Newer
Older
// This file is part of Substrate.
// Copyright (C) 2019-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! # Transaction Payment Pallet
//! This pallet provides the basic logic needed to pay the absolute minimum amount needed for a
//! transaction to be included. This includes:
//! - _base fee_: This is the minimum amount a user pays for a transaction. It is declared
//! as a base _weight_ in the runtime and converted to a fee using `WeightToFee`.
//! - _weight fee_: A fee proportional to amount of weight a transaction consumes.
//! - _length fee_: A fee proportional to the encoded length of the transaction.
//! - _tip_: An optional tip. Tip increases the priority of the transaction, giving it a higher
//! chance to be included by the transaction queue.
//!
//! The base fee and adjusted weight and length fees constitute the _inclusion fee_, which is
//! the minimum fee for a transaction to be included in a block.
//!
//! The formula of final fee:
//! ```ignore
//! inclusion_fee = base_fee + length_fee + [targeted_fee_adjustment * weight_fee];
//! final_fee = inclusion_fee + tip;
//! ```
//!
//! - `targeted_fee_adjustment`: This is a multiplier that can tune the final fee based on
//! the congestion of the network.
//!
//! Additionally, this pallet allows one to configure:
//! - The mapping between one unit of weight to one unit of fee via [`Config::WeightToFee`].
//! - A means of updating the fee for the next block, via defining a multiplier, based on the
//! final state of the chain at the end of the previous block. This can be configured via
//! [`Config::FeeMultiplierUpdate`]
//! - How the fees are paid via [`Config::OnChargeTransaction`].
#![cfg_attr(not(feature = "std"), no_std)]
use codec::{Decode, Encode, MaxEncodedLen};
Convert, DispatchInfoOf, Dispatchable, One, PostDispatchInfoOf, SaturatedConversion,
Saturating, SignedExtension, Zero,
transaction_validity::{
TransactionPriority, TransactionValidity, TransactionValidityError, ValidTransaction,
},
FixedPointNumber, FixedPointOperand, FixedU128, Perquintill, RuntimeDebug,
use sp_std::prelude::*;
use frame_support::{
weights::{
DispatchClass, DispatchInfo, GetDispatchInfo, Pays, PostDispatchInfo, Weight,
WeightToFeeCoefficient, WeightToFeePolynomial,
},
};
pub use pallet::*;
pub use types::{FeeDetails, InclusionFee, RuntimeDispatchInfo};
pub type Multiplier = FixedU128;
type BalanceOf<T> = <<T as Config>::OnChargeTransaction as OnChargeTransaction<T>>::Balance;
/// A struct to update the weight multiplier per block. It implements `Convert<Multiplier,
/// Multiplier>`, meaning that it can convert the previous multiplier to the next one. This should
/// be called on `on_finalize` of a block, prior to potentially cleaning the weight data from the
/// system pallet.
///
/// given:
/// s = previous block weight
/// s'= ideal block weight
/// m = maximum block weight
/// diff = (s - s')/m
/// v = 0.00001
/// t1 = (v * diff)
/// t2 = (v * diff)^2 / 2
/// then:
/// next_multiplier = prev_multiplier * (1 + t1 + t2)
///
/// Where `(s', v)` must be given as the `Get` implementation of the `T` generic type. Moreover, `M`
/// must provide the minimum allowed value for the multiplier. Note that a runtime should ensure
/// with tests that the combination of this `M` and `V` is not such that the multiplier can drop to
/// zero and never recover.
///
/// note that `s'` is interpreted as a portion in the _normal transaction_ capacity of the block.
/// For example, given `s' == 0.25` and `AvailableBlockRatio = 0.75`, then the target fullness is
/// _0.25 of the normal capacity_ and _0.1875 of the entire block_.
///
/// This implementation implies the bound:
/// - `v ≤ p / k * (s − s')`
/// - or, solving for `p`: `p >= v * k * (s - s')`
///
/// where `p` is the amount of change over `k` blocks.
///
/// Hence:
/// - in a fully congested chain: `p >= v * k * (1 - s')`.
/// - in an empty chain: `p >= v * k * (-s')`.
///
/// For example, when all blocks are full and there are 28800 blocks per day (default in
/// `substrate-node`) and v == 0.00001, s' == 0.1875, we'd have:
///
/// p >= 0.00001 * 28800 * 0.8125
/// p >= 0.234
///
/// Meaning that fees can change by around ~23% per day, given extreme congestion.
