Newer
Older
// This file is part of Substrate.
// Copyright (C) Parity Technologies (UK) Ltd.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
Sasha Gryaznov
committed
//! # Contracts Pallet
Sasha Gryaznov
committed
//! The Contracts module provides functionality for the runtime to deploy and execute WebAssembly
//! This module extends accounts based on the [`frame_support::traits::fungible`] traits to have
//! smart-contract functionality. It can be used with other modules that implement accounts based on
//! the [`frame_support::traits::fungible`] traits. These "smart-contract accounts" have the ability
//! to instantiate smart-contracts and make calls to other contract and non-contract accounts.
//! The smart-contract code is stored once, and later retrievable via its hash.
//! This means that multiple smart-contracts can be instantiated from the same hash, without
//! replicating the code each time.
//! When a smart-contract is called, its associated code is retrieved via the code hash and gets
//! executed. This call can alter the storage entries of the smart-contract account, instantiate new
//! smart-contracts, or call other smart-contracts.
//! Finally, when an account is reaped, its associated code and storage of the smart-contract
//! account will also be deleted.
//! Senders must specify a [`Weight`] limit with every call, as all instructions invoked by the
//! smart-contract require weight. Unused weight is refunded after the call, regardless of the
//! execution outcome.
//! If the weight limit is reached, then all calls and state changes (including balance transfers)
//! are only reverted at the current call's contract level. For example, if contract A calls B and B
//! runs out of gas mid-call, then all of B's calls are reverted. Assuming correct error handling by
//! contract A, A's other calls and state changes still persist.
//! Contract call failures are not always cascading. When failures occur in a sub-call, they do not
//! "bubble up", and the call will only revert at the specific contract level. For example, if
//! contract A calls contract B, and B fails, A can decide how to handle that failure, either
//! proceeding or reverting A's changes.
//! * [`Pallet::instantiate_with_code`] - Deploys a new contract from the supplied Wasm binary,
//! optionally transferring
//! some balance. This instantiates a new smart contract account with the supplied code and
//! calls its constructor to initialize the contract.
//! * [`Pallet::instantiate`] - The same as `instantiate_with_code` but instead of uploading new
//! code an existing `code_hash` is supplied.
//! * [`Pallet::call`] - Makes a call to an account, optionally transferring some balance.
//! * [`Pallet::upload_code`] - Uploads new code without instantiating a contract from it.
//! * [`Pallet::remove_code`] - Removes the stored code and refunds the deposit to its owner. Only
//! allowed to code owner.
//! * [`Pallet::set_code`] - Changes the code of an existing contract. Only allowed to `Root`
//! origin.
//! * [`Pallet::migrate`] - Runs migration steps of current multi-block migration in priority,
//! before [`Hooks::on_idle`][frame_support::traits::Hooks::on_idle] activates.
//! * [`ink!`](https://use.ink) is language that enables writing Wasm-based smart contracts in plain
//! Rust.
#![allow(rustdoc::private_intra_doc_links)]
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(feature = "runtime-benchmarks", recursion_limit = "1024")]
Alexander Theißen
committed
mod address;
mod primitives;
pub use primitives::*;
mod schedule;
pub mod chain_extension;
pub mod weights;
#[cfg(test)]
mod tests;
use crate::{
exec::{
AccountIdOf, ErrorOrigin, ExecError, Executable, Ext, Key, MomentOf, Stack as ExecStack,
},
PG Herveou
committed
storage::{meter::Meter as StorageMeter, ContractInfo, DeletionQueueManager},
wasm::{CodeInfo, WasmBlob},
use codec::{Codec, Decode, Encode, HasCompact, MaxEncodedLen};
Sasha Gryaznov
committed
use environmental::*;
dispatch::{GetDispatchInfo, Pays, PostDispatchInfo, RawOrigin, WithPostDispatchInfo},
ensure,
Alexander Theißen
committed
traits::{
fungible::{Inspect, Mutate, MutateHold},
ConstU32, Contains, Get, Randomness, Time,
Alexander Theißen
committed
},
BoundedVec, DefaultNoBound, RuntimeDebugNoBound,
};
use frame_system::{
ensure_signed,
pallet_prelude::{BlockNumberFor, OriginFor},
EventRecord, Pallet as System,
use smallvec::Array;
use sp_runtime::{
traits::{Convert, Dispatchable, Hash, Saturating, StaticLookup, Zero},
DispatchError, RuntimeDebug,
use sp_std::{fmt::Debug, prelude::*};
pub use crate::{
Alexander Theißen
committed
address::{AddressGenerator, DefaultAddressGenerator},
exec::Frame,
migration::{MigrateSequence, Migration, NoopMigration},
pallet::*,
schedule::{HostFnWeights, InstructionWeights, Limits, Schedule},
wasm::Determinism,
};
pub use weights::WeightInfo;
Sasha Gryaznov
committed
#[cfg(doc)]
pub use crate::wasm::api_doc;
type CodeHash<T> = <T as frame_system::Config>::Hash;
type TrieId = BoundedVec<u8, ConstU32<128>>;
<<T as Config>::Currency as Inspect<<T as frame_system::Config>::AccountId>>::Balance;
type CodeVec<T> = BoundedVec<u8, <T as Config>::MaxCodeLen>;
type AccountIdLookupOf<T> = <<T as frame_system::Config>::Lookup as StaticLookup>::Source;
type DebugBufferVec<T> = BoundedVec<u8, <T as Config>::MaxDebugBufferLen>;
type EventRecordOf<T> =
EventRecord<<T as frame_system::Config>::RuntimeEvent, <T as frame_system::Config>::Hash>;
/// The old weight type.
