Newer
Older
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! The inclusion pallet is responsible for inclusion and availability of scheduled parachains.
//! It is responsible for carrying candidates from being backable to being backed, and then from
//! backed to included.
configuration::{self, HostConfiguration},
Daan van der Plas
committed
disputes, dmp, hrmp,
paras::{self, UpgradeStrategy},
scheduler,
shared::{self, AllowedRelayParentsTracker},
util::make_persisted_validation_data_with_parent,
};
use bitvec::{order::Lsb0 as BitOrderLsb0, vec::BitVec};
use frame_support::{
defensive,
pallet_prelude::*,
traits::{EnqueueMessage, Footprint, QueueFootprint},
use frame_system::pallet_prelude::*;
use pallet_message_queue::OnQueueChanged;
use parity_scale_codec::{Decode, Encode};
effective_minimum_backing_votes, supermajority_threshold, well_known_keys, BackedCandidate,
CandidateCommitments, CandidateDescriptor, CandidateHash, CandidateReceipt,
CommittedCandidateReceipt, CoreIndex, GroupIndex, Hash, HeadData, Id as ParaId,
SignedAvailabilityBitfields, SigningContext, UpwardMessage, ValidatorId, ValidatorIndex,
ValidityAttestation,
};
use scale_info::TypeInfo;
use sp_runtime::{traits::One, DispatchError, SaturatedConversion, Saturating};
#[cfg(feature = "std")]
use sp_std::fmt;
use sp_std::{
collections::{btree_map::BTreeMap, btree_set::BTreeSet, vec_deque::VecDeque},
prelude::*,
};
pub use pallet::*;
#[cfg(test)]
pub(crate) mod tests;
#[cfg(feature = "runtime-benchmarks")]
mod benchmarking;
pub mod migration;
pub trait WeightInfo {
fn receive_upward_messages(i: u32) -> Weight;
}
pub struct TestWeightInfo;
impl WeightInfo for TestWeightInfo {
fn receive_upward_messages(_: u32) -> Weight {
Weight::MAX
}
}
impl WeightInfo for () {
fn receive_upward_messages(_: u32) -> Weight {
Weight::zero()
}
}
/// Maximum value that `config.max_upward_message_size` can be set to.
///
/// This is used for benchmarking sanely bounding relevant storage items. It is expected from the
/// `configuration` pallet to check these values before setting.
pub const MAX_UPWARD_MESSAGE_SIZE_BOUND: u32 = 128 * 1024;
/// A backed candidate pending availability.
#[derive(Encode, Decode, PartialEq, TypeInfo, Clone)]
#[cfg_attr(test, derive(Debug))]
pub struct CandidatePendingAvailability<H, N> {
/// The availability core this is assigned to.
core: CoreIndex,
/// The candidate hash.
hash: CandidateHash,
/// The candidate descriptor.
descriptor: CandidateDescriptor<H>,
/// The candidate commitments.
commitments: CandidateCommitments,
/// The received availability votes. One bit per validator.
availability_votes: BitVec<u8, BitOrderLsb0>,
/// The backers of the candidate pending availability.
/// The block number of the relay-parent of the receipt.
relay_parent_number: N,
/// The block number of the relay-chain block this was backed in.
backed_in_number: N,
/// The group index backing this block.
backing_group: GroupIndex,
}
impl<H, N> CandidatePendingAvailability<H, N> {
/// Get the availability votes on the candidate.
pub(crate) fn availability_votes(&self) -> &BitVec<u8, BitOrderLsb0> {
&self.availability_votes
}
/// Get the relay-chain block number this was backed in.
pub(crate) fn backed_in_number(&self) -> N
where
N: Clone,
{
self.backed_in_number.clone()
}
/// Get the core index.
pub(crate) fn core_occupied(&self) -> CoreIndex {
}
/// Get the candidate hash.
pub(crate) fn candidate_hash(&self) -> CandidateHash {
self.hash
}
/// Get the candidate descriptor.
pub(crate) fn candidate_descriptor(&self) -> &CandidateDescriptor<H> {
&self.descriptor
}
/// Get the candidate commitments.
pub(crate) fn candidate_commitments(&self) -> &CandidateCommitments {
&self.commitments
}
/// Get the candidate's relay parent's number.
