Newer
Older
// This file is part of Substrate.
// Copyright (C) 2019-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! # Transaction Payment Pallet
//! This pallet provides the basic logic needed to pay the absolute minimum amount needed for a
//! transaction to be included. This includes:
//! - _base fee_: This is the minimum amount a user pays for a transaction. It is declared
//! as a base _weight_ in the runtime and converted to a fee using `WeightToFee`.
//! - _weight fee_: A fee proportional to amount of weight a transaction consumes.
//! - _length fee_: A fee proportional to the encoded length of the transaction.
//! - _tip_: An optional tip. Tip increases the priority of the transaction, giving it a higher
//! chance to be included by the transaction queue.
//!
//! The base fee and adjusted weight and length fees constitute the _inclusion fee_, which is
//! the minimum fee for a transaction to be included in a block.
//!
//! The formula of final fee:
//! ```ignore
//! inclusion_fee = base_fee + length_fee + [targeted_fee_adjustment * weight_fee];
//! final_fee = inclusion_fee + tip;
//! ```
//!
//! - `targeted_fee_adjustment`: This is a multiplier that can tune the final fee based on
//! the congestion of the network.
//!
//! Additionally, this pallet allows one to configure:
//! - The mapping between one unit of weight to one unit of fee via [`Config::WeightToFee`].
//! - A means of updating the fee for the next block, via defining a multiplier, based on the
//! final state of the chain at the end of the previous block. This can be configured via
//! [`Config::FeeMultiplierUpdate`]
//! - How the fees are paid via [`Config::OnChargeTransaction`].
#![cfg_attr(not(feature = "std"), no_std)]
use codec::{Decode, Encode};
Convert, DispatchInfoOf, Dispatchable, PostDispatchInfoOf, SaturatedConversion, Saturating,
transaction_validity::{
TransactionPriority, TransactionValidity, TransactionValidityError, ValidTransaction,
},
FixedPointNumber, FixedPointOperand, FixedU128, Perquintill, RuntimeDebug,
use sp_std::prelude::*;
use frame_support::{
weights::{
DispatchClass, DispatchInfo, GetDispatchInfo, Pays, PostDispatchInfo, Weight,
WeightToFeeCoefficient, WeightToFeePolynomial,
},
};
pub use pallet::*;
pub use types::{FeeDetails, InclusionFee, RuntimeDispatchInfo};
pub type Multiplier = FixedU128;
type BalanceOf<T> = <<T as Config>::OnChargeTransaction as OnChargeTransaction<T>>::Balance;
/// A struct to update the weight multiplier per block. It implements `Convert<Multiplier,
/// Multiplier>`, meaning that it can convert the previous multiplier to the next one. This should
/// be called on `on_finalize` of a block, prior to potentially cleaning the weight data from the
/// system pallet.
///
/// given:
/// s = previous block weight
/// s'= ideal block weight
/// m = maximum block weight
/// diff = (s - s')/m
/// v = 0.00001
/// t1 = (v * diff)
/// t2 = (v * diff)^2 / 2
/// then:
/// next_multiplier = prev_multiplier * (1 + t1 + t2)
///
/// Where `(s', v)` must be given as the `Get` implementation of the `T` generic type. Moreover, `M`
/// must provide the minimum allowed value for the multiplier. Note that a runtime should ensure
/// with tests that the combination of this `M` and `V` is not such that the multiplier can drop to
/// zero and never recover.
///
/// note that `s'` is interpreted as a portion in the _normal transaction_ capacity of the block.
/// For example, given `s' == 0.25` and `AvailableBlockRatio = 0.75`, then the target fullness is
/// _0.25 of the normal capacity_ and _0.1875 of the entire block_.
///
/// This implementation implies the bound:
/// - `v ≤ p / k * (s − s')`
/// - or, solving for `p`: `p >= v * k * (s - s')`
///
/// where `p` is the amount of change over `k` blocks.
///
/// Hence:
/// - in a fully congested chain: `p >= v * k * (1 - s')`.
/// - in an empty chain: `p >= v * k * (-s')`.
///
/// For example, when all blocks are full and there are 28800 blocks per day (default in
/// `substrate-node`) and v == 0.00001, s' == 0.1875, we'd have:
///
/// p >= 0.00001 * 28800 * 0.8125
/// p >= 0.234
///
/// Meaning that fees can change by around ~23% per day, given extreme congestion.