///
/// This is a copy of the [`frame_support::weights::OldWeight`] type since the contracts pallet
/// needs to support it indefinitely.
type OldWeight = u64;
/// Used as a sentinel value when reading and writing contract memory.
///
/// It is usually used to signal `None` to a contract when only a primitive is allowed
/// and we don't want to go through encoding a full Rust type. Using `u32::Max` is a safe
/// sentinel because contracts are never allowed to use such a large amount of resources
/// that this value makes sense for a memory location or length.
const SENTINEL: u32 = u32::MAX;
/// The target that is used for the log output emitted by this crate.
///
/// Hence you can use this target to selectively increase the log level for this crate.
///
/// Example: `RUST_LOG=runtime::contracts=debug my_code --dev`
const LOG_TARGET: &str = "runtime::contracts";
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/// Wrapper around `PhantomData` to prevent it being filtered by `scale-info`.
///
/// `scale-info` filters out `PhantomData` fields because usually we are only interested
/// in sized types. However, when trying to communicate **types** as opposed to **values**
/// we want to have those zero sized types be included.
#[derive(Encode, Decode, DefaultNoBound, TypeInfo)]
#[cfg_attr(feature = "std", derive(serde::Serialize, serde::Deserialize))]
pub struct EnvironmentType<T>(PhantomData<T>);
/// List of all runtime configurable types that are used in the communication between
/// `pallet-contracts` and any given contract.
///
/// Since those types are configurable they can vary between
/// chains all using `pallet-contracts`. Hence we need a mechanism to communicate those types
/// in a way that can be consumed by offchain tooling.
///
/// This type only exists in order to appear in the metadata where it can be read by
/// offchain tooling.
#[derive(Encode, Decode, DefaultNoBound, TypeInfo)]
#[cfg_attr(feature = "std", derive(serde::Serialize, serde::Deserialize))]
#[scale_info(skip_type_params(T))]
pub struct Environment<T: Config> {
account_id: EnvironmentType<AccountIdOf<T>>,
balance: EnvironmentType<BalanceOf<T>>,
hash: EnvironmentType<<T as frame_system::Config>::Hash>,
hasher: EnvironmentType<<T as frame_system::Config>::Hashing>,
timestamp: EnvironmentType<MomentOf<T>>,
block_number: EnvironmentType<BlockNumberFor<T>>,
}
/// Defines the current version of the HostFn APIs.
/// This is used to communicate the available APIs in pallet-contracts.
///
/// The version is bumped any time a new HostFn is added or stabilized.
#[derive(Encode, Decode, TypeInfo)]
pub struct ApiVersion(u16);
impl Default for ApiVersion {
fn default() -> Self {
#[test]
fn api_version_is_up_to_date() {
assert_eq!(
109,
crate::wasm::STABLE_API_COUNT,
"Stable API count has changed. Bump the returned value of ApiVersion::default() and update the test."
);
}
#[frame_support::pallet]
pub mod pallet {
use frame_support::pallet_prelude::*;
use frame_system::pallet_prelude::*;
/// The in-code storage version.
pub(crate) const STORAGE_VERSION: StorageVersion = StorageVersion::new(15);
#[pallet::pallet]
#[pallet::storage_version(STORAGE_VERSION)]
pub struct Pallet<T>(_);
#[pallet::config]
pub trait Config: frame_system::Config {
/// The time implementation used to supply timestamps to contracts through `seal_now`.
/// The generator used to supply randomness to contracts through `seal_random`.