///
/// More info can be found at:
/// <https://research.web3.foundation/en/latest/polkadot/overview/2-token-economics.html>
pub struct TargetedFeeAdjustment<T, S, V, M>(sp_std::marker::PhantomData<(T, S, V, M)>);
/// Something that can convert the current multiplier to the next one.
pub trait MultiplierUpdate: Convert<Multiplier, Multiplier> {
/// Minimum multiplier
fn min() -> Multiplier;
/// Target block saturation level
fn target() -> Perquintill;
/// Variability factor
fn variability() -> Multiplier;
}
impl MultiplierUpdate for () {
fn min() -> Multiplier {
Default::default()
}
fn target() -> Perquintill {
Default::default()
}
fn variability() -> Multiplier {
Default::default()
}
}
impl<T, S, V, M> MultiplierUpdate for TargetedFeeAdjustment<T, S, V, M>
where
T: frame_system::Config,
S: Get<Perquintill>,
V: Get<Multiplier>,
M: Get<Multiplier>,
{
fn min() -> Multiplier {
M::get()
}
fn target() -> Perquintill {
S::get()
}
fn variability() -> Multiplier {
V::get()
}
}
impl<T, S, V, M> Convert<Multiplier, Multiplier> for TargetedFeeAdjustment<T, S, V, M>
where
T: frame_system::Config,
S: Get<Perquintill>,
V: Get<Multiplier>,
M: Get<Multiplier>,
{
fn convert(previous: Multiplier) -> Multiplier {
// Defensive only. The multiplier in storage should always be at most positive. Nonetheless
// we recover here in case of errors, because any value below this would be stale and can
// never change.
let min_multiplier = M::get();
let previous = previous.max(min_multiplier);
let weights = T::BlockWeights::get();
// the computed ratio is only among the normal class.
let normal_max_weight = weights
.get(DispatchClass::Normal)
.max_total
.unwrap_or_else(|| weights.max_block);
let current_block_weight = <frame_system::Pallet<T>>::block_weight();
let normal_block_weight =
*current_block_weight.get(DispatchClass::Normal).min(&normal_max_weight);
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
let s = S::get();
let v = V::get();
let target_weight = (s * normal_max_weight) as u128;
let block_weight = normal_block_weight as u128;
// determines if the first_term is positive
let positive = block_weight >= target_weight;
let diff_abs = block_weight.max(target_weight) - block_weight.min(target_weight);
// defensive only, a test case assures that the maximum weight diff can fit in Multiplier
// without any saturation.
let diff = Multiplier::saturating_from_rational(diff_abs, normal_max_weight.max(1));
let diff_squared = diff.saturating_mul(diff);
let v_squared_2 = v.saturating_mul(v) / Multiplier::saturating_from_integer(2);
let first_term = v.saturating_mul(diff);
let second_term = v_squared_2.saturating_mul(diff_squared);
if positive {
let excess = first_term.saturating_add(second_term).saturating_mul(previous);
previous.saturating_add(excess).max(min_multiplier)
} else {
// Defensive-only: first_term > second_term. Safe subtraction.
let negative = first_term.saturating_sub(second_term).saturating_mul(previous);
previous.saturating_sub(negative).max(min_multiplier)
}
}
}
/// Storage releases of the pallet.
#[derive(Encode, Decode, Clone, Copy, PartialEq, Eq, RuntimeDebug, TypeInfo, MaxEncodedLen)]
/// Original version of the pallet.
V1Ancient,
/// One that bumps the usage to FixedU128 from FixedI128.
V2,
}
impl Default for Releases {
fn default() -> Self {
Releases::V1Ancient
}
}
#[frame_support::pallet]
pub mod pallet {
use frame_support::pallet_prelude::*;
use frame_system::pallet_prelude::*;
#[pallet::pallet]
#[pallet::generate_store(pub(super) trait Store)]
pub struct Pallet<T>(_);
#[pallet::config]
pub trait Config: frame_system::Config {
/// Handler for withdrawing, refunding and depositing the transaction fee.
/// Transaction fees are withdrawn before the transaction is executed.