pub(crate) fn relay_parent_number(&self) -> N
where
N: Clone,
{
self.relay_parent_number.clone()
}
/// Get the candidate backing group.
pub(crate) fn backing_group(&self) -> GroupIndex {
self.backing_group
}
/// Get the candidate's backers.
pub(crate) fn backers(&self) -> &BitVec<u8, BitOrderLsb0> {
&self.backers
}
#[cfg(any(feature = "runtime-benchmarks", test))]
pub(crate) fn new(
core: CoreIndex,
hash: CandidateHash,
descriptor: CandidateDescriptor<H>,
commitments: CandidateCommitments,
availability_votes: BitVec<u8, BitOrderLsb0>,
backers: BitVec<u8, BitOrderLsb0>,
relay_parent_number: N,
backed_in_number: N,
backing_group: GroupIndex,
) -> Self {
Self {
core,
hash,
descriptor,
commitments,
availability_votes,
backers,
relay_parent_number,
backed_in_number,
backing_group,
}
}
}
/// A hook for applying validator rewards
pub trait RewardValidators {
// Reward the validators with the given indices for issuing backing statements.
fn reward_backing(validators: impl IntoIterator<Item = ValidatorIndex>);
// Reward the validators with the given indices for issuing availability bitfields.
// Validators are sent to this hook when they have contributed to the availability
// of a candidate by setting a bit in their bitfield.
fn reward_bitfields(validators: impl IntoIterator<Item = ValidatorIndex>);
}
/// Helper return type for `process_candidates`.
#[derive(Encode, Decode, PartialEq, TypeInfo)]
#[cfg_attr(test, derive(Debug))]
pub(crate) struct ProcessedCandidates<H = Hash> {
pub(crate) core_indices: Vec<(CoreIndex, ParaId)>,
pub(crate) candidate_receipt_with_backing_validator_indices:
Vec<(CandidateReceipt<H>, Vec<(ValidatorIndex, ValidityAttestation)>)>,
}
impl<H> Default for ProcessedCandidates<H> {
fn default() -> Self {
Self {
core_indices: Vec::new(),
candidate_receipt_with_backing_validator_indices: Vec::new(),
}
}
}
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/// Reads the footprint of queues for a specific origin type.
pub trait QueueFootprinter {
type Origin;
fn message_count(origin: Self::Origin) -> u64;
}
impl QueueFootprinter for () {
type Origin = UmpQueueId;
fn message_count(_: Self::Origin) -> u64 {
0
}
}
/// Aggregate message origin for the `MessageQueue` pallet.
///
/// Can be extended to serve further use-cases besides just UMP. Is stored in storage, so any change
/// to existing values will require a migration.
#[derive(Encode, Decode, Clone, MaxEncodedLen, Eq, PartialEq, RuntimeDebug, TypeInfo)]
pub enum AggregateMessageOrigin {
/// Inbound upward message.
#[codec(index = 0)]
Ump(UmpQueueId),
}
/// Identifies a UMP queue inside the `MessageQueue` pallet.
///
/// It is written in verbose form since future variants like `Here` and `Bridged` are already
/// forseeable.
#[derive(Encode, Decode, Clone, MaxEncodedLen, Eq, PartialEq, RuntimeDebug, TypeInfo)]
pub enum UmpQueueId {
/// The message originated from this parachain.
#[codec(index = 0)]
Para(ParaId),
}
#[cfg(feature = "runtime-benchmarks")]
impl From<u32> for AggregateMessageOrigin {
fn from(n: u32) -> Self {
// Some dummy for the benchmarks.
Self::Ump(UmpQueueId::Para(n.into()))
}
}
/// The maximal length of a UMP message.
pub type MaxUmpMessageLenOf<T> =
<<T as Config>::MessageQueue as EnqueueMessage<AggregateMessageOrigin>>::MaxMessageLen;
#[frame_support::pallet]
pub mod pallet {
use super::*;
const STORAGE_VERSION: StorageVersion = StorageVersion::new(1);
#[pallet::without_storage_info]
#[pallet::storage_version(STORAGE_VERSION)]
pub struct Pallet<T>(_);
#[pallet::config]
pub trait Config:
frame_system::Config
+ shared::Config
+ paras::Config
+ dmp::Config
+ hrmp::Config
+ configuration::Config
type RuntimeEvent: From<Event<Self>> + IsType<<Self as frame_system::Config>::RuntimeEvent>;
type DisputesHandler: disputes::DisputesHandler<BlockNumberFor<Self>>;
type RewardValidators: RewardValidators;
/// The system message queue.