///
/// More info can be found at:
/// <https://w3f-research.readthedocs.io/en/latest/polkadot/Token%20Economics.html>
pub struct TargetedFeeAdjustment<T, S, V, M>(sp_std::marker::PhantomData<(T, S, V, M)>);
/// Something that can convert the current multiplier to the next one.
pub trait MultiplierUpdate: Convert<Multiplier, Multiplier> {
/// Minimum multiplier
fn min() -> Multiplier;
/// Target block saturation level
fn target() -> Perquintill;
/// Variability factor
fn variability() -> Multiplier;
}
impl MultiplierUpdate for () {
fn min() -> Multiplier {
Default::default()
}
fn target() -> Perquintill {
Default::default()
}
fn variability() -> Multiplier {
Default::default()
}
}
impl<T, S, V, M> MultiplierUpdate for TargetedFeeAdjustment<T, S, V, M>
where
T: frame_system::Config,
S: Get<Perquintill>,
V: Get<Multiplier>,
M: Get<Multiplier>,
{
fn min() -> Multiplier {
M::get()
}
fn target() -> Perquintill {
S::get()
}
fn variability() -> Multiplier {
V::get()
}
}
impl<T, S, V, M> Convert<Multiplier, Multiplier> for TargetedFeeAdjustment<T, S, V, M>
where
T: frame_system::Config,
S: Get<Perquintill>,
V: Get<Multiplier>,
M: Get<Multiplier>,
{
fn convert(previous: Multiplier) -> Multiplier {
// Defensive only. The multiplier in storage should always be at most positive. Nonetheless
// we recover here in case of errors, because any value below this would be stale and can
// never change.
let min_multiplier = M::get();
let previous = previous.max(min_multiplier);
let weights = T::BlockWeights::get();
// the computed ratio is only among the normal class.
let normal_max_weight = weights
.get(DispatchClass::Normal)
.max_total
.unwrap_or_else(|| weights.max_block);
let current_block_weight = <frame_system::Pallet<T>>::block_weight();
let normal_block_weight =
*current_block_weight.get(DispatchClass::Normal).min(&normal_max_weight);
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
let s = S::get();
let v = V::get();
let target_weight = (s * normal_max_weight) as u128;
let block_weight = normal_block_weight as u128;
// determines if the first_term is positive
let positive = block_weight >= target_weight;
let diff_abs = block_weight.max(target_weight) - block_weight.min(target_weight);
// defensive only, a test case assures that the maximum weight diff can fit in Multiplier
// without any saturation.
let diff = Multiplier::saturating_from_rational(diff_abs, normal_max_weight.max(1));
let diff_squared = diff.saturating_mul(diff);
let v_squared_2 = v.saturating_mul(v) / Multiplier::saturating_from_integer(2);
let first_term = v.saturating_mul(diff);
let second_term = v_squared_2.saturating_mul(diff_squared);
if positive {
let excess = first_term.saturating_add(second_term).saturating_mul(previous);
previous.saturating_add(excess).max(min_multiplier)
} else {
// Defensive-only: first_term > second_term. Safe subtraction.
let negative = first_term.saturating_sub(second_term).saturating_mul(previous);
previous.saturating_sub(negative).max(min_multiplier)
}
}
}
/// Storage releases of the pallet.
#[derive(Encode, Decode, Clone, Copy, PartialEq, Eq, RuntimeDebug)]
enum Releases {
/// Original version of the pallet.
V1Ancient,
/// One that bumps the usage to FixedU128 from FixedI128.
V2,
}
impl Default for Releases {
fn default() -> Self {
Releases::V1Ancient
}
}
#[frame_support::pallet]
pub mod pallet {
use frame_support::pallet_prelude::*;
use frame_system::pallet_prelude::*;
#[pallet::pallet]
#[pallet::generate_store(pub(super) trait Store)]
pub struct Pallet<T>(_);
#[pallet::config]
pub trait Config: frame_system::Config {
/// Handler for withdrawing, refunding and depositing the transaction fee.
/// Transaction fees are withdrawn before the transaction is executed.