/// After the transaction was executed the transaction weight can be
/// adjusted, depending on the used resources by the transaction. If the
/// transaction weight is lower than expected, parts of the transaction fee
/// might be refunded. In the end the fees can be deposited.
type OnChargeTransaction: OnChargeTransaction<Self>;
/// The fee to be paid for making a transaction; the per-byte portion.
#[pallet::constant]
type TransactionByteFee: Get<BalanceOf<Self>>;
/// A fee mulitplier for `Operational` extrinsics to compute "virtual tip" to boost their
/// `priority`
///
/// This value is multipled by the `final_fee` to obtain a "virtual tip" that is later
/// added to a tip component in regular `priority` calculations.
/// It means that a `Normal` transaction can front-run a similarly-sized `Operational`
/// extrinsic (with no tip), by including a tip value greater than the virtual tip.
///
/// ```rust,ignore
/// // For `Normal`
/// let priority = priority_calc(tip);
///
/// // For `Operational`
/// let virtual_tip = (inclusion_fee + tip) * OperationalFeeMultiplier;
/// let priority = priority_calc(tip + virtual_tip);
/// ```
///
/// Note that since we use `final_fee` the multiplier applies also to the regular `tip`
/// sent with the transaction. So, not only does the transaction get a priority bump based
/// on the `inclusion_fee`, but we also amplify the impact of tips applied to `Operational`
/// transactions.
#[pallet::constant]
type OperationalFeeMultiplier: Get<u8>;
/// Convert a weight value into a deductible fee based on the currency type.
type WeightToFee: WeightToFeePolynomial<Balance = BalanceOf<Self>>;
/// Update the multiplier of the next block, based on the previous block's weight.
type FeeMultiplierUpdate: MultiplierUpdate;
#[pallet::extra_constants]
impl<T: Config> Pallet<T> {
#[pallet::constant_name(WeightToFee)]
/// The polynomial that is applied in order to derive fee from weight.
fn weight_to_fee_polynomial() -> Vec<WeightToFeeCoefficient<BalanceOf<T>>> {
T::WeightToFee::polynomial().to_vec()
}
}
#[pallet::type_value]
pub fn NextFeeMultiplierOnEmpty() -> Multiplier {
Multiplier::saturating_from_integer(1)
}
#[pallet::storage]
#[pallet::getter(fn next_fee_multiplier)]
pub type NextFeeMultiplier<T: Config> =
StorageValue<_, Multiplier, ValueQuery, NextFeeMultiplierOnEmpty>;
#[pallet::storage]
pub(super) type StorageVersion<T: Config> = StorageValue<_, Releases, ValueQuery>;
#[pallet::genesis_config]
pub struct GenesisConfig;
#[cfg(feature = "std")]
impl Default for GenesisConfig {
fn default() -> Self {
Self
}
}
#[pallet::genesis_build]
impl<T: Config> GenesisBuild<T> for GenesisConfig {
fn build(&self) {
StorageVersion::<T>::put(Releases::V2);
}
}
#[pallet::hooks]
impl<T: Config> Hooks<BlockNumberFor<T>> for Pallet<T> {
fn on_finalize(_: T::BlockNumber) {
<NextFeeMultiplier<T>>::mutate(|fm| {
*fm = T::FeeMultiplierUpdate::convert(*fm);
fn integrity_test() {
// given weight == u64, we build multipliers from `diff` of two weight values, which can
// at most be maximum block weight. Make sure that this can fit in a multiplier without
// loss.
assert!(
<Multiplier as sp_runtime::traits::Bounded>::max_value() >=
Multiplier::checked_from_integer::<u128>(
T::BlockWeights::get().max_block.try_into().unwrap()
)
.unwrap(),
let target = T::FeeMultiplierUpdate::target() *
T::BlockWeights::get().get(DispatchClass::Normal).max_total.expect(
"Setting `max_total` for `Normal` dispatch class is not compatible with \
`transaction-payment` pallet.",
// add 1 percent;
let addition = target / 100;
if addition == 0 {
// this is most likely because in a test setup we set everything to ().