///
/// # Deprecated
///
/// Codes using the randomness functionality cannot be uploaded. Neither can contracts
/// be instantiated from existing codes that use this deprecated functionality. It will
/// be removed eventually. Hence for new `pallet-contracts` deployments it is okay
/// to supply a dummy implementation for this type (because it is never used).
type Randomness: Randomness<Self::Hash, BlockNumberFor<Self>>;
/// The fungible in which fees are paid and contract balances are held.
type Currency: Inspect<Self::AccountId>
+ Mutate<Self::AccountId>
+ MutateHold<Self::AccountId, Reason = Self::RuntimeHoldReason>;
/// The overarching event type.
type RuntimeEvent: From<Event<Self>> + IsType<<Self as frame_system::Config>::RuntimeEvent>;
Stanislav Tkach
committed
/// The overarching call type.
type RuntimeCall: Dispatchable<RuntimeOrigin = Self::RuntimeOrigin, PostInfo = PostDispatchInfo>
+ GetDispatchInfo
+ codec::Decode
+ IsType<<Self as frame_system::Config>::RuntimeCall>;
/// Filter that is applied to calls dispatched by contracts.
///
/// Use this filter to control which dispatchables are callable by contracts.
/// This is applied in **addition** to [`frame_system::Config::BaseCallFilter`].
/// It is recommended to treat this as a whitelist.
///
/// # Stability
///
/// The runtime **must** make sure that all dispatchables that are callable by
/// contracts remain stable. In addition [`Self::RuntimeCall`] itself must remain stable.
/// This means that no existing variants are allowed to switch their positions.
///
/// # Note
///
/// Note that dispatchables that are called via contracts do not spawn their
/// own wasm instance for each call (as opposed to when called via a transaction).
/// Therefore please make sure to be restrictive about which dispatchables are allowed
/// in order to not introduce a new DoS vector like memory allocation patterns that can
/// be exploited to drive the runtime into a panic.
type CallFilter: Contains<<Self as frame_system::Config>::RuntimeCall>;
/// Used to answer contracts' queries regarding the current weight price. This is **not**
/// used to calculate the actual fee and is only for informational purposes.
type WeightPrice: Convert<Weight, BalanceOf<Self>>;
/// Describes the weights of the dispatchables of this module and is also used to
/// construct a default cost schedule.
type WeightInfo: WeightInfo;
/// Type that allows the runtime authors to add new host functions for a contract to call.
Alexander Theißen
committed
type ChainExtension: chain_extension::ChainExtension<Self> + Default;
/// Cost schedule and limits.
#[pallet::constant]
type Schedule: Get<Schedule<Self>>;
/// The type of the call stack determines the maximum nesting depth of contract calls.
///
/// The allowed depth is `CallStack::size() + 1`.
/// Therefore a size of `0` means that a contract cannot use call or instantiate.
/// In other words only the origin called "root contract" is allowed to execute then.
///
/// This setting along with [`MaxCodeLen`](#associatedtype.MaxCodeLen) directly affects
/// memory usage of your runtime.
type CallStack: Array<Item = Frame<Self>>;
/// The amount of balance a caller has to pay for each byte of storage.
///
/// # Note
///
/// Changing this value for an existing chain might need a storage migration.
#[pallet::constant]
type DepositPerByte: Get<BalanceOf<Self>>;
Sasha Gryaznov
committed
/// Fallback value to limit the storage deposit if it's not being set by the caller.
#[pallet::constant]
type DefaultDepositLimit: Get<BalanceOf<Self>>;
/// The amount of balance a caller has to pay for each storage item.
///
/// # Note
///
/// Changing this value for an existing chain might need a storage migration.
#[pallet::constant]
type DepositPerItem: Get<BalanceOf<Self>>;
/// The percentage of the storage deposit that should be held for using a code hash.
/// Instantiating a contract, or calling [`chain_extension::Ext::lock_delegate_dependency`]
/// protects the code from being removed. In order to prevent abuse these actions are
/// protected with a percentage of the code deposit.
#[pallet::constant]
type CodeHashLockupDepositPercent: Get<Perbill>;
/// The address generator used to generate the addresses of contracts.
type AddressGenerator: AddressGenerator<Self>;
/// The maximum length of a contract code in bytes.
///
/// The value should be chosen carefully taking into the account the overall memory limit
/// your runtime has, as well as the [maximum allowed callstack
/// depth](#associatedtype.CallStack). Look into the `integrity_test()` for some insights.
Alexander Theißen
committed
#[pallet::constant]
type MaxCodeLen: Get<u32>;
/// The maximum allowable length in bytes for storage keys.
Alexander Theißen
committed
#[pallet::constant]
type MaxStorageKeyLen: Get<u32>;
Alexander Theißen
committed
/// The maximum number of delegate_dependencies that a contract can lock with
/// [`chain_extension::Ext::lock_delegate_dependency`].