/// After the transaction was executed the transaction weight can be
/// adjusted, depending on the used resources by the transaction. If the
/// transaction weight is lower than expected, parts of the transaction fee
/// might be refunded. In the end the fees can be deposited.
type OnChargeTransaction: OnChargeTransaction<Self>;
/// The fee to be paid for making a transaction; the per-byte portion.
#[pallet::constant]
type TransactionByteFee: Get<BalanceOf<Self>>;
/// Convert a weight value into a deductible fee based on the currency type.
type WeightToFee: WeightToFeePolynomial<Balance = BalanceOf<Self>>;
/// Update the multiplier of the next block, based on the previous block's weight.
type FeeMultiplierUpdate: MultiplierUpdate;
#[pallet::extra_constants]
impl<T: Config> Pallet<T> {
// TODO: rename to snake case after https://github.com/paritytech/substrate/issues/8826 fixed.
#[allow(non_snake_case)]
/// The polynomial that is applied in order to derive fee from weight.
fn WeightToFee() -> Vec<WeightToFeeCoefficient<BalanceOf<T>>> {
T::WeightToFee::polynomial().to_vec()
}
}
#[pallet::type_value]
pub fn NextFeeMultiplierOnEmpty() -> Multiplier {
Multiplier::saturating_from_integer(1)
}
#[pallet::storage]
#[pallet::getter(fn next_fee_multiplier)]
pub type NextFeeMultiplier<T: Config> =
StorageValue<_, Multiplier, ValueQuery, NextFeeMultiplierOnEmpty>;
#[pallet::storage]
pub(super) type StorageVersion<T: Config> = StorageValue<_, Releases, ValueQuery>;
#[pallet::genesis_config]
pub struct GenesisConfig;
#[cfg(feature = "std")]
impl Default for GenesisConfig {
fn default() -> Self {
Self
}
}
#[pallet::genesis_build]
impl<T: Config> GenesisBuild<T> for GenesisConfig {
fn build(&self) {
StorageVersion::<T>::put(Releases::V2);
}
}
#[pallet::hooks]
impl<T: Config> Hooks<BlockNumberFor<T>> for Pallet<T> {
fn on_finalize(_: T::BlockNumber) {
<NextFeeMultiplier<T>>::mutate(|fm| {
*fm = T::FeeMultiplierUpdate::convert(*fm);
fn integrity_test() {
// given weight == u64, we build multipliers from `diff` of two weight values, which can
// at most be maximum block weight. Make sure that this can fit in a multiplier without
// loss.
use sp_std::convert::TryInto;
assert!(
<Multiplier as sp_runtime::traits::Bounded>::max_value() >=
Multiplier::checked_from_integer(
T::BlockWeights::get().max_block.try_into().unwrap()
)
.unwrap(),
// This is the minimum value of the multiplier. Make sure that if we collapse to this
// value, we can recover with a reasonable amount of traffic. For this test we assert
// that if we collapse to minimum, the trend will be positive with a weight value
// which is 1% more than the target.
let min_value = T::FeeMultiplierUpdate::min();
let mut target = T::FeeMultiplierUpdate::target() *
T::BlockWeights::get().get(DispatchClass::Normal).max_total.expect(
"Setting `max_total` for `Normal` dispatch class is not compatible with \
`transaction-payment` pallet.",
// add 1 percent;
let addition = target / 100;
if addition == 0 {
// this is most likely because in a test setup we set everything to ().
#[cfg(any(feature = "std", test))]
sp_io::TestExternalities::new_empty().execute_with(|| {
<frame_system::Pallet<T>>::set_block_consumed_resources(target, 0);
let next = T::FeeMultiplierUpdate::convert(min_value);
assert!(
next > min_value,
"The minimum bound of the multiplier is too low. When \
block saturation is more than target by 1% and multiplier is minimal then \
the multiplier doesn't increase."
);
});
impl<T: Config> Pallet<T>
where
BalanceOf<T>: FixedPointOperand,
{
/// Query the data that we know about the fee of a given `call`.
///
/// This pallet is not and cannot be aware of the internals of a signed extension, for example
/// a tip. It only interprets the extrinsic as some encoded value and accounts for its weight
/// and length, the runtime's extrinsic base weight, and the current fee multiplier.