///
/// The message queue provides general queueing and processing functionality. Currently it
/// replaces the old `UMP` dispatch queue. Other use-cases can be implemented as well by
/// adding new variants to `AggregateMessageOrigin`.
type MessageQueue: EnqueueMessage<AggregateMessageOrigin>;
/// Weight info for the calls of this pallet.
type WeightInfo: WeightInfo;
}
#[pallet::event]
#[pallet::generate_deposit(pub(super) fn deposit_event)]
pub enum Event<T: Config> {
/// A candidate was backed. `[candidate, head_data]`
CandidateBacked(CandidateReceipt<T::Hash>, HeadData, CoreIndex, GroupIndex),
/// A candidate was included. `[candidate, head_data]`
CandidateIncluded(CandidateReceipt<T::Hash>, HeadData, CoreIndex, GroupIndex),
/// A candidate timed out. `[candidate, head_data]`
CandidateTimedOut(CandidateReceipt<T::Hash>, HeadData, CoreIndex),
/// Some upward messages have been received and will be processed.
UpwardMessagesReceived { from: ParaId, count: u32 },
}
#[pallet::error]
pub enum Error<T> {
/// Validator index out of bounds.
ValidatorIndexOutOfBounds,
/// Candidate submitted but para not scheduled.
UnscheduledCandidate,
/// Head data exceeds the configured maximum.
HeadDataTooLarge,
/// Code upgrade prematurely.
PrematureCodeUpgrade,
/// Output code is too large
NewCodeTooLarge,
/// The candidate's relay-parent was not allowed. Either it was
/// not recent enough or it didn't advance based on the last parachain block.
DisallowedRelayParent,
/// Failed to compute group index for the core: either it's out of bounds
/// or the relay parent doesn't belong to the current session.
InvalidAssignment,
/// Invalid group index in core assignment.
InvalidGroupIndex,
/// Insufficient (non-majority) backing.
InsufficientBacking,
/// Invalid (bad signature, unknown validator, etc.) backing.
InvalidBacking,
/// Collator did not sign PoV.
NotCollatorSigned,
/// The validation data hash does not match expected.
ValidationDataHashMismatch,
/// The downward message queue is not processed correctly.
IncorrectDownwardMessageHandling,
/// At least one upward message sent does not pass the acceptance criteria.
InvalidUpwardMessages,
/// The candidate didn't follow the rules of HRMP watermark advancement.
HrmpWatermarkMishandling,
/// The HRMP messages sent by the candidate is not valid.
InvalidOutboundHrmp,
/// The validation code hash of the candidate is not valid.
InvalidValidationCodeHash,
/// The `para_head` hash in the candidate descriptor doesn't match the hash of the actual
/// para head in the commitments.
ParaHeadMismatch,
}
/// Candidates pending availability by `ParaId`. They form a chain starting from the latest
/// included head of the para.
/// Use a different prefix post-migration to v1, since the v0 `PendingAvailability` storage
/// would otherwise have the exact same prefix which could cause undefined behaviour when doing
/// the migration.
#[pallet::storage_prefix = "V1"]
pub(crate) type PendingAvailability<T: Config> = StorageMap<
_,
Twox64Concat,
ParaId,
VecDeque<CandidatePendingAvailability<T::Hash, BlockNumberFor<T>>>,
>;
#[pallet::call]
impl<T: Config> Pallet<T> {}
}
const LOG_TARGET: &str = "runtime::inclusion";
/// The reason that a candidate's outputs were rejected for.
#[derive(derive_more::From)]
#[cfg_attr(feature = "std", derive(Debug))]
enum AcceptanceCheckErr<BlockNumber> {
HeadDataTooLarge,
/// Code upgrades are not permitted at the current time.
PrematureCodeUpgrade,
/// The new runtime blob is too large.
NewCodeTooLarge,
/// The candidate violated this DMP acceptance criteria.
