchResult, SaturatedConversion,
};
use sp_std::{cmp, convert::TryInto, mem, prelude::*};

#[cfg(feature = "std")]
use serde::{Deserialize, Serialize};
pub use crate::Origin as ParachainOrigin;
#[cfg(feature = "runtime-benchmarks")]
pub(crate) mod benchmarking;
pub use pallet::*;
const LOG_TARGET: &str = "runtime::paras";

// the two key times necessary to track for every code replacement.
#[derive(Default, Encode, Decode, TypeInfo)]
#[cfg_attr(test, derive(Debug, Clone, PartialEq))]
pub struct ReplacementTimes<N> {
	/// The relay-chain block number that the code upgrade was expected to be activated.
	/// This is when the code change occurs from the para's perspective - after the
	/// first parablock included with a relay-parent with number >= this value.
	expected_at: N,
	/// The relay-chain block number at which the parablock activating the code upgrade was
	/// actually included. This means considered included and available, so this is the time at which
	/// that parablock enters the acceptance period in this fork of the relay-chain.
	activated_at: N,
}

/// Metadata used to track previous parachain validation code that we keep in
/// the state.
#[derive(Default, Encode, Decode, TypeInfo)]
#[cfg_attr(test, derive(Debug, Clone, PartialEq))]
pub struct ParaPastCodeMeta<N> {
	/// Block numbers where the code was expected to be replaced and where the code
	/// was actually replaced, respectively. The first is used to do accurate lookups
	/// of historic code in historic contexts, whereas the second is used to do
	/// pruning on an accurate timeframe. These can be used as indices
	/// into the `PastCodeHash` map along with the `ParaId` to fetch the code itself.
	upgrade_times: Vec<ReplacementTimes<N>>,
	/// Tracks the highest pruned code-replacement, if any. This is the `activated_at` value,
	/// not the `expected_at` value.
	last_pruned: Option<N>,
}

/// The possible states of a para, to take into account delayed lifecycle changes.
///
/// If the para is in a "transition state", it is expected that the parachain is
/// queued in the `ActionsQueue` to transition it into a stable state. Its lifecycle
/// state will be used to determine the state transition to apply to the para.
#[derive(PartialEq, Eq, Clone, Encode, Decode, RuntimeDebug, TypeInfo)]
pub enum ParaLifecycle {
	/// Para is new and is onboarding as a Parathread or Parachain.
	Onboarding,
	/// Para is a Parathread.
	Parathread,
	/// Para is a Parachain.
	Parachain,
	/// Para is a Parathread which is upgrading to a Parachain.
	/// Para is a Parachain which is downgrading to a Parathread.
	DowngradingParachain,
	/// Parathread is queued to be offboarded.
	OffboardingParathread,
	/// Parachain is queued to be offboarded.
	OffboardingParachain,
	/// Returns true if parachain is currently onboarding. To learn if the
	/// parachain is onboarding as a parachain or parathread, look at the
	/// `UpcomingGenesis` storage item.
	pub fn is_onboarding(&self) -> bool {
		matches!(self, ParaLifecycle::Onboarding)
	}

	/// Returns true if para is in a stable state, i.e. it is currently
	/// a parachain or parathread, and not in any transition state.
	pub fn is_stable(&self) -> bool {
		matches!(self, ParaLifecycle::Parathread | ParaLifecycle::Parachain)
	}

	/// Returns true if para is currently treated as a parachain.
	/// This also includes transitioning states, so you may want to combine
	/// this check with `is_stable` if you specifically want `Paralifecycle::Parachain`.
	pub fn is_parachain(&self) -> bool {
		matches!(
			self,
			ParaLifecycle::Parachain |
				ParaLifecycle::DowngradingParachain |
				ParaLifecycle::OffboardingParachain
	/// Returns true if para is currently treated as a parathread.
	/// This also includes transitioning states, so you may want to combine
	/// this check with `is_stable` if you specifically want `Paralifecycle::Parathread`.
	pub fn is_parathread(&self) -> bool {
		matches!(
			self,
			ParaLifecycle::Parathread |
				ParaLifecycle::UpgradingParathread |
				ParaLifecycle::OffboardingParathread
	/// Returns true if para is currently offboarding.
	pub fn is_offboarding(&self) -> bool {
		matches!(self, ParaLifecycle::OffboardingParathread | ParaLifecycle::OffboardingParachain)
	/// Returns true if para is in any transitionary state.
	pub fn is_transitioning(&self) -> bool {
		!Self::is_stable(self)
	}
}

impl<N: Ord + Copy + PartialEq> ParaPastCodeMeta<N> {
	// note a replacement has occurred at a given block number.
	pub(crate) fn note_replacement(&mut self, expected_at: N, activated_at: N) {
		self.upgrade_times.push(ReplacementTimes { expected_at, activated_at })
	}