#[cfg(any(feature = "std", test))]
sp_io::TestExternalities::new_empty().execute_with(|| {
// This is the minimum value of the multiplier. Make sure that if we collapse to
// this value, we can recover with a reasonable amount of traffic. For this test we
// assert that if we collapse to minimum, the trend will be positive with a weight
// value which is 1% more than the target.
let min_value = T::FeeMultiplierUpdate::min();
let target = target + addition;
<frame_system::Pallet<T>>::set_block_consumed_resources(target, 0);
let next = T::FeeMultiplierUpdate::convert(min_value);
assert!(
next > min_value,
"The minimum bound of the multiplier is too low. When \
block saturation is more than target by 1% and multiplier is minimal then \
the multiplier doesn't increase."
);
});
impl<T: Config> Pallet<T>
where
BalanceOf<T>: FixedPointOperand,
{
/// Query the data that we know about the fee of a given `call`.
///
/// This pallet is not and cannot be aware of the internals of a signed extension, for example
/// a tip. It only interprets the extrinsic as some encoded value and accounts for its weight
/// and length, the runtime's extrinsic base weight, and the current fee multiplier.
///
/// All dispatchables must be annotated with weight and will have some fee info. This function
/// always returns.
pub fn query_info<Extrinsic: sp_runtime::traits::Extrinsic + GetDispatchInfo>(
unchecked_extrinsic: Extrinsic,
len: u32,
) -> RuntimeDispatchInfo<BalanceOf<T>>
T::Call: Dispatchable<Info = DispatchInfo>,
// NOTE: we can actually make it understand `ChargeTransactionPayment`, but would be some
// hassle for sure. We have to make it aware of the index of `ChargeTransactionPayment` in
// `Extra`. Alternatively, we could actually execute the tx's per-dispatch and record the
// balance of the sender before and after the pipeline.. but this is way too much hassle for
// a very very little potential gain in the future.
let dispatch_info = <Extrinsic as GetDispatchInfo>::get_dispatch_info(&unchecked_extrinsic);
let partial_fee = if unchecked_extrinsic.is_signed().unwrap_or(false) {
Self::compute_fee(len, &dispatch_info, 0u32.into())
} else {
// Unsigned extrinsics have no partial fee.
0u32.into()
};
let DispatchInfo { weight, class, .. } = dispatch_info;
RuntimeDispatchInfo { weight, class, partial_fee }
}
/// Query the detailed fee of a given `call`.
pub fn query_fee_details<Extrinsic: sp_runtime::traits::Extrinsic + GetDispatchInfo>(
unchecked_extrinsic: Extrinsic,
len: u32,
) -> FeeDetails<BalanceOf<T>>
where
T::Call: Dispatchable<Info = DispatchInfo>,
{
let dispatch_info = <Extrinsic as GetDispatchInfo>::get_dispatch_info(&unchecked_extrinsic);
let tip = 0u32.into();
if unchecked_extrinsic.is_signed().unwrap_or(false) {
Self::compute_fee_details(len, &dispatch_info, tip)
} else {
// Unsigned extrinsics have no inclusion fee.
FeeDetails { inclusion_fee: None, tip }
}
/// Compute the final fee value for a particular transaction.
pub fn compute_fee(len: u32, info: &DispatchInfoOf<T::Call>, tip: BalanceOf<T>) -> BalanceOf<T>
where
T::Call: Dispatchable<Info = DispatchInfo>,
Self::compute_fee_details(len, info, tip).final_fee()
}
/// Compute the fee details for a particular transaction.
pub fn compute_fee_details(
len: u32,
info: &DispatchInfoOf<T::Call>,
tip: BalanceOf<T>,
) -> FeeDetails<BalanceOf<T>>
where
T::Call: Dispatchable<Info = DispatchInfo>,
{
Self::compute_fee_raw(len, info.weight, tip, info.pays_fee, info.class)
}
/// Compute the actual post dispatch fee for a particular transaction.
///
/// Identical to `compute_fee` with the only difference that the post dispatch corrected
/// weight is used for the weight fee calculation.
pub fn compute_actual_fee(
len: u32,
info: &DispatchInfoOf<T::Call>,
post_info: &PostDispatchInfoOf<T::Call>,
tip: BalanceOf<T>,
) -> BalanceOf<T>
where
T::Call: Dispatchable<Info = DispatchInfo, PostInfo = PostDispatchInfo>,
{
Self::compute_actual_fee_details(len, info, post_info, tip).final_fee()
}
/// Compute the actual post dispatch fee details for a particular transaction.