ProcessedDownwardMessages(dmp::ProcessedDownwardMessagesAcceptanceErr),
/// The candidate violated this UMP acceptance criteria.
UpwardMessages(UmpAcceptanceCheckErr),
/// The candidate violated this HRMP watermark acceptance criteria.
HrmpWatermark(hrmp::HrmpWatermarkAcceptanceErr<BlockNumber>),
/// The candidate violated this outbound HRMP acceptance criteria.
OutboundHrmp(hrmp::OutboundHrmpAcceptanceErr),
}
/// An error returned by [`Pallet::check_upward_messages`] that indicates a violation of one of
/// acceptance criteria rules.
#[cfg_attr(test, derive(PartialEq))]
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
/// The maximal number of messages that can be submitted in one batch was exceeded.
MoreMessagesThanPermitted { sent: u32, permitted: u32 },
/// The maximal size of a single message was exceeded.
MessageSize { idx: u32, msg_size: u32, max_size: u32 },
/// The allowed number of messages in the queue was exceeded.
CapacityExceeded { count: u64, limit: u64 },
/// The allowed combined message size in the queue was exceeded.
TotalSizeExceeded { total_size: u64, limit: u64 },
/// A para-chain cannot send UMP messages while it is offboarding.
IsOffboarding,
}
#[cfg(feature = "std")]
impl fmt::Debug for UmpAcceptanceCheckErr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match *self {
UmpAcceptanceCheckErr::MoreMessagesThanPermitted { sent, permitted } => write!(
fmt,
"more upward messages than permitted by config ({} > {})",
sent, permitted,
),
UmpAcceptanceCheckErr::MessageSize { idx, msg_size, max_size } => write!(
fmt,
"upward message idx {} larger than permitted by config ({} > {})",
idx, msg_size, max_size,
),
UmpAcceptanceCheckErr::CapacityExceeded { count, limit } => write!(
fmt,
"the ump queue would have more items than permitted by config ({} > {})",
count, limit,
),
UmpAcceptanceCheckErr::TotalSizeExceeded { total_size, limit } => write!(
fmt,
"the ump queue would have grown past the max size permitted by config ({} > {})",
total_size, limit,
),
Daan van der Plas
committed
UmpAcceptanceCheckErr::IsOffboarding => {
write!(fmt, "upward message rejected because the para is off-boarding")
},
impl<T: Config> Pallet<T> {
/// Block initialization logic, called by initializer.
pub(crate) fn initializer_initialize(_now: BlockNumberFor<T>) -> Weight {
}
/// Block finalization logic, called by initializer.
pub(crate) fn initializer_finalize() {}
/// Handle an incoming session change.
pub(crate) fn initializer_on_new_session(
_notification: &crate::initializer::SessionChangeNotification<BlockNumberFor<T>>,
outgoing_paras: &[ParaId],
) {
// unlike most drain methods, drained elements are not cleared on `Drop` of the iterator
// and require consumption.
for _ in <PendingAvailability<T>>::drain() {}
Self::cleanup_outgoing_ump_dispatch_queues(outgoing_paras);
}
pub(crate) fn cleanup_outgoing_ump_dispatch_queues(outgoing: &[ParaId]) {
for outgoing_para in outgoing {
Self::cleanup_outgoing_ump_dispatch_queue(*outgoing_para);
}
}
pub(crate) fn cleanup_outgoing_ump_dispatch_queue(para: ParaId) {
T::MessageQueue::sweep_queue(AggregateMessageOrigin::Ump(UmpQueueId::Para(para)));
}
/// Extract the freed cores based on cores that became available.
///
/// Bitfields are expected to have been sanitized already. E.g. via `sanitize_bitfields`!
///
/// Updates storage items `PendingAvailability`.