	/// Returns `true` if the upgrade logs list is empty.
	fn is_empty(&self) -> bool {
		self.upgrade_times.is_empty()
	}

	// The block at which the most recently tracked code change occurred, from the perspective
	// of the para.
	fn most_recent_change(&self) -> Option<N> {
		self.upgrade_times.last().map(|x| x.expected_at.clone())
	}

	// prunes all code upgrade logs occurring at or before `max`.
	// note that code replaced at `x` is the code used to validate all blocks before
	// `x`. Thus, `max` should be outside of the slashing window when this is invoked.
	//
	// Since we don't want to prune anything inside the acceptance period, and the parablock only
	// enters the acceptance period after being included, we prune based on the activation height of
	// the code change, not the expected height of the code change.
	//
	// returns an iterator of block numbers at which code was replaced, where the replaced
	// code should be now pruned, in ascending order.
	fn prune_up_to(&'_ mut self, max: N) -> impl Iterator<Item = N> + '_ {
		let to_prune = self.upgrade_times.iter().take_while(|t| t.activated_at <= max).count();
		let drained = if to_prune == 0 {
			// no-op prune.
			self.upgrade_times.drain(self.upgrade_times.len()..)
		} else {
			// if we are actually pruning something, update the `last_pruned` member.
			self.last_pruned = Some(self.upgrade_times[to_prune - 1].activated_at);
			self.upgrade_times.drain(..to_prune)
		};

		drained.map(|times| times.expected_at)
	}
}

/// Arguments for initializing a para.
#[derive(PartialEq, Eq, Clone, Encode, Decode, RuntimeDebug, TypeInfo)]
#[cfg_attr(feature = "std", derive(Serialize, Deserialize))]
pub struct ParaGenesisArgs {
	/// The initial head data to use.
	pub genesis_head: HeadData,
	/// The initial validation code to use.
	pub validation_code: ValidationCode,
	/// True if parachain, false if parathread.
	pub parachain: bool,
/// This enum describes a reason why a particular PVF pre-checking vote was initiated. When the
/// PVF vote in question is concluded, this enum indicates what changes should be performed.
#[derive(Encode, Decode, TypeInfo)]
enum PvfCheckCause<BlockNumber> {
	/// PVF vote was initiated by the initial onboarding process of the given para.
	Onboarding(ParaId),
	/// PVF vote was initiated by signalling of an upgrade by the given para.
	Upgrade {
		/// The ID of the parachain that initiated or is waiting for the conclusion of pre-checking.
		id: ParaId,
		/// The relay-chain block number that was used as the relay-parent for the parablock that
		/// initiated the upgrade.
		relay_parent_number: BlockNumber,
	},
}

/// Specifies what was the outcome of a PVF pre-checking vote.
#[derive(Copy, Clone, Encode, Decode, RuntimeDebug, TypeInfo)]
enum PvfCheckOutcome {
	Accepted,
	Rejected,
}

/// This struct describes the current state of an in-progress PVF pre-checking vote.
#[derive(Encode, Decode, TypeInfo)]
struct PvfCheckActiveVoteState<BlockNumber> {
	// The two following vectors have their length equal to the number of validators in the active
	// set. They start with all zeroes. A 1 is set at an index when the validator at the that index
	// makes a vote. Once a 1 is set for either of the vectors, that validator cannot vote anymore.
	// Since the active validator set changes each session, the bit vectors are reinitialized as
	// well: zeroed and resized so that each validator gets its own bit.
	votes_accept: BitVec<BitOrderLsb0, u8>,
	votes_reject: BitVec<BitOrderLsb0, u8>,

	/// The number of session changes this PVF vote has observed. Therefore, this number is
	/// increased at each session boundary. When created, it is initialized with 0.
	age: SessionIndex,
	/// The block number at which this PVF vote was created.
	created_at: BlockNumber,
	/// A list of causes for this PVF pre-checking. Has at least one.
	causes: Vec<PvfCheckCause<BlockNumber>>,
}

impl<BlockNumber> PvfCheckActiveVoteState<BlockNumber> {
	/// Returns a new instance of vote state, started at the specified block `now`, with the
	/// number of validators in the current session `n_validators` and the originating `cause`.
	fn new(now: BlockNumber, n_validators: usize, cause: PvfCheckCause<BlockNumber>) -> Self {
		let mut causes = Vec::with_capacity(1);
		causes.push(cause);
		Self {
			created_at: now,
			votes_accept: bitvec::bitvec![BitOrderLsb0, u8; 0; n_validators],
			votes_reject: bitvec::bitvec![BitOrderLsb0, u8; 0; n_validators],
			age: 0,
			causes,
		}
	}

	/// Resets all votes and resizes the votes vectors corresponding to the number of validators
	/// in the new session.
	fn reinitialize_ballots(&mut self, n_validators: usize) {
		let clear_and_resize = |v: &mut BitVec<_, _>| {
			v.clear();
			v.resize(n_validators, false);
		};
		clear_and_resize(&mut self.votes_accept);
		clear_and_resize(&mut self.votes_reject);
	}