#[pallet::constant]
type MaxDelegateDependencies: Get<u32>;
Alexander Theißen
committed
/// Make contract callable functions marked as `#[unstable]` available.
///
/// Contracts that use `#[unstable]` functions won't be able to be uploaded unless
/// this is set to `true`. This is only meant for testnets and dev nodes in order to
/// experiment with new features.
///
/// # Warning
///
/// Do **not** set to `true` on productions chains.
#[pallet::constant]
type UnsafeUnstableInterface: Get<bool>;
/// The maximum length of the debug buffer in bytes.
#[pallet::constant]
type MaxDebugBufferLen: Get<u32>;
/// Origin allowed to upload code.
///
/// By default, it is safe to set this to `EnsureSigned`, allowing anyone to upload contract
/// code.
type UploadOrigin: EnsureOrigin<Self::RuntimeOrigin, Success = Self::AccountId>;
/// Origin allowed to instantiate code.
///
/// # Note
///
/// This is not enforced when a contract instantiates another contract. The
/// [`Self::UploadOrigin`] should make sure that no code is deployed that does unwanted
/// instantiations.
///
/// By default, it is safe to set this to `EnsureSigned`, allowing anyone to instantiate
/// contract code.
type InstantiateOrigin: EnsureOrigin<Self::RuntimeOrigin, Success = Self::AccountId>;
/// Overarching hold reason.
type RuntimeHoldReason: From<HoldReason>;
/// The sequence of migration steps that will be applied during a migration.
///
/// # Examples
/// ```
/// use pallet_contracts::migration::{v10, v11};
/// # struct Currency {};
/// type Migrations = (v10::Migration<Runtime, Currency>, v11::Migration<Runtime>);
///
/// If you have a single migration step, you can use a tuple with a single element:
/// ```
/// use pallet_contracts::migration::v10;
/// # struct Currency {};
/// type Migrations = (v10::Migration<Runtime, Currency>,);
type Migrations: MigrateSequence;
/// # Note
/// For most production chains, it's recommended to use the `()` implementation of this
/// trait. This implementation offers additional logging when the log target
/// "runtime::contracts" is set to trace.
type Debug: Debugger<Self>;
/// Type that bundles together all the runtime configurable interface types.
///
/// This is not a real config. We just mention the type here as constant so that
/// its type appears in the metadata. Only valid value is `()`.
#[pallet::constant]
type Environment: Get<Environment<Self>>;
/// The version of the HostFn APIs that are available in the runtime.
///
/// Only valid value is `()`.
#[pallet::constant]
type ApiVersion: Get<ApiVersion>;
/// A type that exposes XCM APIs, allowing contracts to interact with other parachains, and
/// execute XCM programs.
type Xcm: xcm_builder::Controller<
OriginFor<Self>,
<Self as frame_system::Config>::RuntimeCall,
BlockNumberFor<Self>,
>;
impl<T: Config> Hooks<BlockNumberFor<T>> for Pallet<T> {
fn on_idle(_block: BlockNumberFor<T>, mut remaining_weight: Weight) -> Weight {
use migration::MigrateResult::*;
loop {
let (result, weight) = Migration::<T>::migrate(remaining_weight);
remaining_weight.saturating_reduce(weight);
match result {
// There is not enough weight to perform a migration, or make any progress, we
// just return the remaining weight.
NoMigrationPerformed | InProgress { steps_done: 0 } => return remaining_weight,
// Migration is still in progress, we can start the next step.
InProgress { .. } => continue,
// Either no migration is in progress, or we are done with all migrations, we
// can do some more other work with the remaining weight.
Completed | NoMigrationInProgress => break,
}
Alexander Theißen
committed
ContractInfo::<T>::process_deletion_queue_batch(remaining_weight)
.saturating_add(T::WeightInfo::on_process_deletion_queue_batch())
}
fn integrity_test() {
Migration::<T>::integrity_test();
Sasha Gryaznov
committed
// Total runtime memory limit
let max_runtime_mem: u32 = T::Schedule::get().limits.runtime_memory;
// Memory limits for a single contract:
// Value stack size: 1Mb per contract, default defined in wasmi
const MAX_STACK_SIZE: u32 = 1024 * 1024;
// Heap limit is normally 16 mempages of 64kb each = 1Mb per contract
let max_heap_size = T::Schedule::get().limits.max_memory_size();
// Max call depth is CallStack::size() + 1
let max_call_depth = u32::try_from(T::CallStack::size().saturating_add(1))
.expect("CallStack size is too big");
// Check that given configured `MaxCodeLen`, runtime heap memory limit can't be broken.