/// Returns a `Vec` of `CandidateHash`es and their respective `AvailabilityCore`s that became
/// available, and cores free.
pub(crate) fn update_pending_availability_and_get_freed_cores(
validators: &[ValidatorId],
signed_bitfields: SignedAvailabilityBitfields,
) -> Vec<(CoreIndex, CandidateHash)> {
let threshold = availability_threshold(validators.len());
let mut votes_per_core: BTreeMap<CoreIndex, BTreeSet<ValidatorIndex>> = BTreeMap::new();
for (checked_bitfield, validator_index) in
signed_bitfields.into_iter().map(|signed_bitfield| {
let validator_idx = signed_bitfield.validator_index();
let checked_bitfield = signed_bitfield.into_payload();
(checked_bitfield, validator_idx)
}) {
for (bit_idx, _) in checked_bitfield.0.iter().enumerate().filter(|(_, is_av)| **is_av) {
let core_index = CoreIndex(bit_idx as u32);
votes_per_core
.entry(core_index)
.or_insert_with(|| BTreeSet::new())
.insert(validator_index);
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
let mut freed_cores = vec![];
let pending_paraids: Vec<_> = <PendingAvailability<T>>::iter_keys().collect();
for paraid in pending_paraids {
<PendingAvailability<T>>::mutate(paraid, |candidates| {
if let Some(candidates) = candidates {
let mut last_enacted_index: Option<usize> = None;
for (candidate_index, candidate) in candidates.iter_mut().enumerate() {
if let Some(validator_indices) = votes_per_core.remove(&candidate.core) {
for validator_index in validator_indices.iter() {
// defensive check - this is constructed by loading the
// availability bitfield record, which is always `Some` if
// the core is occupied - that's why we're here.
if let Some(mut bit) =
candidate.availability_votes.get_mut(validator_index.0 as usize)
{
*bit = true;
}
}
}
// We check for the candidate's availability even if we didn't get any new
// bitfields for its core, as it may have already been available at a
// previous block but wasn't enacted due to its predecessors not being
// available.
if candidate.availability_votes.count_ones() >= threshold {
// We can only enact a candidate if we've enacted all of its
// predecessors already.
let can_enact = if candidate_index == 0 {
last_enacted_index == None
} else {
let prev_candidate_index = usize::try_from(candidate_index - 1)
.expect("Previous `if` would have caught a 0 candidate index.");
matches!(last_enacted_index, Some(old_index) if old_index == prev_candidate_index)
};
if can_enact {
last_enacted_index = Some(candidate_index);
}
}
}
// Trim the pending availability candidates storage and enact candidates of this
// para now.
if let Some(last_enacted_index) = last_enacted_index {
let evicted_candidates = candidates.drain(0..=last_enacted_index);
for candidate in evicted_candidates {
freed_cores.push((candidate.core, candidate.hash));
let receipt = CommittedCandidateReceipt {
descriptor: candidate.descriptor,
commitments: candidate.commitments,
};
let _weight = Self::enact_candidate(
candidate.relay_parent_number,
receipt,
candidate.backers,
candidate.availability_votes,
candidate.core,
candidate.backing_group,
);
}
}
}
});
}
freed_cores
}
/// Process candidates that have been backed. Provide a set of
/// candidates along with their scheduled cores.
/// Candidates of the same paraid should be sorted according to their dependency order (they
/// should form a chain). If this condition is not met, this function will return an error.
/// (This really should not happen here, if the candidates were properly sanitised in
/// paras_inherent).
pub(crate) fn process_candidates<GV>(
allowed_relay_parents: &AllowedRelayParentsTracker<T::Hash, BlockNumberFor<T>>,
candidates: &BTreeMap<ParaId, Vec<(BackedCandidate<T::Hash>, CoreIndex)>>,
Andrei Sandu
committed
core_index_enabled: bool,
) -> Result<ProcessedCandidates<T::Hash>, DispatchError>
where
GV: Fn(GroupIndex) -> Option<Vec<ValidatorIndex>>,
{
Andrei Sandu
committed
if candidates.is_empty() {
return Ok(ProcessedCandidates::default())
}
let now = <frame_system::Pallet<T>>::block_number();
let validators = shared::Pallet::<T>::active_validator_keys();
// Collect candidate receipts with backers.
let mut candidate_receipt_with_backing_validator_indices =
Vec::with_capacity(candidates.len());
let mut core_indices = Vec::with_capacity(candidates.len());
for (para_id, para_candidates) in candidates {
let mut latest_head_data = match Self::para_latest_head_data(para_id) {
None => {
defensive!("Latest included head data for paraid {:?} is None", para_id);
continue
},
Some(latest_head_data) => latest_head_data,
for (candidate, core) in para_candidates.iter() {
let candidate_hash = candidate.candidate().hash();
let check_ctx = CandidateCheckContext::<T>::new(None);
let relay_parent_number = check_ctx.verify_backed_candidate(
candidate.candidate(),
latest_head_data.clone(),
)?;
// The candidate based upon relay parent `N` should be backed by a
// group assigned to core at block `N + 1`. Thus,
// `relay_parent_number + 1` will always land in the current
// session.