	/// Returns `Some(true)` if the validator at the given index has already cast their vote within
	/// the ongoing session. Returns `None` in case the index is out of bounds.
	fn has_vote(&self, validator_index: usize) -> Option<bool> {
		let accept_vote = self.votes_accept.get(validator_index)?;
		let reject_vote = self.votes_reject.get(validator_index)?;
		Some(*accept_vote || *reject_vote)
	}

	/// Returns `None` if the quorum is not reached, or the direction of the decision.
	fn quorum(&self, n_validators: usize) -> Option<PvfCheckOutcome> {
		let q_threshold = primitives::v1::supermajority_threshold(n_validators);
		// NOTE: counting the reject votes is deliberately placed first. This is to err on the safe.
		if self.votes_reject.count_ones() >= q_threshold {
			Some(PvfCheckOutcome::Rejected)
		} else if self.votes_accept.count_ones() >= q_threshold {
			Some(PvfCheckOutcome::Accepted)
		} else {
			None
		}
	}
}

pub trait WeightInfo {
	fn force_set_current_code(c: u32) -> Weight;
	fn force_set_current_head(s: u32) -> Weight;
	fn force_schedule_code_upgrade(c: u32) -> Weight;
	fn force_note_new_head(s: u32) -> Weight;
	fn force_queue_action() -> Weight;
}

pub struct TestWeightInfo;
impl WeightInfo for TestWeightInfo {
	fn force_set_current_code(_c: u32) -> Weight {
		Weight::MAX
	}
	fn force_set_current_head(_s: u32) -> Weight {
		Weight::MAX
	}
	fn force_schedule_code_upgrade(_c: u32) -> Weight {
		Weight::MAX
	}
	fn force_note_new_head(_s: u32) -> Weight {
		Weight::MAX
	}
	fn force_queue_action() -> Weight {
		Weight::MAX
	}
}

#[frame_support::pallet]
pub mod pallet {
	use super::*;
	use sp_runtime::transaction_validity::{
		InvalidTransaction, TransactionPriority, TransactionSource, TransactionValidity,
		ValidTransaction,
	};

	#[pallet::pallet]
	#[pallet::generate_store(pub(super) trait Store)]
	pub struct Pallet<T>(_);

	#[pallet::config]
	pub trait Config:
		frame_system::Config
		+ configuration::Config
		+ shared::Config
		+ frame_system::offchain::SendTransactionTypes<Call<Self>>
	{
		type Event: From<Event> + IsType<<Self as frame_system::Config>::Event>;
		#[pallet::constant]
		type UnsignedPriority: Get<TransactionPriority>;

		type NextSessionRotation: EstimateNextSessionRotation<Self::BlockNumber>;

		/// Weight information for extrinsics in this pallet.
		type WeightInfo: WeightInfo;
	#[pallet::event]
	#[pallet::generate_deposit(pub(super) fn deposit_event)]
	pub enum Event {
Denis_P's avatar
Denis_P committed
		/// Current code has been updated for a Para. `para_id`
		CurrentCodeUpdated(ParaId),
Denis_P's avatar
Denis_P committed
		/// Current head has been updated for a Para. `para_id`
		CurrentHeadUpdated(ParaId),
Denis_P's avatar
Denis_P committed
		/// A code upgrade has been scheduled for a Para. `para_id`
		CodeUpgradeScheduled(ParaId),
Denis_P's avatar
Denis_P committed
		/// A new head has been noted for a Para. `para_id`
		NewHeadNoted(ParaId),
Denis_P's avatar
Denis_P committed
		/// A para has been queued to execute pending actions. `para_id`
		ActionQueued(ParaId, SessionIndex),
	#[pallet::error]
	pub enum Error<T> {
		/// Para is not registered in our system.
		NotRegistered,
		/// Para cannot be onboarded because it is already tracked by our system.
		CannotOnboard,
		/// Para cannot be offboarded at this time.
		CannotOffboard,
		/// Para cannot be upgraded to a parachain.
		CannotUpgrade,
		/// Para cannot be downgraded to a parathread.
		CannotDowngrade,
		/// The statement for PVF pre-checking is stale.
		PvfCheckStatementStale,
		/// The statement for PVF pre-checking is for a future session.
		PvfCheckStatementFuture,
		/// Claimed validator index is out of bounds.
		PvfCheckValidatorIndexOutOfBounds,
		/// The signature for the PVF pre-checking is invalid.
		PvfCheckInvalidSignature,
		/// The given validator already has cast a vote.
		PvfCheckDoubleVote,
		/// The given PVF does not exist at the moment of process a vote.
		PvfCheckSubjectInvalid,
	}

