Newer
Older
// This file is part of Substrate.
// Copyright (C) 2018-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! The Contract module provides functionality for the runtime to deploy and execute WebAssembly smart-contracts.
//! - [`contract::Config`](./trait.Config.html)
//! - [`Call`](./enum.Call.html)
//! This module extends accounts based on the `Currency` trait to have smart-contract functionality. It can
//! be used with other modules that implement accounts based on `Currency`. These "smart-contract accounts"
//! have the ability to instantiate smart-contracts and make calls to other contract and non-contract accounts.
//! The smart-contract code is stored once in a `code_cache`, and later retrievable via its `code_hash`.
//! This means that multiple smart-contracts can be instantiated from the same `code_cache`, without replicating
//! When a smart-contract is called, its associated code is retrieved via the code hash and gets executed.
//! This call can alter the storage entries of the smart-contract account, instantiate new smart-contracts,
//! or call other smart-contracts.
//! Finally, when an account is reaped, its associated code and storage of the smart-contract account
//! will also be deleted.
//! Senders must specify a gas limit with every call, as all instructions invoked by the smart-contract require gas.
//! Unused gas is refunded after the call, regardless of the execution outcome.
//! If the gas limit is reached, then all calls and state changes (including balance transfers) are only
//! reverted at the current call's contract level. For example, if contract A calls B and B runs out of gas mid-call,
//! then all of B's calls are reverted. Assuming correct error handling by contract A, A's other calls and state
//! changes still persist.
//!
//! Contract call failures are not always cascading. When failures occur in a sub-call, they do not "bubble up",
//! and the call will only revert at the specific contract level. For example, if contract A calls contract B, and B
//! fails, A can decide how to handle that failure, either proceeding or reverting A's changes.
//! * `instantiate_with_code` - Deploys a new contract from the supplied wasm binary, optionally transferring
//! some balance. This instantiates a new smart contract account and calls its contract deploy
//! handler to initialize the contract.
//! * `instantiate` - The same as `instantiate_with_code` but instead of uploading new code an
//! existing `code_hash` is supplied.
//! * `call` - Makes a call to an account, optionally transferring some balance.
//! The Contract module is a work in progress. The following examples show how this Contract module
//! can be used to instantiate and call contracts.
//! * [`ink`](https://github.com/paritytech/ink) is
//! an [`eDSL`](https://wiki.haskell.org/Embedded_domain_specific_language) that enables writing
//! WebAssembly based smart contracts in the Rust programming language. This is a work in progress.
//! * [Balances](../pallet_balances/index.html)
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(feature = "runtime-benchmarks", recursion_limit="512")]
mod storage;
mod schedule;
pub mod chain_extension;
pub mod weights;
#[cfg(test)]
mod tests;
pub use crate::{
gas::{Gas, GasMeter},
wasm::{ReturnCode as RuntimeReturnCode, PrefabWasmModule},
weights::WeightInfo,
schedule::{Schedule, HostFnWeights, InstructionWeights, Limits},
};
use crate::{
exec::{ExecutionContext, Executable},
rent::Rent,
storage::Storage,
};
use sp_core::crypto::UncheckedFrom;
use sp_std::{prelude::*, marker::PhantomData, fmt::Debug};
Hash, StaticLookup, Zero, MaybeSerializeDeserialize, Member, Convert, Saturating,
RuntimeDebug, Perbill,
decl_module, decl_event, decl_storage, decl_error, ensure,
storage::child::ChildInfo,
dispatch::{DispatchResult, DispatchResultWithPostInfo},
traits::{OnUnbalanced, Currency, Get, Time, Randomness},
Alexander Theißen
committed
weights::Pays,
use frame_system::{ensure_signed, ensure_root, Module as System};
Alexander Theißen
committed
use pallet_contracts_primitives::{
RentProjectionResult, GetStorageResult, ContractAccessError, ContractExecResult,
Alexander Theißen
committed
};
use frame_support::weights::{Weight, PostDispatchInfo, WithPostDispatchInfo};
pub type CodeHash<T> = <T as frame_system::Config>::Hash;
/// Information for managing an account and its sub trie abstraction.