pub fn compute_actual_fee_details(
len: u32,
info: &DispatchInfoOf<T::Call>,
post_info: &PostDispatchInfoOf<T::Call>,
tip: BalanceOf<T>,
) -> FeeDetails<BalanceOf<T>>
where
T::Call: Dispatchable<Info = DispatchInfo, PostInfo = PostDispatchInfo>,
{
Self::compute_fee_raw(
len,
post_info.calc_actual_weight(info),
tip,
post_info.pays_fee(info),
info.class,
)
}
fn compute_fee_raw(
len: u32,
weight: Weight,
tip: BalanceOf<T>,
pays_fee: Pays,
class: DispatchClass,
if pays_fee == Pays::Yes {
let len = <BalanceOf<T>>::from(len);
let per_byte = T::TransactionByteFee::get();
// length fee. this is not adjusted.
let fixed_len_fee = per_byte.saturating_mul(len);
// the adjustable part of the fee.
let unadjusted_weight_fee = Self::weight_to_fee(weight);
let multiplier = Self::next_fee_multiplier();
// final adjusted weight fee.
let adjusted_weight_fee = multiplier.saturating_mul_int(unadjusted_weight_fee);
let base_fee = Self::weight_to_fee(T::BlockWeights::get().get(class).base_extrinsic);
FeeDetails {
inclusion_fee: Some(InclusionFee {
base_fee,
len_fee: fixed_len_fee,
FeeDetails { inclusion_fee: None, tip }
fn weight_to_fee(weight: Weight) -> BalanceOf<T> {
// cap the weight to the maximum defined in runtime, otherwise it will be the
// `Bounded` maximum of its data type, which is not desired.
let capped_weight = weight.min(T::BlockWeights::get().max_block);
T::WeightToFee::calc(&capped_weight)
impl<T> Convert<Weight, BalanceOf<T>> for Pallet<T>
where
BalanceOf<T>: FixedPointOperand,
{
/// Compute the fee for the specified weight.
///
/// This fee is already adjusted by the per block fee adjustment factor and is therefore the
/// share that the weight contributes to the overall fee of a transaction. It is mainly
/// for informational purposes and not used in the actual fee calculation.
fn convert(weight: Weight) -> BalanceOf<T> {
<NextFeeMultiplier<T>>::get().saturating_mul_int(Self::weight_to_fee(weight))
/// Require the transactor pay for themselves and maybe include a tip to gain additional priority
/// in the queue.
///
/// # Transaction Validity
///
/// This extension sets the `priority` field of `TransactionValidity` depending on the amount
/// of tip being paid per weight unit.
///
/// Operational transactions will receive an additional priority bump, so that they are normally
/// considered before regular transactions.
#[derive(Encode, Decode, Clone, Eq, PartialEq, TypeInfo)]
#[scale_info(skip_type_params(T))]
pub struct ChargeTransactionPayment<T: Config>(#[codec(compact)] BalanceOf<T>);
impl<T: Config> ChargeTransactionPayment<T>
where
T::Call: Dispatchable<Info = DispatchInfo, PostInfo = PostDispatchInfo>,
BalanceOf<T>: Send + Sync + FixedPointOperand,
{
/// utility constructor. Used only in client/factory code.
pub fn from(fee: BalanceOf<T>) -> Self {
Self(fee)
}
/// Returns the tip as being choosen by the transaction sender.
pub fn tip(&self) -> BalanceOf<T> {
self.0
}
fn withdraw_fee(
&self,
who: &T::AccountId,
info: &DispatchInfoOf<T::Call>,
len: usize,
) -> Result<
(
BalanceOf<T>,
<<T as Config>::OnChargeTransaction as OnChargeTransaction<T>>::LiquidityInfo,
),
TransactionValidityError,
> {
let fee = Pallet::<T>::compute_fee(len as u32, info, tip);
<<T as Config>::OnChargeTransaction as OnChargeTransaction<T>>::withdraw_fee(
who, call, info, fee, tip,
)
.map(|i| (fee, i))
/// Get an appropriate priority for a transaction with the given `DispatchInfo`, encoded length
/// and user-included tip.
/// The priority is based on the amount of `tip` the user is willing to pay per unit of either
/// `weight` or `length`, depending which one is more limitting. For `Operational` extrinsics
/// we add a "virtual tip" to the calculations.