	/// All currently active PVF pre-checking votes.
	///
	/// Invariant:
	/// - There are no PVF pre-checking votes that exists in list but not in the set and vice versa.
	#[pallet::storage]
	pub(super) type PvfActiveVoteMap<T: Config> = StorageMap<
		_,
		Twox64Concat,
		ValidationCodeHash,
		PvfCheckActiveVoteState<T::BlockNumber>,
		OptionQuery,
	>;

	/// The list of all currently active PVF votes. Auxiliary to `PvfActiveVoteMap`.
	#[pallet::storage]
	pub(super) type PvfActiveVoteList<T: Config> =
		StorageValue<_, Vec<ValidationCodeHash>, ValueQuery>;
Denis_P's avatar
Denis_P committed
	/// All parachains. Ordered ascending by `ParaId`. Parathreads are not included.
	#[pallet::storage]
	#[pallet::getter(fn parachains)]
	pub(crate) type Parachains<T: Config> = StorageValue<_, Vec<ParaId>, ValueQuery>;

	/// The current lifecycle of a all known Para IDs.
	#[pallet::storage]
	pub(super) type ParaLifecycles<T: Config> = StorageMap<_, Twox64Concat, ParaId, ParaLifecycle>;

	/// The head-data of every registered para.
	#[pallet::storage]
	#[pallet::getter(fn para_head)]
	pub(super) type Heads<T: Config> = StorageMap<_, Twox64Concat, ParaId, HeadData>;

	/// The validation code hash of every live para.
	///
	/// Corresponding code can be retrieved with [`CodeByHash`].
	#[pallet::storage]
	#[pallet::getter(fn current_code_hash)]
	pub(super) type CurrentCodeHash<T: Config> =
		StorageMap<_, Twox64Concat, ParaId, ValidationCodeHash>;

	/// Actual past code hash, indicated by the para id as well as the block number at which it
	/// became outdated.
	///
	/// Corresponding code can be retrieved with [`CodeByHash`].
	#[pallet::storage]
	pub(super) type PastCodeHash<T: Config> =
		StorageMap<_, Twox64Concat, (ParaId, T::BlockNumber), ValidationCodeHash>;

	/// Past code of parachains. The parachains themselves may not be registered anymore,
	/// but we also keep their code on-chain for the same amount of time as outdated code
	/// to keep it available for secondary checkers.
	#[pallet::storage]
	#[pallet::getter(fn past_code_meta)]
	pub(super) type PastCodeMeta<T: Config> =
		StorageMap<_, Twox64Concat, ParaId, ParaPastCodeMeta<T::BlockNumber>, ValueQuery>;

	/// Which paras have past code that needs pruning and the relay-chain block at which the code was replaced.
	/// Note that this is the actual height of the included block, not the expected height at which the
	/// code upgrade would be applied, although they may be equal.
	/// This is to ensure the entire acceptance period is covered, not an offset acceptance period starting
	/// from the time at which the parachain perceives a code upgrade as having occurred.
	/// Multiple entries for a single para are permitted. Ordered ascending by block number.
	#[pallet::storage]
	pub(super) type PastCodePruning<T: Config> =
		StorageValue<_, Vec<(ParaId, T::BlockNumber)>, ValueQuery>;

	/// The block number at which the planned code change is expected for a para.
	/// The change will be applied after the first parablock for this ID included which executes
	/// in the context of a relay chain block with a number >= `expected_at`.
	#[pallet::storage]
	#[pallet::getter(fn future_code_upgrade_at)]
	pub(super) type FutureCodeUpgrades<T: Config> =
		StorageMap<_, Twox64Concat, ParaId, T::BlockNumber>;

	/// The actual future code hash of a para.
	///
	/// Corresponding code can be retrieved with [`CodeByHash`].
	#[pallet::storage]
	pub(super) type FutureCodeHash<T: Config> =
		StorageMap<_, Twox64Concat, ParaId, ValidationCodeHash>;
	/// This is used by the relay-chain to communicate to a parachain a go-ahead with in the upgrade procedure.
	///
	/// This value is absent when there are no upgrades scheduled or during the time the relay chain
	/// performs the checks. It is set at the first relay-chain block when the corresponding parachain
	/// can switch its upgrade function. As soon as the parachain's block is included, the value
	/// gets reset to `None`.
	///
	/// NOTE that this field is used by parachains via merkle storage proofs, therefore changing
	/// the format will require migration of parachains.
	#[pallet::storage]
	pub(super) type UpgradeGoAheadSignal<T: Config> =
		StorageMap<_, Twox64Concat, ParaId, UpgradeGoAhead>;

	/// This is used by the relay-chain to communicate that there are restrictions for performing
	/// an upgrade for this parachain.
	///
	/// This may be a because the parachain waits for the upgrade cooldown to expire. Another
	/// potential use case is when we want to perform some maintenance (such as storage migration)
	/// we could restrict upgrades to make the process simpler.
	///
	/// NOTE that this field is used by parachains via merkle storage proofs, therefore changing
	/// the format will require migration of parachains.
	#[pallet::storage]
	pub(super) type UpgradeRestrictionSignal<T: Config> =
		StorageMap<_, Twox64Concat, ParaId, UpgradeRestriction>;