///
/// All dispatchables must be annotated with weight and will have some fee info. This function
/// always returns.
pub fn query_info<Extrinsic: GetDispatchInfo>(
unchecked_extrinsic: Extrinsic,
len: u32,
) -> RuntimeDispatchInfo<BalanceOf<T>>
T::Call: Dispatchable<Info = DispatchInfo>,
// NOTE: we can actually make it understand `ChargeTransactionPayment`, but would be some
// hassle for sure. We have to make it aware of the index of `ChargeTransactionPayment` in
// `Extra`. Alternatively, we could actually execute the tx's per-dispatch and record the
// balance of the sender before and after the pipeline.. but this is way too much hassle for
// a very very little potential gain in the future.
let dispatch_info = <Extrinsic as GetDispatchInfo>::get_dispatch_info(&unchecked_extrinsic);
let partial_fee = Self::compute_fee(len, &dispatch_info, 0u32.into());
let DispatchInfo { weight, class, .. } = dispatch_info;
RuntimeDispatchInfo { weight, class, partial_fee }
}
/// Query the detailed fee of a given `call`.
pub fn query_fee_details<Extrinsic: GetDispatchInfo>(
unchecked_extrinsic: Extrinsic,
len: u32,
) -> FeeDetails<BalanceOf<T>>
where
T::Call: Dispatchable<Info = DispatchInfo>,
{
let dispatch_info = <Extrinsic as GetDispatchInfo>::get_dispatch_info(&unchecked_extrinsic);
Self::compute_fee_details(len, &dispatch_info, 0u32.into())
}
/// Compute the final fee value for a particular transaction.
pub fn compute_fee(len: u32, info: &DispatchInfoOf<T::Call>, tip: BalanceOf<T>) -> BalanceOf<T>
where
T::Call: Dispatchable<Info = DispatchInfo>,
Self::compute_fee_details(len, info, tip).final_fee()
}
/// Compute the fee details for a particular transaction.
pub fn compute_fee_details(
len: u32,
info: &DispatchInfoOf<T::Call>,
tip: BalanceOf<T>,
) -> FeeDetails<BalanceOf<T>>
where
T::Call: Dispatchable<Info = DispatchInfo>,
{
Self::compute_fee_raw(len, info.weight, tip, info.pays_fee, info.class)
}
/// Compute the actual post dispatch fee for a particular transaction.
///
/// Identical to `compute_fee` with the only difference that the post dispatch corrected
/// weight is used for the weight fee calculation.
pub fn compute_actual_fee(
len: u32,
info: &DispatchInfoOf<T::Call>,
post_info: &PostDispatchInfoOf<T::Call>,
tip: BalanceOf<T>,
) -> BalanceOf<T>
where
T::Call: Dispatchable<Info = DispatchInfo, PostInfo = PostDispatchInfo>,
{
Self::compute_actual_fee_details(len, info, post_info, tip).final_fee()
}
/// Compute the actual post dispatch fee details for a particular transaction.
pub fn compute_actual_fee_details(
len: u32,
info: &DispatchInfoOf<T::Call>,
post_info: &PostDispatchInfoOf<T::Call>,
tip: BalanceOf<T>,
) -> FeeDetails<BalanceOf<T>>
where
T::Call: Dispatchable<Info = DispatchInfo, PostInfo = PostDispatchInfo>,
{
Self::compute_fee_raw(
len,
post_info.calc_actual_weight(info),
tip,
post_info.pays_fee(info),
info.class,
)
}
fn compute_fee_raw(
len: u32,
weight: Weight,
tip: BalanceOf<T>,
pays_fee: Pays,
class: DispatchClass,
if pays_fee == Pays::Yes {
let len = <BalanceOf<T>>::from(len);
let per_byte = T::TransactionByteFee::get();
// length fee. this is not adjusted.
let fixed_len_fee = per_byte.saturating_mul(len);
// the adjustable part of the fee.
let unadjusted_weight_fee = Self::weight_to_fee(weight);
let multiplier = Self::next_fee_multiplier();
// final adjusted weight fee.
let adjusted_weight_fee = multiplier.saturating_mul_int(unadjusted_weight_fee);
let base_fee = Self::weight_to_fee(T::BlockWeights::get().get(class).base_extrinsic);
FeeDetails {
inclusion_fee: Some(InclusionFee {
base_fee,
len_fee: fixed_len_fee,
FeeDetails { inclusion_fee: None, tip }
fn weight_to_fee(weight: Weight) -> BalanceOf<T> {
// cap the weight to the maximum defined in runtime, otherwise it will be the
// `Bounded` maximum of its data type, which is not desired.
let capped_weight = weight.min(T::BlockWeights::get().max_block);
T::WeightToFee::calc(&capped_weight)
impl<T> Convert<Weight, BalanceOf<T>> for Pallet<T>
where
BalanceOf<T>: FixedPointOperand,
{
/// Compute the fee for the specified weight.