/// This is the required info to cache for an account
pub enum ContractInfo<T: Config> {
Alive(AliveContractInfo<T>),
Tombstone(TombstoneContractInfo<T>),
}
impl<T: Config> ContractInfo<T> {
/// If contract is alive then return some alive info
pub fn get_alive(self) -> Option<AliveContractInfo<T>> {
if let ContractInfo::Alive(alive) = self {
Some(alive)
} else {
None
}
}
/// If contract is alive then return some reference to alive info
pub fn as_alive(&self) -> Option<&AliveContractInfo<T>> {
if let ContractInfo::Alive(ref alive) = self {
Some(alive)
} else {
None
}
}
/// If contract is alive then return some mutable reference to alive info
pub fn as_alive_mut(&mut self) -> Option<&mut AliveContractInfo<T>> {
if let ContractInfo::Alive(ref mut alive) = self {
Some(alive)
} else {
None
}
}
/// If contract is tombstone then return some tombstone info
pub fn get_tombstone(self) -> Option<TombstoneContractInfo<T>> {
if let ContractInfo::Tombstone(tombstone) = self {
Some(tombstone)
} else {
None
}
}
/// If contract is tombstone then return some reference to tombstone info
pub fn as_tombstone(&self) -> Option<&TombstoneContractInfo<T>> {
if let ContractInfo::Tombstone(ref tombstone) = self {
Some(tombstone)
} else {
None
}
}
/// If contract is tombstone then return some mutable reference to tombstone info
pub fn as_tombstone_mut(&mut self) -> Option<&mut TombstoneContractInfo<T>> {
if let ContractInfo::Tombstone(ref mut tombstone) = self {
Some(tombstone)
} else {
None
}
}
}
RawAliveContractInfo<CodeHash<T>, BalanceOf<T>, <T as frame_system::Config>::BlockNumber>;
/// Information for managing an account and its sub trie abstraction.
/// This is the required info to cache for an account.
#[derive(Encode, Decode, Clone, PartialEq, Eq, RuntimeDebug)]
pub struct RawAliveContractInfo<CodeHash, Balance, BlockNumber> {
/// Unique ID for the subtree encoded as a bytes vector.
/// The total number of bytes used by this contract.
///
/// It is a sum of each key-value pair stored by this contract.
/// The total number of key-value pairs in storage of this contract.
pub pair_count: u32,
/// The code associated with a given account.
pub code_hash: CodeHash,
Alexander Theißen
committed
/// The amount of rent that was payed by the contract over its whole lifetime.
///
/// A restored contract starts with a value of zero just like a new contract.
pub rent_payed: Balance,
/// Last block child storage has been written.
pub last_write: Option<BlockNumber>,
impl<CodeHash, Balance, BlockNumber> RawAliveContractInfo<CodeHash, Balance, BlockNumber> {
/// Associated child trie unique id is built from the hash part of the trie id.
pub fn child_trie_info(&self) -> ChildInfo {
child_trie_info(&self.trie_id[..])
}
}
/// Associated child trie unique id is built from the hash part of the trie id.
pub(crate) fn child_trie_info(trie_id: &[u8]) -> ChildInfo {
ChildInfo::new_default(trie_id)
RawTombstoneContractInfo<<T as frame_system::Config>::Hash, <T as frame_system::Config>::Hashing>;
#[derive(Encode, Decode, PartialEq, Eq, RuntimeDebug)]
pub struct RawTombstoneContractInfo<H, Hasher>(H, PhantomData<Hasher>);
impl<H, Hasher> RawTombstoneContractInfo<H, Hasher>
where
H: Member + MaybeSerializeDeserialize+ Debug
+ AsRef<[u8]> + AsMut<[u8]> + Copy + Default
+ sp_std::hash::Hash + Codec,
Hasher: Hash<Output=H>,
{
fn new(storage_root: &[u8], code_hash: H) -> Self {
let mut buf = Vec::new();
storage_root.using_encoded(|encoded| buf.extend_from_slice(encoded));
buf.extend_from_slice(code_hash.as_ref());
RawTombstoneContractInfo(<Hasher as Hash>::hash(&buf[..]), PhantomData)
impl<T: Config> From<AliveContractInfo<T>> for ContractInfo<T> {
fn from(alive_info: AliveContractInfo<T>) -> Self {
Self::Alive(alive_info)
}
}
<<T as Config>::Currency as Currency<<T as frame_system::Config>::AccountId>>::Balance;
<<T as Config>::Currency as Currency<<T as frame_system::Config>::AccountId>>::NegativeImbalance;
pub trait Config: frame_system::Config {
type Randomness: Randomness<Self::Hash>;
/// The currency in which fees are paid and contract balances are held.