//
// In worst case, the decoded Wasm contract code would be `x16` times larger than the
// encoded one. This is because even a single-byte wasm instruction has 16-byte size in
// wasmi. This gives us `MaxCodeLen*16` safety margin.
//
// Next, the pallet keeps the Wasm blob for each
// contract, hence we add up `MaxCodeLen` to the safety margin.
//
// Finally, the inefficiencies of the freeing-bump allocator
// being used in the client for the runtime memory allocations, could lead to possible
// memory allocations for contract code grow up to `x4` times in some extreme cases,
// which gives us total multiplier of `17*4` for `MaxCodeLen`.
// That being said, for every contract executed in runtime, at least `MaxCodeLen*17*4`
// memory should be available. Note that maximum allowed heap memory and stack size per
// each contract (stack frame) should also be counted.
//
// Finally, we allow 50% of the runtime memory to be utilized by the contracts call
// stack, keeping the rest for other facilities, such as PoV, etc.
//
// This gives us the following formula:
//
// `(MaxCodeLen * 17 * 4 + MAX_STACK_SIZE + max_heap_size) * max_call_depth <
Sasha Gryaznov
committed
// max_runtime_mem/2`
//
// Hence the upper limit for the `MaxCodeLen` can be defined as follows:
Sasha Gryaznov
committed
let code_len_limit = max_runtime_mem
.saturating_div(2)
.saturating_div(max_call_depth)
.saturating_sub(max_heap_size)
.saturating_sub(MAX_STACK_SIZE)
.saturating_div(17 * 4);
assert!(
T::MaxCodeLen::get() < code_len_limit,
"Given `CallStack` height {:?}, `MaxCodeLen` should be set less than {:?} \
(current value is {:?}), to avoid possible runtime oom issues.",
max_call_depth,
code_len_limit,
T::MaxCodeLen::get(),
);
// Debug buffer should at least be large enough to accommodate a simple error message
const MIN_DEBUG_BUF_SIZE: u32 = 256;
assert!(
T::MaxDebugBufferLen::get() > MIN_DEBUG_BUF_SIZE,
"Debug buffer should have minimum size of {} (current setting is {})",
MIN_DEBUG_BUF_SIZE,
T::MaxDebugBufferLen::get(),
)
}
#[pallet::call]
impl<T: Config> Pallet<T>
where
<BalanceOf<T> as HasCompact>::Type: Clone + Eq + PartialEq + Debug + TypeInfo + Encode,
/// Deprecated version if [`Self::call`] for use in an in-storage `Call`.
#[pallet::weight(T::WeightInfo::call().saturating_add(<Pallet<T>>::compat_weight_limit(*gas_limit)))]
#[allow(deprecated)]
#[deprecated(note = "1D weight is used in this extrinsic, please migrate to `call`")]
pub fn call_old_weight(
dest: AccountIdLookupOf<T>,
#[pallet::compact] value: BalanceOf<T>,
#[pallet::compact] gas_limit: OldWeight,
storage_deposit_limit: Option<<BalanceOf<T> as codec::HasCompact>::Type>,
) -> DispatchResultWithPostInfo {
origin,
dest,
value,
<Pallet<T>>::compat_weight_limit(gas_limit),
storage_deposit_limit,
/// Deprecated version if [`Self::instantiate_with_code`] for use in an in-storage `Call`.
T::WeightInfo::instantiate_with_code(code.len() as u32, data.len() as u32, salt.len() as u32)
.saturating_add(<Pallet<T>>::compat_weight_limit(*gas_limit))
#[allow(deprecated)]
#[deprecated(
note = "1D weight is used in this extrinsic, please migrate to `instantiate_with_code`"
)]
pub fn instantiate_with_code_old_weight(
#[pallet::compact] value: BalanceOf<T>,
#[pallet::compact] gas_limit: OldWeight,
storage_deposit_limit: Option<<BalanceOf<T> as codec::HasCompact>::Type>,
code: Vec<u8>,
data: Vec<u8>,
salt: Vec<u8>,
) -> DispatchResultWithPostInfo {
Self::instantiate_with_code(
<Pallet<T>>::compat_weight_limit(gas_limit),
storage_deposit_limit,
code,
salt,
/// Deprecated version if [`Self::instantiate`] for use in an in-storage `Call`.
T::WeightInfo::instantiate(data.len() as u32, salt.len() as u32).saturating_add(<Pallet<T>>::compat_weight_limit(*gas_limit))
#[allow(deprecated)]
#[deprecated(note = "1D weight is used in this extrinsic, please migrate to `instantiate`")]
pub fn instantiate_old_weight(
#[pallet::compact] value: BalanceOf<T>,
#[pallet::compact] gas_limit: OldWeight,
storage_deposit_limit: Option<<BalanceOf<T> as codec::HasCompact>::Type>,
code_hash: CodeHash<T>,
data: Vec<u8>,
salt: Vec<u8>,
) -> DispatchResultWithPostInfo {
<Pallet<T>>::compat_weight_limit(gas_limit),
storage_deposit_limit,
code_hash,
salt,
/// Upload new `code` without instantiating a contract from it.