/// The formula should simply be `tip / bounded_{weight|length}`, but since we are using
/// integer division, we have no guarantees it's going to give results in any reasonable
/// range (might simply end up being zero). Hence we use a scaling factor:
/// `tip * (max_block_{weight|length} / bounded_{weight|length})`, since given current
/// state of-the-art blockchains, number of per-block transactions is expected to be in a
/// range reasonable enough to not saturate the `Balance` type while multiplying by the tip.
pub fn get_priority(
info: &DispatchInfoOf<T::Call>,
len: usize,
tip: BalanceOf<T>,
final_fee: BalanceOf<T>,
) -> TransactionPriority {
// Calculate how many such extrinsics we could fit into an empty block and take
// the limitting factor.
let max_block_weight = T::BlockWeights::get().max_block;
let max_block_length = *T::BlockLength::get().max.get(info.class) as u64;
let bounded_weight = info.weight.max(1).min(max_block_weight);
let bounded_length = (len as u64).max(1).min(max_block_length);
let max_tx_per_block_weight = max_block_weight / bounded_weight;
let max_tx_per_block_length = max_block_length / bounded_length;
// Given our current knowledge this value is going to be in a reasonable range - i.e.
// less than 10^9 (2^30), so multiplying by the `tip` value is unlikely to overflow the
// balance type. We still use saturating ops obviously, but the point is to end up with some
// `priority` distribution instead of having all transactions saturate the priority.
let max_tx_per_block = max_tx_per_block_length
.min(max_tx_per_block_weight)
.saturated_into::<BalanceOf<T>>();
let max_reward = |val: BalanceOf<T>| val.saturating_mul(max_tx_per_block);
// To distribute no-tip transactions a little bit, we increase the tip value by one.
// This means that given two transactions without a tip, smaller one will be preferred.
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
let scaled_tip = max_reward(tip);
match info.class {
DispatchClass::Normal => {
// For normal class we simply take the `tip_per_weight`.
scaled_tip
},
DispatchClass::Mandatory => {
// Mandatory extrinsics should be prohibited (e.g. by the [`CheckWeight`]
// extensions), but just to be safe let's return the same priority as `Normal` here.
scaled_tip
},
DispatchClass::Operational => {
// A "virtual tip" value added to an `Operational` extrinsic.
// This value should be kept high enough to allow `Operational` extrinsics
// to get in even during congestion period, but at the same time low
// enough to prevent a possible spam attack by sending invalid operational
// extrinsics which push away regular transactions from the pool.
let fee_multiplier = T::OperationalFeeMultiplier::get().saturated_into();
let virtual_tip = final_fee.saturating_mul(fee_multiplier);
let scaled_virtual_tip = max_reward(virtual_tip);
scaled_tip.saturating_add(scaled_virtual_tip)
},
}
.saturated_into::<TransactionPriority>()
impl<T: Config> sp_std::fmt::Debug for ChargeTransactionPayment<T> {
fn fmt(&self, f: &mut sp_std::fmt::Formatter) -> sp_std::fmt::Result {
write!(f, "ChargeTransactionPayment<{:?}>", self.0)
}
fn fmt(&self, _: &mut sp_std::fmt::Formatter) -> sp_std::fmt::Result {
impl<T: Config> SignedExtension for ChargeTransactionPayment<T>
where
BalanceOf<T>: Send + Sync + From<u64> + FixedPointOperand,
T::Call: Dispatchable<Info = DispatchInfo, PostInfo = PostDispatchInfo>,
const IDENTIFIER: &'static str = "ChargeTransactionPayment";
type AccountId = T::AccountId;
type Call = T::Call;
type AdditionalSigned = ();
type Pre = (
// tip
BalanceOf<T>,
// who paid the fee - this is an option to allow for a Default impl.