type Currency: Currency<Self::AccountId>;
/// The overarching event type.
type Event: From<Event<Self>> + Into<<Self as frame_system::Config>::Event>;
/// Handler for rent payments.
type RentPayment: OnUnbalanced<NegativeImbalanceOf<Self>>;
/// Number of block delay an extrinsic claim surcharge has.
///
/// When claim surcharge is called by an extrinsic the rent is checked
/// for current_block - delay
type SignedClaimHandicap: Get<Self::BlockNumber>;
/// The minimum amount required to generate a tombstone.
type TombstoneDeposit: Get<BalanceOf<Self>>;
/// The balance every contract needs to deposit to stay alive indefinitely.
///
/// This is different from the [`Self::TombstoneDeposit`] because this only needs to be
/// deposited while the contract is alive. Costs for additional storage are added to
/// this base cost.
///
/// This is a simple way to ensure that contracts with empty storage eventually get deleted by
/// making them pay rent. This creates an incentive to remove them early in order to save rent.
type DepositPerContract: Get<BalanceOf<Self>>;
/// The balance a contract needs to deposit per storage byte to stay alive indefinitely.
///
/// Let's suppose the deposit is 1,000 BU (balance units)/byte and the rent is 1 BU/byte/day,
/// then a contract with 1,000,000 BU that uses 1,000 bytes of storage would pay no rent.
/// But if the balance reduced to 500,000 BU and the storage stayed the same at 1,000,
/// then it would pay 500 BU/day.
type DepositPerStorageByte: Get<BalanceOf<Self>>;
/// The balance a contract needs to deposit per storage item to stay alive indefinitely.
///
/// It works the same as [`Self::DepositPerStorageByte`] but for storage items.
type DepositPerStorageItem: Get<BalanceOf<Self>>;
/// The fraction of the deposit that should be used as rent per block.
///
/// When a contract hasn't enough balance deposited to stay alive indefinitely it needs
/// to pay per block for the storage it consumes that is not covered by the deposit.
/// This determines how high this rent payment is per block as a fraction of the deposit.
type RentFraction: Get<Perbill>;
/// Reward that is received by the party whose touch has led
/// to removal of a contract.
type SurchargeReward: Get<BalanceOf<Self>>;
/// The maximum nesting level of a call/instantiate stack.
/// The maximum size of a storage value and event payload in bytes.
/// Used to answer contracts's queries regarding the current weight price. This is **not**
/// used to calculate the actual fee and is only for informational purposes.
type WeightPrice: Convert<Weight, BalanceOf<Self>>;
/// Describes the weights of the dispatchables of this module and is also used to
/// construct a default cost schedule.
type WeightInfo: WeightInfo;
/// Type that allows the runtime authors to add new host functions for a contract to call.
type ChainExtension: chain_extension::ChainExtension<Self>;
/// The maximum number of tries that can be queued for deletion.
type DeletionQueueDepth: Get<u32>;
/// The maximum amount of weight that can be consumed per block for lazy trie removal.
type DeletionWeightLimit: Get<Weight>;
/// The maximum length of a contract code in bytes. This limit applies to the instrumented
/// version of the code. Therefore `instantiate_with_code` can fail even when supplying
/// a wasm binary below this maximum size.
type MaxCodeSize: Get<u32>;
Stanislav Tkach
committed
decl_error! {
/// Error for the contracts module.
pub enum Error for Module<T: Config>
where
T::AccountId: UncheckedFrom<T::Hash>,
T::AccountId: AsRef<[u8]>,
{
Stanislav Tkach
committed
/// A new schedule must have a greater version than the current one.
InvalidScheduleVersion,
/// An origin must be signed or inherent and auxiliary sender only provided on inherent.