	/// The list of parachains that are awaiting for their upgrade restriction to cooldown.
	///
	/// Ordered ascending by block number.
	#[pallet::storage]
	pub(super) type UpgradeCooldowns<T: Config> =
		StorageValue<_, Vec<(ParaId, T::BlockNumber)>, ValueQuery>;

	/// The list of upcoming code upgrades. Each item is a pair of which para performs a code
	/// upgrade and at which relay-chain block it is expected at.
	///
	/// Ordered ascending by block number.
	#[pallet::storage]
	pub(super) type UpcomingUpgrades<T: Config> =
		StorageValue<_, Vec<(ParaId, T::BlockNumber)>, ValueQuery>;

	/// The actions to perform during the start of a specific session index.
	#[pallet::storage]
	#[pallet::getter(fn actions_queue)]
	pub(super) type ActionsQueue<T: Config> =
		StorageMap<_, Twox64Concat, SessionIndex, Vec<ParaId>, ValueQuery>;

	/// Upcoming paras instantiation arguments.
	///
	/// NOTE that after PVF pre-checking is enabled the para genesis arg will have it's code set
	/// to empty. Instead, the code will be saved into the storage right away via `CodeByHash`.
	#[pallet::storage]
	pub(super) type UpcomingParasGenesis<T: Config> =
		StorageMap<_, Twox64Concat, ParaId, ParaGenesisArgs>;

	/// The number of reference on the validation code in [`CodeByHash`] storage.
	#[pallet::storage]
	pub(super) type CodeByHashRefs<T: Config> =
		StorageMap<_, Identity, ValidationCodeHash, u32, ValueQuery>;

	/// Validation code stored by its hash.
	///
	/// This storage is consistent with [`FutureCodeHash`], [`CurrentCodeHash`] and
	/// [`PastCodeHash`].
	#[pallet::storage]
	#[pallet::getter(fn code_by_hash)]
	pub(super) type CodeByHash<T: Config> =
		StorageMap<_, Identity, ValidationCodeHash, ValidationCode>;

	#[pallet::genesis_config]
	pub struct GenesisConfig {
		pub paras: Vec<(ParaId, ParaGenesisArgs)>,
	}

	#[cfg(feature = "std")]
	impl Default for GenesisConfig {
		fn default() -> Self {
			GenesisConfig { paras: Default::default() }
	#[pallet::genesis_build]
	impl<T: Config> GenesisBuild<T> for GenesisConfig {
		fn build(&self) {
			let mut parachains: Vec<_> = self
				.paras
				.iter()
				.filter(|(_, args)| args.parachain)
				.map(|&(ref id, _)| id)
				.cloned()
				.collect();

			parachains.sort();
			parachains.dedup();

			Parachains::<T>::put(&parachains);

			for (id, genesis_args) in &self.paras {
				let code_hash = genesis_args.validation_code.hash();
				<Pallet<T>>::increase_code_ref(&code_hash, &genesis_args.validation_code);
				<Pallet<T> as Store>::CurrentCodeHash::insert(&id, &code_hash);
				<Pallet<T> as Store>::Heads::insert(&id, &genesis_args.genesis_head);
				if genesis_args.parachain {
					ParaLifecycles::<T>::insert(&id, ParaLifecycle::Parachain);
				} else {
					ParaLifecycles::<T>::insert(&id, ParaLifecycle::Parathread);
				}
			}
		}
	}
	#[pallet::call]
	impl<T: Config> Pallet<T> {
		/// Set the storage for the parachain validation code immediately.
		#[pallet::weight(<T as Config>::WeightInfo::force_set_current_code(new_code.0.len() as u32))]
		pub fn force_set_current_code(
			origin: OriginFor<T>,
			para: ParaId,
			new_code: ValidationCode,
		) -> DispatchResult {
			ensure_root(origin)?;
			let maybe_prior_code_hash = <Self as Store>::CurrentCodeHash::get(&para);
			let new_code_hash = new_code.hash();
			Self::increase_code_ref(&new_code_hash, &new_code);
			<Self as Store>::CurrentCodeHash::insert(&para, new_code_hash);

			let now = frame_system::Pallet::<T>::block_number();
			if let Some(prior_code_hash) = maybe_prior_code_hash {
				Self::note_past_code(para, now, now, prior_code_hash);
			} else {
				log::error!(
					target: LOG_TARGET,
					"Pallet paras storage is inconsistent, prior code not found {:?}",
					&para
				);
			}
			Self::deposit_event(Event::CurrentCodeUpdated(para));
			Ok(())
		}