Self::AccountId,
// imbalance resulting from withdrawing the fee
<<T as Config>::OnChargeTransaction as OnChargeTransaction<T>>::LiquidityInfo,
fn additional_signed(&self) -> sp_std::result::Result<(), TransactionValidityError> {
Ok(())
}
fn validate(
&self,
who: &Self::AccountId,
len: usize,
) -> TransactionValidity {
let (final_fee, _) = self.withdraw_fee(who, call, info, len)?;
let tip = self.0;
Ok(ValidTransaction {
priority: Self::get_priority(info, len, tip, final_fee),
..Default::default()
})
fn pre_dispatch(
self,
who: &Self::AccountId,
info: &DispatchInfoOf<Self::Call>,
) -> Result<Self::Pre, TransactionValidityError> {
let (_fee, imbalance) = self.withdraw_fee(who, call, info, len)?;
Ok((self.0, who.clone(), imbalance))
}
fn post_dispatch(
info: &DispatchInfoOf<Self::Call>,
post_info: &PostDispatchInfoOf<Self::Call>,
len: usize,
_result: &DispatchResult,
) -> Result<(), TransactionValidityError> {
if let Some((tip, who, imbalance)) = maybe_pre {
let actual_fee = Pallet::<T>::compute_actual_fee(len as u32, info, post_info, tip);
T::OnChargeTransaction::correct_and_deposit_fee(
&who, info, post_info, actual_fee, tip, imbalance,
)?;
}
impl<T: Config, AnyCall: GetDispatchInfo + Encode> EstimateCallFee<AnyCall, BalanceOf<T>>
for Pallet<T>
where
BalanceOf<T>: FixedPointOperand,
T::Call: Dispatchable<Info = DispatchInfo, PostInfo = PostDispatchInfo>,
{
fn estimate_call_fee(call: &AnyCall, post_info: PostDispatchInfo) -> BalanceOf<T> {
let len = call.encoded_size() as u32;
let info = call.get_dispatch_info();
Self::compute_actual_fee(len, &info, &post_info, Zero::zero())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate as pallet_transaction_payment;
use std::cell::RefCell;
use smallvec::smallvec;
use sp_core::H256;
use sp_runtime::{
testing::{Header, TestXt},
traits::{BlakeTwo256, IdentityLookup, One},
transaction_validity::InvalidTransaction,
Perbill,
};
Falco Hirschenberger
committed
assert_noop, assert_ok, parameter_types,
traits::{ConstU32, ConstU64, Currency, Imbalance, OnUnbalanced},
DispatchClass, DispatchInfo, GetDispatchInfo, PostDispatchInfo, Weight,
WeightToFeeCoefficient, WeightToFeeCoefficients, WeightToFeePolynomial,
use frame_system as system;
use pallet_balances::Call as BalancesCall;
type UncheckedExtrinsic = frame_system::mocking::MockUncheckedExtrinsic<Runtime>;
type Block = frame_system::mocking::MockBlock<Runtime>;
frame_support::construct_runtime!(
pub enum Runtime where
Block = Block,
NodeBlock = Block,
UncheckedExtrinsic = UncheckedExtrinsic,
{
System: system::{Pallet, Call, Config, Storage, Event<T>},
Balances: pallet_balances::{Pallet, Call, Storage, Config<T>, Event<T>},
TransactionPayment: pallet_transaction_payment::{Pallet, Storage},
const CALL: &<Runtime as frame_system::Config>::Call =
&Call::Balances(BalancesCall::transfer { dest: 2, value: 69 });
thread_local! {
static EXTRINSIC_BASE_WEIGHT: RefCell<u64> = RefCell::new(0);
}
pub struct BlockWeights;
impl Get<frame_system::limits::BlockWeights> for BlockWeights {
fn get() -> frame_system::limits::BlockWeights {
frame_system::limits::BlockWeights::builder()
.base_block(0)
.for_class(DispatchClass::all(), |weights| {
weights.base_extrinsic = EXTRINSIC_BASE_WEIGHT.with(|v| *v.borrow()).into();
})
.for_class(DispatchClass::non_mandatory(), |weights| {
weights.max_total = 1024.into();
})
.build_or_panic()
}
}
pub static TransactionByteFee: u64 = 1;
pub static WeightToFee: u64 = 1;
pub static OperationalFeeMultiplier: u8 = 5;
impl frame_system::Config for Runtime {
type BaseCallFilter = frame_support::traits::Everything;
type BlockWeights = BlockWeights;
type BlockLength = ();
type DbWeight = ();