InvalidSurchargeClaim,
/// Cannot restore from nonexisting or tombstone contract.
InvalidSourceContract,
/// Cannot restore to nonexisting or alive contract.
InvalidDestinationContract,
/// Tombstones don't match.
InvalidTombstone,
/// An origin TrieId written in the current block.
InvalidContractOrigin,
/// The executed contract exhausted its gas limit.
OutOfGas,
/// The output buffer supplied to a contract API call was too small.
OutputBufferTooSmall,
/// Performing the requested transfer would have brought the contract below
/// the subsistence threshold. No transfer is allowed to do this in order to allow
Alexander Theißen
committed
/// for a tombstone to be created. Use `seal_terminate` to remove a contract without
/// leaving a tombstone behind.
BelowSubsistenceThreshold,
/// The newly created contract is below the subsistence threshold after executing
/// its contructor. No contracts are allowed to exist below that threshold.
NewContractNotFunded,
/// Performing the requested transfer failed for a reason originating in the
/// chosen currency implementation of the runtime. Most probably the balance is
/// too low or locks are placed on it.
TransferFailed,
/// Performing a call was denied because the calling depth reached the limit
/// of what is specified in the schedule.
MaxCallDepthReached,
/// The contract that was called is either no contract at all (a plain account)
/// or is a tombstone.
NotCallable,
/// The code supplied to `instantiate_with_code` exceeds the limit specified in the
/// current schedule.
/// No code could be found at the supplied code hash.
CodeNotFound,
/// A buffer outside of sandbox memory was passed to a contract API function.
OutOfBounds,
/// Input passed to a contract API function failed to decode as expected type.
DecodingFailed,
/// Contract trapped during execution.
ContractTrapped,
/// The size defined in `T::MaxValueSize` was exceeded.
ValueTooLarge,
/// The action performed is not allowed while the contract performing it is already
/// on the call stack. Those actions are contract self destruction and restoration
/// of a tombstone.
ReentranceDenied,
Alexander Theißen
committed
/// `seal_input` was called twice from the same contract execution context.
InputAlreadyRead,
/// The subject passed to `seal_random` exceeds the limit.
RandomSubjectTooLong,
/// The amount of topics passed to `seal_deposit_events` exceeds the limit.
TooManyTopics,
/// The topics passed to `seal_deposit_events` contains at least one duplicate.
DuplicateTopics,
/// The chain does not provide a chain extension. Calling the chain extension results
/// in this error. Note that this usually shouldn't happen as deploying such contracts
/// is rejected.
NoChainExtension,
/// Removal of a contract failed because the deletion queue is full.
///
/// This can happen when either calling [`Module::claim_surcharge`] or `seal_terminate`.
/// The queue is filled by deleting contracts and emptied by a fixed amount each block.
/// Trying again during another block is the only way to resolve this issue.
DeletionQueueFull,
/// A contract could not be evicted because it has enough balance to pay rent.
///
/// This can be returned from [`Module::claim_surcharge`] because the target
/// contract has enough balance to pay for its rent.
ContractNotEvictable,
/// A storage modification exhausted the 32bit type that holds the storage size.
///
/// This can either happen when the accumulated storage in bytes is too large or
/// when number of storage items is too large.
StorageExhausted,
/// A contract with the same AccountId already exists.
DuplicateContract,
Stanislav Tkach
committed
}
}
decl_module! {
/// Contracts module.
pub struct Module<T: Config> for enum Call
where
origin: T::Origin,
T::AccountId: UncheckedFrom<T::Hash>,
T::AccountId: AsRef<[u8]>,
{
Stanislav Tkach
committed
type Error = Error<T>;
/// Number of block delay an extrinsic claim surcharge has.
///
/// When claim surcharge is called by an extrinsic the rent is checked
/// for current_block - delay
const SignedClaimHandicap: T::BlockNumber = T::SignedClaimHandicap::get();
/// The minimum amount required to generate a tombstone.
const TombstoneDeposit: BalanceOf<T> = T::TombstoneDeposit::get();
/// The balance every contract needs to deposit to stay alive indefinitely.