let group_idx = <scheduler::Pallet<T>>::group_assigned_to_core(
relay_parent_number + One::one(),
)
.ok_or_else(|| {
log::warn!(
target: LOG_TARGET,
"Failed to compute group index for candidate {:?}",
candidate_hash
);
Error::<T>::InvalidAssignment
})?;
let group_vals =
group_validators(group_idx).ok_or_else(|| Error::<T>::InvalidGroupIndex)?;
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
// Check backing vote count and validity.
let (backers, backer_idx_and_attestation) = Self::check_backing_votes(
candidate,
&validators,
group_vals,
core_index_enabled,
)?;
// Found a valid candidate.
latest_head_data = candidate.candidate().commitments.head_data.clone();
candidate_receipt_with_backing_validator_indices
.push((candidate.receipt(), backer_idx_and_attestation));
core_indices.push((*core, *para_id));
// Update storage now
<PendingAvailability<T>>::mutate(¶_id, |pending_availability| {
let new_candidate = CandidatePendingAvailability {
core: *core,
hash: candidate_hash,
descriptor: candidate.candidate().descriptor.clone(),
commitments: candidate.candidate().commitments.clone(),
// initialize all availability votes to 0.
availability_votes: bitvec::bitvec![u8, BitOrderLsb0; 0; validators.len()],
relay_parent_number,
backers: backers.to_bitvec(),
backed_in_number: now,
backing_group: group_idx,
};
if let Some(pending_availability) = pending_availability {
pending_availability.push_back(new_candidate);
} else {
*pending_availability =
Some([new_candidate].into_iter().collect::<VecDeque<_>>())
// Deposit backed event.
Self::deposit_event(Event::<T>::CandidateBacked(
candidate.candidate().to_plain(),
candidate.candidate().commitments.head_data.clone(),
*core,
Ok(ProcessedCandidates::<T::Hash> {
core_indices,
candidate_receipt_with_backing_validator_indices,
})
}
// Get the latest backed output head data of this para.
pub(crate) fn para_latest_head_data(para_id: &ParaId) -> Option<HeadData> {
match <PendingAvailability<T>>::get(para_id).and_then(|pending_candidates| {
pending_candidates.back().map(|x| x.commitments.head_data.clone())
}) {
Some(head_data) => Some(head_data),
None => <paras::Pallet<T>>::para_head(para_id),
}
}
fn check_backing_votes(
backed_candidate: &BackedCandidate<T::Hash>,
validators: &[ValidatorId],
group_vals: Vec<ValidatorIndex>,
core_index_enabled: bool,
) -> Result<(BitVec<u8, BitOrderLsb0>, Vec<(ValidatorIndex, ValidityAttestation)>), Error<T>> {
let minimum_backing_votes = configuration::Pallet::<T>::config().minimum_backing_votes;
let mut backers = bitvec::bitvec![u8, BitOrderLsb0; 0; validators.len()];
let signing_context = SigningContext {
parent_hash: backed_candidate.descriptor().relay_parent,
session_index: shared::Pallet::<T>::session_index(),
};
let (validator_indices, _) =
backed_candidate.validator_indices_and_core_index(core_index_enabled);
// check the signatures in the backing and that it is a majority.