///
/// If the code does not already exist a deposit is reserved from the caller
/// and unreserved only when [`Self::remove_code`] is called. The size of the reserve
/// depends on the size of the supplied `code`.
///
/// If the code already exists in storage it will still return `Ok` and upgrades
/// the in storage version to the current
/// [`InstructionWeights::version`](InstructionWeights).
///
/// - `determinism`: If this is set to any other value but [`Determinism::Enforced`] then
/// the only way to use this code is to delegate call into it from an offchain execution.
/// Set to [`Determinism::Enforced`] if in doubt.
///
/// # Note
///
/// Anyone can instantiate a contract from any uploaded code and thus prevent its removal.
/// To avoid this situation a constructor could employ access control so that it can
/// only be instantiated by permissioned entities. The same is true when uploading
/// through [`Self::instantiate_with_code`].
///
/// Use [`Determinism::Relaxed`] exclusively for non-deterministic code. If the uploaded
/// code is deterministic, specifying [`Determinism::Relaxed`] will be disregarded and
/// result in higher gas costs.
#[pallet::weight(
match determinism {
Determinism::Enforced => T::WeightInfo::upload_code_determinism_enforced(code.len() as u32),
Determinism::Relaxed => T::WeightInfo::upload_code_determinism_relaxed(code.len() as u32),
}
)]
pub fn upload_code(
origin: OriginFor<T>,
code: Vec<u8>,
storage_deposit_limit: Option<<BalanceOf<T> as codec::HasCompact>::Type>,
determinism: Determinism,
Migration::<T>::ensure_migrated()?;
let origin = T::UploadOrigin::ensure_origin(origin)?;
Self::bare_upload_code(origin, code, storage_deposit_limit.map(Into::into), determinism)
.map(|_| ())
}
/// Remove the code stored under `code_hash` and refund the deposit to its owner.
///
/// A code can only be removed by its original uploader (its owner) and only if it is
/// not used by any contract.
#[pallet::weight(T::WeightInfo::remove_code())]
pub fn remove_code(
origin: OriginFor<T>,
code_hash: CodeHash<T>,
) -> DispatchResultWithPostInfo {
Migration::<T>::ensure_migrated()?;
let origin = ensure_signed(origin)?;
<WasmBlob<T>>::remove(&origin, code_hash)?;
// we waive the fee because removing unused code is beneficial
Ok(Pays::No.into())
}
/// Privileged function that changes the code of an existing contract.
///
/// This takes care of updating refcounts and all other necessary operations. Returns
/// an error if either the `code_hash` or `dest` do not exist.
///
/// # Note
///
/// This does **not** change the address of the contract in question. This means
/// that the contract address is no longer derived from its code hash after calling
/// this dispatchable.
#[pallet::weight(T::WeightInfo::set_code())]
pub fn set_code(
origin: OriginFor<T>,
dest: AccountIdLookupOf<T>,
code_hash: CodeHash<T>,
) -> DispatchResult {
Migration::<T>::ensure_migrated()?;
ensure_root(origin)?;
let dest = T::Lookup::lookup(dest)?;
<ContractInfoOf<T>>::try_mutate(&dest, |contract| {
let contract = if let Some(contract) = contract {
contract
} else {
return Err(<Error<T>>::ContractNotFound.into())
};
<ExecStack<T, WasmBlob<T>>>::increment_refcount(code_hash)?;
<ExecStack<T, WasmBlob<T>>>::decrement_refcount(contract.code_hash);
Self::deposit_event(
vec![T::Hashing::hash_of(&dest), code_hash, contract.code_hash],
Event::ContractCodeUpdated {
contract: dest.clone(),
new_code_hash: code_hash,
old_code_hash: contract.code_hash,
},
);
contract.code_hash = code_hash;
Ok(())
})
}
/// Makes a call to an account, optionally transferring some balance.
///
/// # Parameters
///
/// * `dest`: Address of the contract to call.
/// * `value`: The balance to transfer from the `origin` to `dest`.
/// * `gas_limit`: The gas limit enforced when executing the constructor.
/// * `storage_deposit_limit`: The maximum amount of balance that can be charged from the
/// caller to pay for the storage consumed.
/// * `data`: The input data to pass to the contract.