/// This is different from the [`Self::TombstoneDeposit`] because this only needs to be
/// deposited while the contract is alive. Costs for additional storage are added to
/// this base cost.
///
/// This is a simple way to ensure that contracts with empty storage eventually get deleted by
/// making them pay rent. This creates an incentive to remove them early in order to save rent.
const DepositPerContract: BalanceOf<T> = T::DepositPerContract::get();
/// The balance a contract needs to deposit per storage byte to stay alive indefinitely.
///
/// Let's suppose the deposit is 1,000 BU (balance units)/byte and the rent is 1 BU/byte/day,
/// then a contract with 1,000,000 BU that uses 1,000 bytes of storage would pay no rent.
/// But if the balance reduced to 500,000 BU and the storage stayed the same at 1,000,
/// then it would pay 500 BU/day.
const DepositPerStorageByte: BalanceOf<T> = T::DepositPerStorageByte::get();
/// The balance a contract needs to deposit per storage item to stay alive indefinitely.
///
/// It works the same as [`Self::DepositPerStorageByte`] but for storage items.
const DepositPerStorageItem: BalanceOf<T> = T::DepositPerStorageItem::get();
/// The fraction of the deposit that should be used as rent per block.
///
/// When a contract hasn't enough balance deposited to stay alive indefinitely it needs
/// to pay per block for the storage it consumes that is not covered by the deposit.
/// This determines how high this rent payment is per block as a fraction of the deposit.
const RentFraction: Perbill = T::RentFraction::get();
/// Reward that is received by the party whose touch has led
/// to removal of a contract.
const SurchargeReward: BalanceOf<T> = T::SurchargeReward::get();
/// The maximum nesting level of a call/instantiate stack. A reasonable default
/// value is 100.
const MaxDepth: u32 = T::MaxDepth::get();
/// The maximum size of a storage value in bytes. A reasonable default is 16 KiB.
const MaxValueSize: u32 = T::MaxValueSize::get();
/// The maximum number of tries that can be queued for deletion.
const DeletionQueueDepth: u32 = T::DeletionQueueDepth::get();
/// The maximum amount of weight that can be consumed per block for lazy trie removal.
const DeletionWeightLimit: Weight = T::DeletionWeightLimit::get();
fn deposit_event() = default;
fn on_initialize() -> Weight {
// We do not want to go above the block limit and rather avoid lazy deletion
// in that case. This should only happen on runtime upgrades.
let weight_limit = T::BlockWeights::get().max_block
.saturating_sub(System::<T>::block_weight().total())
.min(T::DeletionWeightLimit::get());
Storage::<T>::process_deletion_queue_batch(weight_limit)
.saturating_add(T::WeightInfo::on_initialize())
}
/// Updates the schedule for metering contracts.
///
/// The schedule must have a greater version than the stored schedule.
#[weight = T::WeightInfo::update_schedule()]
pub fn update_schedule(origin, schedule: Schedule<T>) -> DispatchResult {
ensure_root(origin)?;
if <Module<T>>::current_schedule().version >= schedule.version {
Stanislav Tkach
committed
Err(Error::<T>::InvalidScheduleVersion)?
}
Self::deposit_event(RawEvent::ScheduleUpdated(schedule.version));
CurrentSchedule::put(schedule);
/// Makes a call to an account, optionally transferring some balance.
///
/// * If the account is a smart-contract account, the associated code will be
/// executed and any value will be transferred.
/// * If the account is a regular account, any value will be transferred.
/// * If no account exists and the call value is not less than `existential_deposit`,
/// a regular account will be created and any value will be transferred.
#[weight = T::WeightInfo::call(T::MaxCodeSize::get() / 1024).saturating_add(*gas_limit)]
dest: <T::Lookup as StaticLookup>::Source,
) -> DispatchResultWithPostInfo {
let origin = ensure_signed(origin)?;
let dest = T::Lookup::lookup(dest)?;
let mut gas_meter = GasMeter::new(gas_limit);
let schedule = <Module<T>>::current_schedule();
let mut ctx = ExecutionContext::<T, PrefabWasmModule<T>>::top_level(origin, &schedule);
let (result, code_len) = match ctx.call(dest, value, &mut gas_meter, data) {
Ok((output, len)) => (Ok(output), len),
Err((err, len)) => (Err(err), len),
};
gas_meter.into_dispatch_result(result, T::WeightInfo::call(code_len / 1024))
/// Instantiates a new contract from the supplied `code` optionally transferring
/// some balance.