let maybe_amount_validated = primitives::check_candidate_backing(
backed_candidate.candidate().hash(),
backed_candidate.validity_votes(),
validator_indices,
&signing_context,
group_vals.len(),
|intra_group_vi| {
group_vals
.get(intra_group_vi)
.and_then(|vi| validators.get(vi.0 as usize))
.map(|v| v.clone())
},
);
match maybe_amount_validated {
Ok(amount_validated) => ensure!(
amount_validated >=
effective_minimum_backing_votes(group_vals.len(), minimum_backing_votes),
Error::<T>::InsufficientBacking,
),
Err(()) => {
Err(Error::<T>::InvalidBacking)?;
},
}
let mut backer_idx_and_attestation =
Vec::<(ValidatorIndex, ValidityAttestation)>::with_capacity(
validator_indices.count_ones(),
for ((bit_idx, _), attestation) in validator_indices
.iter()
.enumerate()
.filter(|(_, signed)| **signed)
.zip(backed_candidate.validity_votes().iter().cloned())
{
let val_idx = group_vals.get(bit_idx).expect("this query succeeded above; qed");
backer_idx_and_attestation.push((*val_idx, attestation));
backers.set(val_idx.0 as _, true);
Ok((backers, backer_idx_and_attestation))
}
/// Run the acceptance criteria checks on the given candidate commitments.
pub(crate) fn check_validation_outputs_for_runtime_api(
para_id: ParaId,
relay_parent_number: BlockNumberFor<T>,
validation_outputs: primitives::CandidateCommitments,
let prev_context = <paras::Pallet<T>>::para_most_recent_context(para_id);
let check_ctx = CandidateCheckContext::<T>::new(prev_context);
if check_ctx
.check_validation_outputs(
para_id,
&validation_outputs.head_data,
&validation_outputs.new_validation_code,
validation_outputs.processed_downward_messages,
&validation_outputs.upward_messages,
BlockNumberFor::<T>::from(validation_outputs.hrmp_watermark),
&validation_outputs.horizontal_messages,
)
.is_err()
{
log::debug!(
target: LOG_TARGET,
"Validation outputs checking for parachain `{}` failed",
u32::from(para_id),
);
false
} else {
true
}
}
fn enact_candidate(
relay_parent_number: BlockNumberFor<T>,
receipt: CommittedCandidateReceipt<T::Hash>,
backers: BitVec<u8, BitOrderLsb0>,
availability_votes: BitVec<u8, BitOrderLsb0>,
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
core_index: CoreIndex,
backing_group: GroupIndex,
) -> Weight {
let plain = receipt.to_plain();
let commitments = receipt.commitments;
let config = <configuration::Pallet<T>>::config();
T::RewardValidators::reward_backing(
backers
.iter()
.enumerate()
.filter(|(_, backed)| **backed)
.map(|(i, _)| ValidatorIndex(i as _)),
);
T::RewardValidators::reward_bitfields(
availability_votes
.iter()
.enumerate()
.filter(|(_, voted)| **voted)
.map(|(i, _)| ValidatorIndex(i as _)),
);
// initial weight is config read.
let mut weight = T::DbWeight::get().reads_writes(1, 0);
if let Some(new_code) = commitments.new_validation_code {
// Block number of candidate's inclusion.
let now = <frame_system::Pallet<T>>::block_number();
weight.saturating_add(<paras::Pallet<T>>::schedule_code_upgrade(
receipt.descriptor.para_id,
new_code,
UpgradeStrategy::SetGoAheadSignal,
}
// enact the messaging facet of the candidate.
weight.saturating_accrue(<dmp::Pallet<T>>::prune_dmq(
receipt.descriptor.para_id,
commitments.processed_downward_messages,
));
weight.saturating_accrue(Self::receive_upward_messages(
receipt.descriptor.para_id,
commitments.upward_messages.as_slice(),
));
weight.saturating_accrue(<hrmp::Pallet<T>>::prune_hrmp(
receipt.descriptor.para_id,
BlockNumberFor::<T>::from(commitments.hrmp_watermark),
));
weight.saturating_accrue(<hrmp::Pallet<T>>::queue_outbound_hrmp(
receipt.descriptor.para_id,
commitments.horizontal_messages,
Self::deposit_event(Event::<T>::CandidateIncluded(
plain,
commitments.head_data.clone(),
core_index,
backing_group,
));
weight.saturating_add(<paras::Pallet<T>>::note_new_head(
receipt.descriptor.para_id,
commitments.head_data,
relay_parent_number,
))
}
pub(crate) fn relay_dispatch_queue_size(para_id: ParaId) -> (u32, u32) {
let fp = T::MessageQueue::footprint(AggregateMessageOrigin::Ump(UmpQueueId::Para(para_id)));
(fp.storage.count as u32, fp.storage.size as u32)
/// Check that all the upward messages sent by a candidate pass the acceptance criteria.