///
/// This fee is already adjusted by the per block fee adjustment factor and is therefore the
/// share that the weight contributes to the overall fee of a transaction. It is mainly
/// for informational purposes and not used in the actual fee calculation.
fn convert(weight: Weight) -> BalanceOf<T> {
<NextFeeMultiplier<T>>::get().saturating_mul_int(Self::weight_to_fee(weight))
/// Require the transactor pay for themselves and maybe include a tip to gain additional priority
/// in the queue.
#[derive(Encode, Decode, Clone, Eq, PartialEq)]
pub struct ChargeTransactionPayment<T: Config>(#[codec(compact)] BalanceOf<T>);
impl<T: Config> ChargeTransactionPayment<T>
where
T::Call: Dispatchable<Info = DispatchInfo, PostInfo = PostDispatchInfo>,
BalanceOf<T>: Send + Sync + FixedPointOperand,
{
/// utility constructor. Used only in client/factory code.
pub fn from(fee: BalanceOf<T>) -> Self {
Self(fee)
}
/// Returns the tip as being choosen by the transaction sender.
pub fn tip(&self) -> BalanceOf<T> {
self.0
}
fn withdraw_fee(
&self,
who: &T::AccountId,
info: &DispatchInfoOf<T::Call>,
len: usize,
) -> Result<
(
BalanceOf<T>,
<<T as Config>::OnChargeTransaction as OnChargeTransaction<T>>::LiquidityInfo,
),
TransactionValidityError,
> {
let fee = Pallet::<T>::compute_fee(len as u32, info, tip);
<<T as Config>::OnChargeTransaction as OnChargeTransaction<T>>::withdraw_fee(
who, call, info, fee, tip,
)
.map(|i| (fee, i))
/// Get an appropriate priority for a transaction with the given length and info.
///
/// This will try and optimise the `fee/weight` `fee/length`, whichever is consuming more of the
/// maximum corresponding limit.
///
/// For example, if a transaction consumed 1/4th of the block length and half of the weight, its
/// final priority is `fee * min(2, 4) = fee * 2`. If it consumed `1/4th` of the block length
/// and the entire block weight `(1/1)`, its priority is `fee * min(1, 4) = fee * 1`. This means
/// that the transaction which consumes more resources (either length or weight) with the same
/// `fee` ends up having lower priority.
fn get_priority(
len: usize,
info: &DispatchInfoOf<T::Call>,
final_fee: BalanceOf<T>,
) -> TransactionPriority {
let weight_saturation = T::BlockWeights::get().max_block / info.weight.max(1);
let max_block_length = *T::BlockLength::get().max.get(DispatchClass::Normal);
let len_saturation = max_block_length as u64 / (len as u64).max(1);
let coefficient: BalanceOf<T> =
weight_saturation.min(len_saturation).saturated_into::<BalanceOf<T>>();
final_fee.saturating_mul(coefficient).saturated_into::<TransactionPriority>()
}
impl<T: Config> sp_std::fmt::Debug for ChargeTransactionPayment<T> {
fn fmt(&self, f: &mut sp_std::fmt::Formatter) -> sp_std::fmt::Result {
write!(f, "ChargeTransactionPayment<{:?}>", self.0)
}
fn fmt(&self, _: &mut sp_std::fmt::Formatter) -> sp_std::fmt::Result {
impl<T: Config> SignedExtension for ChargeTransactionPayment<T>
where
BalanceOf<T>: Send + Sync + From<u64> + FixedPointOperand,
T::Call: Dispatchable<Info = DispatchInfo, PostInfo = PostDispatchInfo>,
const IDENTIFIER: &'static str = "ChargeTransactionPayment";
type AccountId = T::AccountId;
type Call = T::Call;
type AdditionalSigned = ();
type Pre = (
// tip
BalanceOf<T>,
// who paid the fee
Self::AccountId,
// imbalance resulting from withdrawing the fee