///
/// This is the only function that can deploy new code to the chain.
///
/// # Parameters
///
/// * `endowment`: The balance to transfer from the `origin` to the newly created contract.
/// * `gas_limit`: The gas limit enforced when executing the constructor.
/// * `code`: The contract code to deploy in raw bytes.
/// * `data`: The input data to pass to the contract constructor.
/// * `salt`: Used for the address derivation. See [`Self::contract_address`].
/// Instantiation is executed as follows:
/// - The supplied `code` is instrumented, deployed, and a `code_hash` is created for that code.
/// - If the `code_hash` already exists on the chain the underlying `code` will be shared.
/// - The destination address is computed based on the sender, code_hash and the salt.
/// - The smart-contract account is created at the computed address.
/// - The `endowment` is transferred to the new account.
/// - The `deploy` function is executed in the context of the newly-created account.
#[weight =
T::WeightInfo::instantiate_with_code(
code.len() as u32 / 1024,
salt.len() as u32 / 1024,
)
.saturating_add(*gas_limit)
]
pub fn instantiate_with_code(
origin,
#[compact] endowment: BalanceOf<T>,
#[compact] gas_limit: Gas,
code: Vec<u8>,
data: Vec<u8>,
salt: Vec<u8>,
) -> DispatchResultWithPostInfo {
let origin = ensure_signed(origin)?;
let code_len = code.len() as u32;
ensure!(code_len <= T::MaxCodeSize::get(), Error::<T>::CodeTooLarge);
let mut gas_meter = GasMeter::new(gas_limit);
let schedule = <Module<T>>::current_schedule();
let executable = PrefabWasmModule::from_code(code, &schedule)?;
let code_len = executable.code_len();
ensure!(code_len <= T::MaxCodeSize::get(), Error::<T>::CodeTooLarge);
let mut ctx = ExecutionContext::<T, PrefabWasmModule<T>>::top_level(origin, &schedule);
let result = ctx.instantiate(endowment, &mut gas_meter, executable, data, &salt)
.map(|(_address, output)| output);
gas_meter.into_dispatch_result(
result,
T::WeightInfo::instantiate_with_code(code_len / 1024, salt.len() as u32 / 1024)
)
}
/// Instantiates a contract from a previously deployed wasm binary.
///
/// This function is identical to [`Self::instantiate_with_code`] but without the
/// code deployment step. Instead, the `code_hash` of an on-chain deployed wasm binary
/// must be supplied.
#[weight =
T::WeightInfo::instantiate(T::MaxCodeSize::get() / 1024, salt.len() as u32 / 1024)
.saturating_add(*gas_limit)
pub fn instantiate(
#[compact] endowment: BalanceOf<T>,
data: Vec<u8>,
salt: Vec<u8>,
) -> DispatchResultWithPostInfo {
let origin = ensure_signed(origin)?;
let mut gas_meter = GasMeter::new(gas_limit);
let schedule = <Module<T>>::current_schedule();
let executable = PrefabWasmModule::from_storage(code_hash, &schedule, &mut gas_meter)?;
let mut ctx = ExecutionContext::<T, PrefabWasmModule<T>>::top_level(origin, &schedule);
let code_len = executable.code_len();
let result = ctx.instantiate(endowment, &mut gas_meter, executable, data, &salt)
.map(|(_address, output)| output);
gas_meter.into_dispatch_result(
result,
T::WeightInfo::instantiate(code_len / 1024, salt.len() as u32 / 1024),
Alexander Theißen
committed
/// Allows block producers to claim a small reward for evicting a contract. If a block
/// producer fails to do so, a regular users will be allowed to claim the reward.
///
/// In case of a successful eviction no fees are charged from the sender. However, the
/// reward is capped by the total amount of rent that was payed by the contract while
/// it was alive.
/// If contract is not evicted as a result of this call, [`Error::ContractNotEvictable`]
/// is returned and the sender is not eligible for the reward.