///
/// * If the account is a smart-contract account, the associated code will be
/// executed and any value will be transferred.
/// * If the account is a regular account, any value will be transferred.
/// * If no account exists and the call value is not less than `existential_deposit`,
/// a regular account will be created and any value will be transferred.
#[pallet::weight(T::WeightInfo::call().saturating_add(*gas_limit))]
pub fn call(
origin: OriginFor<T>,
dest: AccountIdLookupOf<T>,
#[pallet::compact] value: BalanceOf<T>,
gas_limit: Weight,
storage_deposit_limit: Option<<BalanceOf<T> as codec::HasCompact>::Type>,
data: Vec<u8>,
) -> DispatchResultWithPostInfo {
Migration::<T>::ensure_migrated()?;
Sasha Gryaznov
committed
let common = CommonInput {
origin: Origin::from_runtime_origin(origin)?,
gas_limit: gas_limit.into(),
Sasha Gryaznov
committed
storage_deposit_limit: storage_deposit_limit.map(Into::into),
debug_message: None,
};
let dest = T::Lookup::lookup(dest)?;
let mut output =
CallInput::<T> { dest, determinism: Determinism::Enforced }.run_guarded(common);
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
if let Ok(retval) = &output.result {
if retval.did_revert() {
output.result = Err(<Error<T>>::ContractReverted.into());
}
}
output.gas_meter.into_dispatch_result(output.result, T::WeightInfo::call())
}
/// Instantiates a new contract from the supplied `code` optionally transferring
/// some balance.
///
/// This dispatchable has the same effect as calling [`Self::upload_code`] +
/// [`Self::instantiate`]. Bundling them together provides efficiency gains. Please
/// also check the documentation of [`Self::upload_code`].
///
/// # Parameters
///
/// * `value`: The balance to transfer from the `origin` to the newly created contract.
/// * `gas_limit`: The gas limit enforced when executing the constructor.
/// * `storage_deposit_limit`: The maximum amount of balance that can be charged/reserved
/// from the caller to pay for the storage consumed.
/// * `code`: The contract code to deploy in raw bytes.
/// * `data`: The input data to pass to the contract constructor.
/// * `salt`: Used for the address derivation. See [`Pallet::contract_address`].
///
/// Instantiation is executed as follows:
///
/// - The supplied `code` is deployed, and a `code_hash` is created for that code.
/// - If the `code_hash` already exists on the chain the underlying `code` will be shared.
/// - The destination address is computed based on the sender, code_hash and the salt.
/// - The smart-contract account is created at the computed address.
/// - The `value` is transferred to the new account.
/// - The `deploy` function is executed in the context of the newly-created account.
T::WeightInfo::instantiate_with_code(code.len() as u32, data.len() as u32, salt.len() as u32)
.saturating_add(*gas_limit)
)]
pub fn instantiate_with_code(
origin: OriginFor<T>,
#[pallet::compact] value: BalanceOf<T>,
gas_limit: Weight,
storage_deposit_limit: Option<<BalanceOf<T> as codec::HasCompact>::Type>,
code: Vec<u8>,
data: Vec<u8>,
salt: Vec<u8>,
) -> DispatchResultWithPostInfo {
Migration::<T>::ensure_migrated()?;
// These two origins will usually be the same; however, we treat them as separate since
// it is possible for the `Success` value of `UploadOrigin` and `InstantiateOrigin` to
// differ.
let upload_origin = T::UploadOrigin::ensure_origin(origin.clone())?;
let instantiate_origin = T::InstantiateOrigin::ensure_origin(origin)?;
let code_len = code.len() as u32;
let (module, upload_deposit) = Self::try_upload_code(
code,
storage_deposit_limit.clone().map(Into::into),
Determinism::Enforced,
None,
)?;
// Reduces the storage deposit limit by the amount that was reserved for the upload.
let storage_deposit_limit =
storage_deposit_limit.map(|limit| limit.into().saturating_sub(upload_deposit));
let data_len = data.len() as u32;
let salt_len = salt.len() as u32;
Sasha Gryaznov
committed
let common = CommonInput {
origin: Origin::from_account_id(instantiate_origin),
Sasha Gryaznov
committed
gas_limit,
Sasha Gryaznov
committed
debug_message: None,
};
Sasha Gryaznov
committed
let mut output =
InstantiateInput::<T> { code: WasmCode::Wasm(module), salt }.run_guarded(common);
if let Ok(retval) = &output.result {
if retval.1.did_revert() {
output.result = Err(<Error<T>>::ContractReverted.into());
}
}
output.gas_meter.into_dispatch_result(
output.result.map(|(_address, output)| output),
T::WeightInfo::instantiate_with_code(code_len, data_len, salt_len),
)
}
/// Instantiates a contract from a previously deployed wasm binary.