<<T as Config>::OnChargeTransaction as OnChargeTransaction<T>>::LiquidityInfo,
fn additional_signed(&self) -> sp_std::result::Result<(), TransactionValidityError> {
Ok(())
}
fn validate(
&self,
who: &Self::AccountId,
len: usize,
) -> TransactionValidity {
let (fee, _) = self.withdraw_fee(who, call, info, len)?;
Ok(ValidTransaction { priority: Self::get_priority(len, info, fee), ..Default::default() })
fn pre_dispatch(
self,
who: &Self::AccountId,
info: &DispatchInfoOf<Self::Call>,
) -> Result<Self::Pre, TransactionValidityError> {
let (_fee, imbalance) = self.withdraw_fee(who, call, info, len)?;
Ok((self.0, who.clone(), imbalance))
}
fn post_dispatch(
pre: Self::Pre,
info: &DispatchInfoOf<Self::Call>,
post_info: &PostDispatchInfoOf<Self::Call>,
len: usize,
_result: &DispatchResult,
) -> Result<(), TransactionValidityError> {
let (tip, who, imbalance) = pre;
let actual_fee = Pallet::<T>::compute_actual_fee(len as u32, info, post_info, tip);
T::OnChargeTransaction::correct_and_deposit_fee(
&who, info, post_info, actual_fee, tip, imbalance,
)?;
impl<T: Config, AnyCall: GetDispatchInfo + Encode> EstimateCallFee<AnyCall, BalanceOf<T>>
for Pallet<T>
where
BalanceOf<T>: FixedPointOperand,
T::Call: Dispatchable<Info = DispatchInfo, PostInfo = PostDispatchInfo>,
{
fn estimate_call_fee(call: &AnyCall, post_info: PostDispatchInfo) -> BalanceOf<T> {
let len = call.encoded_size() as u32;
let info = call.get_dispatch_info();
Self::compute_actual_fee(len, &info, &post_info, Zero::zero())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate as pallet_transaction_payment;
use std::cell::RefCell;
use smallvec::smallvec;
use sp_core::H256;
use sp_runtime::{
testing::{Header, TestXt},
traits::{BlakeTwo256, IdentityLookup, One},
transaction_validity::InvalidTransaction,
Perbill,
};
Falco Hirschenberger
committed
assert_noop, assert_ok, parameter_types,
traits::{Currency, Imbalance, OnUnbalanced},
DispatchClass, DispatchInfo, GetDispatchInfo, PostDispatchInfo, Weight,
WeightToFeeCoefficient, WeightToFeeCoefficients, WeightToFeePolynomial,
use frame_system as system;
use pallet_balances::Call as BalancesCall;
type UncheckedExtrinsic = frame_system::mocking::MockUncheckedExtrinsic<Runtime>;
type Block = frame_system::mocking::MockBlock<Runtime>;
frame_support::construct_runtime!(
pub enum Runtime where
Block = Block,
NodeBlock = Block,
UncheckedExtrinsic = UncheckedExtrinsic,
{
System: system::{Pallet, Call, Config, Storage, Event<T>},
Balances: pallet_balances::{Pallet, Call, Storage, Config<T>, Event<T>},
TransactionPayment: pallet_transaction_payment::{Pallet, Storage},
const CALL: &<Runtime as frame_system::Config>::Call =
&Call::Balances(BalancesCall::transfer(2, 69));
thread_local! {
static EXTRINSIC_BASE_WEIGHT: RefCell<u64> = RefCell::new(0);
}
pub struct BlockWeights;
impl Get<frame_system::limits::BlockWeights> for BlockWeights {
fn get() -> frame_system::limits::BlockWeights {
frame_system::limits::BlockWeights::builder()
.base_block(0)
.for_class(DispatchClass::all(), |weights| {
weights.base_extrinsic = EXTRINSIC_BASE_WEIGHT.with(|v| *v.borrow()).into();
})
.for_class(DispatchClass::non_mandatory(), |weights| {
weights.max_total = 1024.into();
})
.build_or_panic()
}
}
parameter_types! {
pub const BlockHashCount: u64 = 250;
pub static TransactionByteFee: u64 = 1;