#[weight = T::WeightInfo::claim_surcharge(T::MaxCodeSize::get() / 1024)]
pub fn claim_surcharge(
origin,
dest: T::AccountId,
aux_sender: Option<T::AccountId>
Alexander Theißen
committed
) -> DispatchResultWithPostInfo {
let (signed, rewarded) = match (origin, aux_sender) {
(Ok(frame_system::RawOrigin::Signed(account)), None) => {
(Ok(frame_system::RawOrigin::None), Some(aux_sender)) => {
Stanislav Tkach
committed
_ => Err(Error::<T>::InvalidSurchargeClaim)?,
};
// Add some advantage for block producers (who send unsigned extrinsics) by
// adding a handicap: for signed extrinsics we use a slightly older block number
// for the eviction check. This can be viewed as if we pushed regular users back in past.
let handicap = if signed {
} else {
Zero::zero()
};
// If poking the contract has lead to eviction of the contract, give out the rewards.
match Rent::<T, PrefabWasmModule<T>>::try_eviction(&dest, handicap)? {
(Some(rent_payed), code_len) => {
T::Currency::deposit_into_existing(
&rewarded,
T::SurchargeReward::get().min(rent_payed),
)
.map(|_| PostDispatchInfo {
actual_weight: Some(T::WeightInfo::claim_surcharge(code_len / 1024)),
pays_fee: Pays::No,
})
.map_err(Into::into)
}
(None, code_len) => Err(Error::<T>::ContractNotEvictable.with_weight(
T::WeightInfo::claim_surcharge(code_len / 1024)
)),
where
T::AccountId: UncheckedFrom<T::Hash> + AsRef<[u8]>,
{
/// Perform a call to a specified contract.
///
/// This function is similar to `Self::call`, but doesn't perform any address lookups and better
/// suitable for calling directly from Rust.
/// It returns the execution result and the amount of used weight.
pub fn bare_call(
origin: T::AccountId,
dest: T::AccountId,
value: BalanceOf<T>,
gas_limit: Gas,
input_data: Vec<u8>,
Alexander Theißen
committed
) -> ContractExecResult {
let mut gas_meter = GasMeter::new(gas_limit);
let schedule = <Module<T>>::current_schedule();
let mut ctx = ExecutionContext::<T, PrefabWasmModule<T>>::top_level(origin, &schedule);
let result = ctx.call(dest, value, &mut gas_meter, input_data);
Alexander Theißen
committed
let gas_consumed = gas_meter.gas_spent();
ContractExecResult {
exec_result: result.map(|r| r.0).map_err(|r| r.0),
Alexander Theißen
committed
gas_consumed,
}
/// Query storage of a specified contract under a specified key.
Alexander Theißen
committed
pub fn get_storage(address: T::AccountId, key: [u8; 32]) -> GetStorageResult {
let contract_info = ContractInfoOf::<T>::get(&address)
.ok_or(ContractAccessError::DoesntExist)?
.ok_or(ContractAccessError::IsTombstone)?;
let maybe_value = Storage::<T>::read(&contract_info.trie_id, &key);
/// Query how many blocks the contract stays alive given that the amount endowment
/// and consumed storage does not change.
Alexander Theißen
committed
pub fn rent_projection(address: T::AccountId) -> RentProjectionResult<T::BlockNumber> {
Rent::<T, PrefabWasmModule<T>>::compute_projection(&address)
/// Determine the address of a contract,
///
/// This is the address generation function used by contract instantiation. Its result
/// is only dependend on its inputs. It can therefore be used to reliably predict the
/// address of a contract. This is akin to the formular of eth's CREATE2 opcode. There
/// is no CREATE equivalent because CREATE2 is strictly more powerful.
///
/// Formula: `hash(deploying_address ++ code_hash ++ salt)`
pub fn contract_address(
deploying_address: &T::AccountId,
code_hash: &CodeHash<T>,
salt: &[u8],
) -> T::AccountId
{
let buf: Vec<_> = deploying_address.as_ref().iter()
.chain(code_hash.as_ref())
.chain(salt)
.cloned()
.collect();
UncheckedFrom::unchecked_from(T::Hashing::hash(&buf))
}
/// Subsistence threshold is the extension of the minimum balance (aka existential deposit)
/// by the tombstone deposit, required for leaving a tombstone.