		/// Set the storage for the current parachain head data immediately.
		#[pallet::weight(<T as Config>::WeightInfo::force_set_current_head(new_head.0.len() as u32))]
		pub fn force_set_current_head(
			origin: OriginFor<T>,
			para: ParaId,
			new_head: HeadData,
		) -> DispatchResult {
			ensure_root(origin)?;
			<Self as Store>::Heads::insert(&para, new_head);
			Self::deposit_event(Event::CurrentHeadUpdated(para));
			Ok(())
		/// Schedule an upgrade as if it was scheduled in the given relay parent block.
		#[pallet::weight(<T as Config>::WeightInfo::force_schedule_code_upgrade(new_code.0.len() as u32))]
		pub fn force_schedule_code_upgrade(
			origin: OriginFor<T>,
			para: ParaId,
			new_code: ValidationCode,
			relay_parent_number: T::BlockNumber,
		) -> DispatchResult {
			ensure_root(origin)?;
			let config = configuration::Pallet::<T>::config();
			Self::schedule_code_upgrade(para, new_code, relay_parent_number, &config);
			Self::deposit_event(Event::CodeUpgradeScheduled(para));
			Ok(())
		}

		/// Note a new block head for para within the context of the current block.
		#[pallet::weight(<T as Config>::WeightInfo::force_note_new_head(new_head.0.len() as u32))]
		pub fn force_note_new_head(
			origin: OriginFor<T>,
			para: ParaId,
			new_head: HeadData,
		) -> DispatchResult {
			ensure_root(origin)?;
			let now = frame_system::Pallet::<T>::block_number();
			Self::note_new_head(para, new_head, now);
			Self::deposit_event(Event::NewHeadNoted(para));
			Ok(())
		}

		/// Put a parachain directly into the next session's action queue.
		/// We can't queue it any sooner than this without going into the
		/// initializer...
		#[pallet::weight(<T as Config>::WeightInfo::force_queue_action())]
		pub fn force_queue_action(origin: OriginFor<T>, para: ParaId) -> DispatchResult {
			ensure_root(origin)?;
			let next_session = shared::Pallet::<T>::session_index().saturating_add(One::one());
			ActionsQueue::<T>::mutate(next_session, |v| {
				if let Err(i) = v.binary_search(&para) {
					v.insert(i, para);
				}
			});
			Self::deposit_event(Event::ActionQueued(para, next_session));
			Ok(())

		/// Includes a statement for a PVF pre-checking vote. Potentially, finalizes the vote and
		/// enacts the results if that was the last vote before achieving the supermajority.
		#[pallet::weight(0)]
		pub fn include_pvf_check_statement(
			origin: OriginFor<T>,
			stmt: PvfCheckStatement,
			signature: ValidatorSignature,
		) -> DispatchResult {
			ensure_none(origin)?;
			let validators = shared::Pallet::<T>::active_validator_keys();
			let current_session = shared::Pallet::<T>::session_index();
			if stmt.session_index < current_session {
				return Err(Error::<T>::PvfCheckStatementStale.into())
			} else if stmt.session_index > current_session {
				return Err(Error::<T>::PvfCheckStatementFuture.into())
			}
			let validator_index = stmt.validator_index.0 as usize;
			let validator_public = validators
				.get(validator_index)
				.ok_or(Error::<T>::PvfCheckValidatorIndexOutOfBounds)?;

			let signing_payload = stmt.signing_payload();
			ensure!(
				signature.verify(&signing_payload[..], &validator_public),
				Error::<T>::PvfCheckInvalidSignature,
			);

			let mut active_vote = PvfActiveVoteMap::<T>::get(&stmt.subject)
				.ok_or(Error::<T>::PvfCheckSubjectInvalid)?;

			// Ensure that the validator submitting this statement hasn't voted already.
			ensure!(
				!active_vote
					.has_vote(validator_index)
					.ok_or(Error::<T>::PvfCheckValidatorIndexOutOfBounds)?,
				Error::<T>::PvfCheckDoubleVote,
			);

			// Finally, cast the vote and persist.
			if stmt.accept {
				active_vote.votes_accept.set(validator_index, true);
			} else {
				active_vote.votes_reject.set(validator_index, true);
			}

			if let Some(outcome) = active_vote.quorum(validators.len()) {
				// The supermajority quorum has been achieved.
				//
				// Remove the PVF vote from the active map and finalize the PVF checking according
				// to the outcome.
				PvfActiveVoteMap::<T>::remove(&stmt.subject);
				PvfActiveVoteList::<T>::mutate(|l| {
					if let Ok(i) = l.binary_search(&stmt.subject) {
						l.remove(i);
					}
				});
				match outcome {
					PvfCheckOutcome::Accepted => {
						let cfg = configuration::Pallet::<T>::config();
						Self::enact_pvf_accepted(
							<frame_system::Pallet<T>>::block_number(),
							&stmt.subject,
							&active_vote.causes,
							active_vote.age,
							&cfg,
						);
					},
					PvfCheckOutcome::Rejected => {
						Self::enact_pvf_rejected(&stmt.subject, active_vote.causes);
					},
				}
			} else {
				// No quorum has been achieved. So just store the updated state back into the
				// storage.
				PvfActiveVoteMap::<T>::insert(&stmt.subject, active_vote);
			}