pub(crate) fn check_upward_messages(
config: &HostConfiguration<BlockNumberFor<T>>,
para: ParaId,
upward_messages: &[UpwardMessage],
) -> Result<(), UmpAcceptanceCheckErr> {
// Cannot send UMP messages while off-boarding.
if <paras::Pallet<T>>::is_offboarding(para) {
ensure!(upward_messages.is_empty(), UmpAcceptanceCheckErr::IsOffboarding);
}
let additional_msgs = upward_messages.len() as u32;
if additional_msgs > config.max_upward_message_num_per_candidate {
return Err(UmpAcceptanceCheckErr::MoreMessagesThanPermitted {
permitted: config.max_upward_message_num_per_candidate,
})
}
let (para_queue_count, mut para_queue_size) = Self::relay_dispatch_queue_size(para);
if para_queue_count.saturating_add(additional_msgs) > config.max_upward_queue_count {
return Err(UmpAcceptanceCheckErr::CapacityExceeded {
count: para_queue_count.saturating_add(additional_msgs).into(),
limit: config.max_upward_queue_count.into(),
})
}
for (idx, msg) in upward_messages.into_iter().enumerate() {
let msg_size = msg.len() as u32;
if msg_size > config.max_upward_message_size {
return Err(UmpAcceptanceCheckErr::MessageSize {
idx: idx as u32,
max_size: config.max_upward_message_size,
})
}
// make sure that the queue is not overfilled.
// we do it here only once since returning false invalidates the whole relay-chain
// block.
if para_queue_size.saturating_add(msg_size) > config.max_upward_queue_size {
return Err(UmpAcceptanceCheckErr::TotalSizeExceeded {
total_size: para_queue_size.saturating_add(msg_size).into(),
limit: config.max_upward_queue_size.into(),
para_queue_size.saturating_accrue(msg_size);
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
}
Ok(())
}
/// Enqueues `upward_messages` from a `para`'s accepted candidate block.
///
/// This function is infallible since the candidate was already accepted and we therefore need
/// to deal with the messages as given. Messages that are too long will be ignored since such
/// candidates should have already been rejected in [`Self::check_upward_messages`].
pub(crate) fn receive_upward_messages(para: ParaId, upward_messages: &[Vec<u8>]) -> Weight {
let bounded = upward_messages
.iter()
.filter_map(|d| {
BoundedSlice::try_from(&d[..])
.map_err(|e| {
defensive!("Accepted candidate contains too long msg, len=", d.len());
e
})
.ok()
})
.collect();
Self::receive_bounded_upward_messages(para, bounded)
}
/// Enqueues storage-bounded `upward_messages` from a `para`'s accepted candidate block.
pub(crate) fn receive_bounded_upward_messages(
para: ParaId,
messages: Vec<BoundedSlice<'_, u8, MaxUmpMessageLenOf<T>>>,
) -> Weight {
let count = messages.len() as u32;
if count == 0 {
return Weight::zero()
}
T::MessageQueue::enqueue_messages(
messages.into_iter(),
AggregateMessageOrigin::Ump(UmpQueueId::Para(para)),
);
let weight = <T as Config>::WeightInfo::receive_upward_messages(count);
Self::deposit_event(Event::UpwardMessagesReceived { from: para, count });
weight
/// Cleans up all timed out candidates as well as their descendant candidates.
///
/// Returns a vector of cleaned-up core IDs.
pub(crate) fn free_timedout() -> Vec<CoreIndex> {
let timeout_pred = <scheduler::Pallet<T>>::availability_timeout_predicate();
let timed_out: Vec<_> = Self::free_failed_cores(
|candidate| timeout_pred(candidate.backed_in_number).timed_out,
None,
)
.collect();
let mut timed_out_cores = Vec::with_capacity(timed_out.len());
for candidate in timed_out.iter() {
timed_out_cores.push(candidate.core);
let receipt = CandidateReceipt {
descriptor: candidate.descriptor.clone(),
commitments_hash: candidate.commitments.hash(),
};
Self::deposit_event(Event::<T>::CandidateTimedOut(
receipt,
candidate.commitments.head_data.clone(),
candidate.core,
));