pub static WeightToFee: u64 = 1;
impl frame_system::Config for Runtime {
type BaseCallFilter = frame_support::traits::Everything;
type BlockWeights = BlockWeights;
type BlockLength = ();
type DbWeight = ();
type Origin = Origin;
type Index = u64;
type BlockNumber = u64;
type Hash = H256;
type Hashing = BlakeTwo256;
type AccountId = u64;
type Lookup = IdentityLookup<Self::AccountId>;
type Header = Header;
type Event = Event;
type BlockHashCount = BlockHashCount;
type Version = ();
type PalletInfo = PalletInfo;
type AccountData = pallet_balances::AccountData<u64>;
type SystemWeightInfo = ();
type OnSetCode = ();
}
parameter_types! {
pub const ExistentialDeposit: u64 = 1;
impl pallet_balances::Config for Runtime {
type Event = Event;
type DustRemoval = ();
type ExistentialDeposit = ExistentialDeposit;
type MaxReserves = ();
type ReserveIdentifier = [u8; 8];
type WeightInfo = ();
impl WeightToFeePolynomial for WeightToFee {
type Balance = u64;
fn polynomial() -> WeightToFeeCoefficients<Self::Balance> {
smallvec![WeightToFeeCoefficient {
degree: 1,
coeff_frac: Perbill::zero(),
coeff_integer: WEIGHT_TO_FEE.with(|v| *v.borrow()),
negative: false,
}]
thread_local! {
static TIP_UNBALANCED_AMOUNT: RefCell<u64> = RefCell::new(0);
static FEE_UNBALANCED_AMOUNT: RefCell<u64> = RefCell::new(0);
}
pub struct DealWithFees;
impl OnUnbalanced<pallet_balances::NegativeImbalance<Runtime>> for DealWithFees {
fn on_unbalanceds<B>(
mut fees_then_tips: impl Iterator<Item = pallet_balances::NegativeImbalance<Runtime>>,
) {
if let Some(fees) = fees_then_tips.next() {
FEE_UNBALANCED_AMOUNT.with(|a| *a.borrow_mut() += fees.peek());
if let Some(tips) = fees_then_tips.next() {
TIP_UNBALANCED_AMOUNT.with(|a| *a.borrow_mut() += tips.peek());
}
}
}
}
type OnChargeTransaction = CurrencyAdapter<Balances, DealWithFees>;
type TransactionByteFee = TransactionByteFee;
type WeightToFee = WeightToFee;
type FeeMultiplierUpdate = ();
}
pub struct ExtBuilder {
balance_factor: u64,
base_weight: u64,
}
impl Default for ExtBuilder {
fn default() -> Self {
Self { balance_factor: 1, base_weight: 0, byte_fee: 1, weight_to_fee: 1 }
}
}
impl ExtBuilder {
pub fn base_weight(mut self, base_weight: u64) -> Self {
self.base_weight = base_weight;
self
}
pub fn byte_fee(mut self, byte_fee: u64) -> Self {
self.byte_fee = byte_fee;
self
}
pub fn weight_fee(mut self, weight_to_fee: u64) -> Self {
self.weight_to_fee = weight_to_fee;
self
}
pub fn balance_factor(mut self, factor: u64) -> Self {
self.balance_factor = factor;
self
}
fn set_constants(&self) {
EXTRINSIC_BASE_WEIGHT.with(|v| *v.borrow_mut() = self.base_weight);
TRANSACTION_BYTE_FEE.with(|v| *v.borrow_mut() = self.byte_fee);
WEIGHT_TO_FEE.with(|v| *v.borrow_mut() = self.weight_to_fee);
}
pub fn build(self) -> sp_io::TestExternalities {
let mut t = frame_system::GenesisConfig::default().build_storage::<Runtime>().unwrap();
pallet_balances::GenesisConfig::<Runtime> {
balances: if self.balance_factor > 0 {
vec![
(1, 10 * self.balance_factor),
(2, 20 * self.balance_factor),
(3, 30 * self.balance_factor),
(4, 40 * self.balance_factor),
(5, 50 * self.balance_factor),
(6, 60 * self.balance_factor),
]
} else {
vec![]
},
}
.assimilate_storage(&mut t)
.unwrap();
t.into()
}
}
/// create a transaction info struct from weight. Handy to avoid building the whole struct.