			Ok(())
		}
	}

	#[pallet::validate_unsigned]
	impl<T: Config> ValidateUnsigned for Pallet<T> {
		type Call = Call<T>;

		fn validate_unsigned(_source: TransactionSource, call: &Self::Call) -> TransactionValidity {
			let (stmt, signature) = match call {
				Call::include_pvf_check_statement { stmt, signature } => (stmt, signature),
				_ => return InvalidTransaction::Call.into(),
			};

			let current_session = shared::Pallet::<T>::session_index();
			if stmt.session_index < current_session {
				return InvalidTransaction::Stale.into()
			} else if stmt.session_index > current_session {
				return InvalidTransaction::Future.into()
			}

			let validator_index = stmt.validator_index.0 as usize;
			let validators = shared::Pallet::<T>::active_validator_keys();
			let validator_public = match validators.get(validator_index) {
				Some(pk) => pk,
				None => return InvalidTransaction::Custom(INVALID_TX_BAD_VALIDATOR_IDX).into(),
			};

			let signing_payload = stmt.signing_payload();
			if !signature.verify(&signing_payload[..], &validator_public) {
				return InvalidTransaction::BadProof.into()
			}

			let active_vote = match PvfActiveVoteMap::<T>::get(&stmt.subject) {
				Some(v) => v,
				None => return InvalidTransaction::Custom(INVALID_TX_BAD_SUBJECT).into(),
			};

			match active_vote.has_vote(validator_index) {
				Some(false) => (),
				Some(true) => return InvalidTransaction::Custom(INVALID_TX_DOUBLE_VOTE).into(),
				None => return InvalidTransaction::Custom(INVALID_TX_BAD_VALIDATOR_IDX).into(),
			}

			ValidTransaction::with_tag_prefix("PvfPreCheckingVote")
				.priority(T::UnsignedPriority::get())
				.longevity(
					TryInto::<u64>::try_into(
						T::NextSessionRotation::average_session_length() / 2u32.into(),
					)
					.unwrap_or(64_u64),
				)
				.and_provides((stmt.session_index, stmt.validator_index, stmt.subject))
				.propagate(true)
				.build()
		}

		fn pre_dispatch(_call: &Self::Call) -> Result<(), TransactionValidityError> {
			// Return `Ok` here meaning that as soon as the transaction got into the block, it will
			// always dispatched. This is OK, since the `include_pvf_check_statement` dispatchable
			// will perform the same checks anyway, so there is no point doing it here.
			//
			// On the other hand, if we did not provide the implementation, then the default
			// implementation would be used. The default implementation just delegates the
			// pre-dispatch validation to `validate_unsigned`.
			Ok(())
		}
// custom transaction error codes
const INVALID_TX_BAD_VALIDATOR_IDX: u8 = 1;
const INVALID_TX_BAD_SUBJECT: u8 = 2;
const INVALID_TX_DOUBLE_VOTE: u8 = 3;

impl<T: Config> Pallet<T> {
	/// Called by the initializer to initialize the configuration pallet.
	pub(crate) fn initializer_initialize(now: T::BlockNumber) -> Weight {
		let weight = Self::prune_old_code(now);
		weight + Self::process_scheduled_upgrade_changes(now)
	/// Called by the initializer to finalize the configuration pallet.
	pub(crate) fn initializer_finalize() {}

	/// Called by the initializer to note that a new session has started.
	/// Returns the list of outgoing paras from the actions queue.
	pub(crate) fn initializer_on_new_session(
		notification: &SessionChangeNotification<T::BlockNumber>,
	) -> Vec<ParaId> {
		let outgoing_paras = Self::apply_actions_queue(notification.session_index);
		Self::groom_ongoing_pvf_votes(&notification.new_config, notification.validators.len());
	/// The validation code of live para.
	pub(crate) fn current_code(para_id: &ParaId) -> Option<ValidationCode> {
		Self::current_code_hash(para_id).and_then(|code_hash| {
			let code = CodeByHash::<T>::get(&code_hash);
			if code.is_none() {
				log::error!(
					"Pallet paras storage is inconsistent, code not found for hash {}",
					code_hash,
				);
				debug_assert!(false, "inconsistent paras storages");
			}
			code
		})
	}