type Origin = Origin;
type Index = u64;
type BlockNumber = u64;
type Hash = H256;
type Hashing = BlakeTwo256;
type AccountId = u64;
type Lookup = IdentityLookup<Self::AccountId>;
type Header = Header;
type Event = Event;
type BlockHashCount = ConstU64<250>;
type PalletInfo = PalletInfo;
type AccountData = pallet_balances::AccountData<u64>;
type SystemWeightInfo = ();
type OnSetCode = ();
type MaxConsumers = ConstU32<16>;
impl pallet_balances::Config for Runtime {
type Event = Event;
type ExistentialDeposit = ConstU64<1>;
type MaxReserves = ();
type ReserveIdentifier = [u8; 8];
type WeightInfo = ();
impl WeightToFeePolynomial for WeightToFee {
type Balance = u64;
fn polynomial() -> WeightToFeeCoefficients<Self::Balance> {
smallvec![WeightToFeeCoefficient {
degree: 1,
coeff_frac: Perbill::zero(),
coeff_integer: WEIGHT_TO_FEE.with(|v| *v.borrow()),
negative: false,
}]
thread_local! {
static TIP_UNBALANCED_AMOUNT: RefCell<u64> = RefCell::new(0);
static FEE_UNBALANCED_AMOUNT: RefCell<u64> = RefCell::new(0);
}
pub struct DealWithFees;
impl OnUnbalanced<pallet_balances::NegativeImbalance<Runtime>> for DealWithFees {
fn on_unbalanceds<B>(
mut fees_then_tips: impl Iterator<Item = pallet_balances::NegativeImbalance<Runtime>>,
) {
if let Some(fees) = fees_then_tips.next() {
FEE_UNBALANCED_AMOUNT.with(|a| *a.borrow_mut() += fees.peek());
if let Some(tips) = fees_then_tips.next() {
TIP_UNBALANCED_AMOUNT.with(|a| *a.borrow_mut() += tips.peek());
}
}
}
}
type OnChargeTransaction = CurrencyAdapter<Balances, DealWithFees>;
type TransactionByteFee = TransactionByteFee;
type OperationalFeeMultiplier = OperationalFeeMultiplier;
type WeightToFee = WeightToFee;
type FeeMultiplierUpdate = ();
}
pub struct ExtBuilder {
balance_factor: u64,
base_weight: u64,
}
impl Default for ExtBuilder {
fn default() -> Self {
Self { balance_factor: 1, base_weight: 0, byte_fee: 1, weight_to_fee: 1 }
}
}
impl ExtBuilder {
pub fn base_weight(mut self, base_weight: u64) -> Self {
self.base_weight = base_weight;
self
}
pub fn byte_fee(mut self, byte_fee: u64) -> Self {
self.byte_fee = byte_fee;
self
}
pub fn weight_fee(mut self, weight_to_fee: u64) -> Self {
self.weight_to_fee = weight_to_fee;
self
}
pub fn balance_factor(mut self, factor: u64) -> Self {
self.balance_factor = factor;
self
}
fn set_constants(&self) {
EXTRINSIC_BASE_WEIGHT.with(|v| *v.borrow_mut() = self.base_weight);
TRANSACTION_BYTE_FEE.with(|v| *v.borrow_mut() = self.byte_fee);
WEIGHT_TO_FEE.with(|v| *v.borrow_mut() = self.weight_to_fee);
}
pub fn build(self) -> sp_io::TestExternalities {
let mut t = frame_system::GenesisConfig::default().build_storage::<Runtime>().unwrap();
pallet_balances::GenesisConfig::<Runtime> {
balances: if self.balance_factor > 0 {
vec![
(1, 10 * self.balance_factor),
(2, 20 * self.balance_factor),
(3, 30 * self.balance_factor),
(4, 40 * self.balance_factor),
(5, 50 * self.balance_factor),
(6, 60 * self.balance_factor),
]
} else {
vec![]
},
}
.assimilate_storage(&mut t)
.unwrap();
t.into()
}
}
/// create a transaction info struct from weight. Handy to avoid building the whole struct.
pub fn info_from_weight(w: Weight) -> DispatchInfo {
// pays_fee: Pays::Yes -- class: DispatchClass::Normal
DispatchInfo { weight: w, ..Default::default() }
fn post_info_from_weight(w: Weight) -> PostDispatchInfo {
PostDispatchInfo { actual_weight: Some(w), pays_fee: Default::default() }
}
fn post_info_from_pays(p: Pays) -> PostDispatchInfo {
PostDispatchInfo { actual_weight: None, pays_fee: p }
}
fn default_post_info() -> PostDispatchInfo {
PostDispatchInfo { actual_weight: None, pays_fee: Default::default() }
#[test]
fn signed_extension_transaction_payment_work() {