///
/// This function is identical to [`Self::instantiate_with_code`] but without the
/// code deployment step. Instead, the `code_hash` of an on-chain deployed wasm binary
/// must be supplied.
T::WeightInfo::instantiate(data.len() as u32, salt.len() as u32).saturating_add(*gas_limit)
)]
pub fn instantiate(
origin: OriginFor<T>,
#[pallet::compact] value: BalanceOf<T>,
gas_limit: Weight,
storage_deposit_limit: Option<<BalanceOf<T> as codec::HasCompact>::Type>,
code_hash: CodeHash<T>,
data: Vec<u8>,
salt: Vec<u8>,
) -> DispatchResultWithPostInfo {
Migration::<T>::ensure_migrated()?;
let origin = T::InstantiateOrigin::ensure_origin(origin)?;
let data_len = data.len() as u32;
let salt_len = salt.len() as u32;
Sasha Gryaznov
committed
let common = CommonInput {
origin: Origin::from_account_id(origin),
Sasha Gryaznov
committed
gas_limit,
storage_deposit_limit: storage_deposit_limit.map(Into::into),
debug_message: None,
};
let mut output = InstantiateInput::<T> { code: WasmCode::CodeHash(code_hash), salt }
.run_guarded(common);
if let Ok(retval) = &output.result {
if retval.1.did_revert() {
output.result = Err(<Error<T>>::ContractReverted.into());
}
}
output.gas_meter.into_dispatch_result(
output.result.map(|(_address, output)| output),
T::WeightInfo::instantiate(data_len, salt_len),
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
/// When a migration is in progress, this dispatchable can be used to run migration steps.
/// Calls that contribute to advancing the migration have their fees waived, as it's helpful
/// for the chain. Note that while the migration is in progress, the pallet will also
/// leverage the `on_idle` hooks to run migration steps.
#[pallet::call_index(9)]
#[pallet::weight(T::WeightInfo::migrate().saturating_add(*weight_limit))]
pub fn migrate(origin: OriginFor<T>, weight_limit: Weight) -> DispatchResultWithPostInfo {
use migration::MigrateResult::*;
ensure_signed(origin)?;
let weight_limit = weight_limit.saturating_add(T::WeightInfo::migrate());
let (result, weight) = Migration::<T>::migrate(weight_limit);
match result {
Completed =>
Ok(PostDispatchInfo { actual_weight: Some(weight), pays_fee: Pays::No }),
InProgress { steps_done, .. } if steps_done > 0 =>
Ok(PostDispatchInfo { actual_weight: Some(weight), pays_fee: Pays::No }),
InProgress { .. } =>
Ok(PostDispatchInfo { actual_weight: Some(weight), pays_fee: Pays::Yes }),
NoMigrationInProgress | NoMigrationPerformed => {
let err: DispatchError = <Error<T>>::NoMigrationPerformed.into();
Err(err.with_weight(T::WeightInfo::migrate()))
},
}
}
}
#[pallet::event]
pub enum Event<T: Config> {
/// Contract deployed by address at the specified address.
Instantiated { deployer: T::AccountId, contract: T::AccountId },
///
/// # Note
///
/// The only way for a contract to be removed and emitting this event is by calling
/// `seal_terminate`.
Terminated {
/// The contract that was terminated.
contract: T::AccountId,
/// The account that received the contracts remaining balance
beneficiary: T::AccountId,
},
/// Code with the specified hash has been stored.
CodeStored { code_hash: T::Hash, deposit_held: BalanceOf<T>, uploader: T::AccountId },
/// A custom event emitted by the contract.
ContractEmitted {
/// The contract that emitted the event.
contract: T::AccountId,
/// Data supplied by the contract. Metadata generated during contract compilation
/// is needed to decode it.
data: Vec<u8>,
},
/// A code with the specified hash was removed.
CodeRemoved { code_hash: T::Hash, deposit_released: BalanceOf<T>, remover: T::AccountId },
/// A contract's code was updated.
ContractCodeUpdated {
/// The contract that has been updated.
contract: T::AccountId,
/// New code hash that was set for the contract.
new_code_hash: T::Hash,
/// Previous code hash of the contract.
old_code_hash: T::Hash,
},
/// A contract was called either by a plain account or another contract.
///
/// # Note
///
/// Please keep in mind that like all events this is only emitted for successful
/// calls. This is because on failure all storage changes including events are
/// rolled back.
Called {
/// The caller of the `contract`.
caller: Origin<T>,
/// The contract that was called.
contract: T::AccountId,
},
/// A contract delegate called a code hash.
///
/// # Note