pub fn info_from_weight(w: Weight) -> DispatchInfo {
// pays_fee: Pays::Yes -- class: DispatchClass::Normal
DispatchInfo { weight: w, ..Default::default() }
fn post_info_from_weight(w: Weight) -> PostDispatchInfo {
PostDispatchInfo { actual_weight: Some(w), pays_fee: Default::default() }
}
fn post_info_from_pays(p: Pays) -> PostDispatchInfo {
PostDispatchInfo { actual_weight: None, pays_fee: p }
}
fn default_post_info() -> PostDispatchInfo {
PostDispatchInfo { actual_weight: None, pays_fee: Default::default() }
#[test]
fn signed_extension_transaction_payment_work() {
ExtBuilder::default()
.balance_factor(10)
.base_weight(5)
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
.execute_with(|| {
let len = 10;
let pre = ChargeTransactionPayment::<Runtime>::from(0)
.pre_dispatch(&1, CALL, &info_from_weight(5), len)
.unwrap();
assert_eq!(Balances::free_balance(1), 100 - 5 - 5 - 10);
assert_ok!(ChargeTransactionPayment::<Runtime>::post_dispatch(
pre,
&info_from_weight(5),
&default_post_info(),
len,
&Ok(())
));
assert_eq!(Balances::free_balance(1), 100 - 5 - 5 - 10);
assert_eq!(FEE_UNBALANCED_AMOUNT.with(|a| a.borrow().clone()), 5 + 5 + 10);
assert_eq!(TIP_UNBALANCED_AMOUNT.with(|a| a.borrow().clone()), 0);
FEE_UNBALANCED_AMOUNT.with(|a| *a.borrow_mut() = 0);
let pre = ChargeTransactionPayment::<Runtime>::from(5 /* tipped */)
.pre_dispatch(&2, CALL, &info_from_weight(100), len)
.unwrap();
assert_eq!(Balances::free_balance(2), 200 - 5 - 10 - 100 - 5);
assert_ok!(ChargeTransactionPayment::<Runtime>::post_dispatch(
pre,
&info_from_weight(100),
&post_info_from_weight(50),
len,
&Ok(())
));
assert_eq!(Balances::free_balance(2), 200 - 5 - 10 - 50 - 5);
assert_eq!(FEE_UNBALANCED_AMOUNT.with(|a| a.borrow().clone()), 5 + 10 + 50);
assert_eq!(TIP_UNBALANCED_AMOUNT.with(|a| a.borrow().clone()), 5);
});
#[test]
fn signed_extension_transaction_payment_multiplied_refund_works() {
ExtBuilder::default()
.balance_factor(10)
.base_weight(5)
.execute_with(|| {
let len = 10;
<NextFeeMultiplier<Runtime>>::put(Multiplier::saturating_from_rational(3, 2));
let pre = ChargeTransactionPayment::<Runtime>::from(5 /* tipped */)
.pre_dispatch(&2, CALL, &info_from_weight(100), len)
.unwrap();
// 5 base fee, 10 byte fee, 3/2 * 100 weight fee, 5 tip
assert_eq!(Balances::free_balance(2), 200 - 5 - 10 - 150 - 5);
assert_ok!(ChargeTransactionPayment::<Runtime>::post_dispatch(
pre,
&info_from_weight(100),
&post_info_from_weight(50),
len,
&Ok(())
));
// 75 (3/2 of the returned 50 units of weight) is refunded
assert_eq!(Balances::free_balance(2), 200 - 5 - 10 - 75 - 5);
});
#[test]
fn signed_extension_transaction_payment_is_bounded() {
ExtBuilder::default().balance_factor(1000).byte_fee(0).build().execute_with(|| {
assert_ok!(ChargeTransactionPayment::<Runtime>::from(0).pre_dispatch(
&1,
CALL,
&info_from_weight(Weight::max_value()),
10
));
// fee will be proportional to what is the actual maximum weight in the runtime.
assert_eq!(
Balances::free_balance(&1),
(10000 - <Runtime as frame_system::Config>::BlockWeights::get().max_block) as u64
);
});
}
#[test]
fn signed_extension_allows_free_transactions() {
ExtBuilder::default()
.base_weight(100)
.balance_factor(0)
.build()
.execute_with(|| {
// 1 ain't have a penny.
assert_eq!(Balances::free_balance(1), 0);