	// Apply all para actions queued for the given session index.
	//
	// The actions to take are based on the lifecycle of of the paras.
	//
	// The final state of any para after the actions queue should be as a
	// parachain, parathread, or not registered. (stable states)
	//
	// Returns the list of outgoing paras from the actions queue.
	fn apply_actions_queue(session: SessionIndex) -> Vec<ParaId> {
		let actions = ActionsQueue::<T>::take(session);
		let mut parachains = <Self as Store>::Parachains::get();
		let now = <frame_system::Pallet<T>>::block_number();
		let mut outgoing = Vec::new();

		for para in actions {
			let lifecycle = ParaLifecycles::<T>::get(&para);
				None | Some(ParaLifecycle::Parathread) | Some(ParaLifecycle::Parachain) => { /* Nothing to do... */
				},
				Some(ParaLifecycle::Onboarding) => {
					if let Some(genesis_data) = <Self as Store>::UpcomingParasGenesis::take(&para) {
						if genesis_data.parachain {
							if let Err(i) = parachains.binary_search(&para) {
								parachains.insert(i, para);
							}
							ParaLifecycles::<T>::insert(&para, ParaLifecycle::Parachain);
							ParaLifecycles::<T>::insert(&para, ParaLifecycle::Parathread);
						// HACK: see the notice in `schedule_para_initialize`.
						//
						// Apparently, this is left over from a prior version of the runtime.
						// To handle this we just insert the code and link the current code hash
						// to it.
						if !genesis_data.validation_code.0.is_empty() {
							let code_hash = genesis_data.validation_code.hash();
							Self::increase_code_ref(&code_hash, &genesis_data.validation_code);
							<Self as Store>::CurrentCodeHash::insert(&para, code_hash);
						}

						<Self as Store>::Heads::insert(&para, genesis_data.genesis_head);
					}
				},
				// Upgrade a parathread to a parachain
				Some(ParaLifecycle::UpgradingParathread) => {
					if let Err(i) = parachains.binary_search(&para) {
						parachains.insert(i, para);
					}
					ParaLifecycles::<T>::insert(&para, ParaLifecycle::Parachain);
				},
				// Downgrade a parachain to a parathread
				Some(ParaLifecycle::DowngradingParachain) => {
					if let Ok(i) = parachains.binary_search(&para) {
						parachains.remove(i);
					}
					ParaLifecycles::<T>::insert(&para, ParaLifecycle::Parathread);
				},
				// Offboard a parathread or parachain from the system
				Some(ParaLifecycle::OffboardingParachain) |
				Some(ParaLifecycle::OffboardingParathread) => {
					if let Ok(i) = parachains.binary_search(&para) {
						parachains.remove(i);
					}

					<Self as Store>::Heads::remove(&para);
					<Self as Store>::FutureCodeUpgrades::remove(&para);
					<Self as Store>::UpgradeGoAheadSignal::remove(&para);
					<Self as Store>::UpgradeRestrictionSignal::remove(&para);
					ParaLifecycles::<T>::remove(&para);
					let removed_future_code_hash = <Self as Store>::FutureCodeHash::take(&para);
					if let Some(removed_future_code_hash) = removed_future_code_hash {
						Self::decrease_code_ref(&removed_future_code_hash);
					}
					let removed_code_hash = <Self as Store>::CurrentCodeHash::take(&para);
					if let Some(removed_code_hash) = removed_code_hash {
						Self::note_past_code(para, now, now, removed_code_hash);
		if !outgoing.is_empty() {
			// Filter offboarded parachains from the upcoming upgrades and upgrade cooldowns list.
			//
			// We do it after the offboarding to get away with only a single read/write per list.
			//
			// NOTE both of those iterates over the list and the outgoing. We do not expect either
			//      of these to be large. Thus should be fine.
			<Self as Store>::UpcomingUpgrades::mutate(|upcoming_upgrades| {
				*upcoming_upgrades = mem::take(upcoming_upgrades)
					.into_iter()
					.filter(|&(ref para, _)| !outgoing.contains(para))
					.collect();
			});
			<Self as Store>::UpgradeCooldowns::mutate(|upgrade_cooldowns| {
				*upgrade_cooldowns = mem::take(upgrade_cooldowns)
					.into_iter()
					.filter(|&(ref para, _)| !outgoing.contains(para))
					.collect();
			});
		}

		// Place the new parachains set in storage.
		<Self as Store>::Parachains::set(parachains);

		return outgoing
	// note replacement of the code of para with given `id`, which occured in the
	// context of the given relay-chain block number. provide the replaced code.
	//
	// `at` for para-triggered replacement is the block number of the relay-chain
	// block in whose context the parablock was executed
	// (i.e. number of `relay_parent` in the receipt)
	fn note_past_code(
		id: ParaId,
		at: T::BlockNumber,
		now: T::BlockNumber,
		old_code_hash: ValidationCodeHash,
	) -> Weight {
		<Self as Store>::PastCodeMeta::mutate(&id, |past_meta| {
			past_meta.note_replacement(at, now);
		});

		<Self as Store>::PastCodeHash::insert(&(id, at), old_code_hash);

		// Schedule pruning for this past-code to be removed as soon as it
		// exits the slashing window.
		<Self as Store>::PastCodePruning::mutate(|pruning| {