///
/// Rent or any contract initiated balance transfer mechanism cannot make the balance lower
/// than the subsistence threshold in order to guarantee that a tombstone is created.
///
/// The only way to completely kill a contract without a tombstone is calling `seal_terminate`.
pub fn subsistence_threshold() -> BalanceOf<T> {
T::Currency::minimum_balance().saturating_add(T::TombstoneDeposit::get())
}
/// Store code for benchmarks which does not check nor instrument the code.
#[cfg(feature = "runtime-benchmarks")]
fn store_code_raw(code: Vec<u8>) -> DispatchResult {
let schedule = <Module<T>>::current_schedule();
PrefabWasmModule::store_code_unchecked(code, &schedule)?;
Ok(())
}
/// This exists so that benchmarks can determine the weight of running an instrumentation.
#[cfg(feature = "runtime-benchmarks")]
fn reinstrument_module(
module: &mut PrefabWasmModule<T>,
schedule: &Schedule<T>
) -> DispatchResult {
self::wasm::reinstrument(module, schedule)
Jim Posen
committed
}
}
decl_event! {
pub enum Event<T>
where
<T as frame_system::Config>::AccountId,
<T as frame_system::Config>::Hash
/// Contract deployed by address at the specified address. \[deployer, contract\]
Instantiated(AccountId, AccountId),
/// Contract has been evicted and is now in tombstone state. \[contract\]
Evicted(AccountId),
/// Contract has been terminated without leaving a tombstone.
/// \[contract, beneficiary\]
/// - `contract`: The contract that was terminated.
/// - `beneficiary`: The account that received the contracts remaining balance.
///
/// # Note
///
/// The only way for a contract to be removed without a tombstone and emitting
/// this event is by calling `seal_terminate`.
Terminated(AccountId, AccountId),
/// Restoration of a contract has been successful.
/// \[restorer, dest, code_hash, rent_allowance\]
/// - `restorer`: Account ID of the restoring contract.
/// - `dest`: Account ID of the restored contract.
/// - `code_hash`: Code hash of the restored contract.
/// - `rent_allowance`: Rent allowance of the restored contract.
Restored(AccountId, AccountId, Hash, Balance),
/// Code with the specified hash has been stored. \[code_hash\]
/// Triggered when the current schedule is updated.
/// \[version\]
///
/// # Params
///
/// - `version`: The version of the newly set schedule.
/// A custom event emitted by the contract.
/// \[contract, data\]
///
/// # Params
///
/// - `contract`: The contract that emitted the event.
/// - `data`: Data supplied by the contract. Metadata generated during contract
/// compilation is needed to decode it.
ContractEmitted(AccountId, Vec<u8>),
/// A code with the specified hash was removed.
/// \[code_hash\]
///
/// This happens when the last contract that uses this code hash was removed or evicted.
CodeRemoved(Hash),
trait Store for Module<T: Config> as Contracts
where
T::AccountId: UncheckedFrom<T::Hash> + AsRef<[u8]>
{
/// Current cost schedule for contracts.
CurrentSchedule get(fn current_schedule) config(): Schedule<T> = Default::default();
/// A mapping from an original code hash to the original code, untouched by instrumentation.
pub PristineCode: map hasher(identity) CodeHash<T> => Option<Vec<u8>>;
/// A mapping between an original code hash and instrumented wasm code, ready for execution.
pub CodeStorage: map hasher(identity) CodeHash<T> => Option<PrefabWasmModule<T>>;
pub AccountCounter: u64 = 0;
/// The code associated with a given account.
///
/// TWOX-NOTE: SAFE since `AccountId` is a secure hash.
pub ContractInfoOf: map hasher(twox_64_concat) T::AccountId => Option<ContractInfo<T>>;
/// Evicted contracts that await child trie deletion.
///
/// Child trie deletion is a heavy operation depending on the amount of storage items
/// stored in said trie. Therefore this operation is performed lazily in `on_initialize`.
pub DeletionQueue: Vec<storage::DeletedContract>;