registrar.rs 43.5 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
// Copyright 2017 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! Module to handle which parachains/parathreads (collectively referred to as "paras") are
//! registered and which are scheduled. Doesn't manage any of the actual execution/validation logic
//! which is left to `parachains.rs`.

use rstd::{prelude::*, result};
#[cfg(any(feature = "std", test))]
use rstd::marker::PhantomData;
use codec::{Encode, Decode};

use sr_primitives::{
	weights::{SimpleDispatchInfo, DispatchInfo},
	transaction_validity::{TransactionValidityError, ValidTransaction, TransactionValidity},
	traits::{Hash as HashT, SignedExtension}
};

use srml_support::{
	decl_storage, decl_module, decl_event, ensure,
	dispatch::{Result, IsSubType}, traits::{Get, Currency, ReservableCurrency}
};
use system::{self, ensure_root, ensure_signed};
use primitives::parachain::{
	Id as ParaId, CollatorId, Scheduling, LOWEST_USER_ID, SwapAux, Info as ParaInfo, ActiveParas,
	Retriable
};
use crate::parachains;
use sr_primitives::transaction_validity::InvalidTransaction;

/// Parachain registration API.
pub trait Registrar<AccountId> {
	/// Create a new unique parachain identity for later registration.
	fn new_id() -> ParaId;

	/// Register a parachain with given `code` and `initial_head_data`. `id` must not yet be registered or it will
	/// result in a error.
	fn register_para(
		id: ParaId,
		info: ParaInfo,
		code: Vec<u8>,
		initial_head_data: Vec<u8>,
	) -> Result;

	/// Deregister a parachain with given `id`. If `id` is not currently registered, an error is returned.
	fn deregister_para(id: ParaId) -> Result;
}

impl<T: Trait> Registrar<T::AccountId> for Module<T> {
	fn new_id() -> ParaId {
		<NextFreeId>::mutate(|n| { let r = *n; *n = ParaId::from(u32::from(*n) + 1); r })
	}

	fn register_para(
		id: ParaId,
		info: ParaInfo,
		code: Vec<u8>,
		initial_head_data: Vec<u8>,
	) -> Result {
		ensure!(!Paras::exists(id), "Parachain already exists");
		if let Scheduling::Always = info.scheduling {
			Parachains::mutate(|parachains|
				match parachains.binary_search(&id) {
					Ok(_) => Err("Parachain already exists"),
					Err(idx) => {
						parachains.insert(idx, id);
						Ok(())
					}
				}
			)?;
		}
		<parachains::Module<T>>::initialize_para(id, code, initial_head_data);
		Paras::insert(id, info);
		Ok(())
	}

	fn deregister_para(id: ParaId) -> Result {
		let info = Paras::take(id).ok_or("Invalid id")?;
		if let Scheduling::Always = info.scheduling {
			Parachains::mutate(|parachains|
				parachains.binary_search(&id)
					.map(|index| parachains.remove(index))
					.map_err(|_| "Invalid id")
			)?;
		}
		<parachains::Module<T>>::cleanup_para(id);
		Paras::remove(id);
		Ok(())
	}
}

type BalanceOf<T> =
	<<T as Trait>::Currency as Currency<<T as system::Trait>::AccountId>>::Balance;

pub trait Trait: parachains::Trait {
	/// The overarching event type.
	type Event: From<Event> + Into<<Self as system::Trait>::Event>;

	/// The aggregated origin type must support the parachains origin. We require that we can
	/// infallibly convert between this origin and the system origin, but in reality, they're the
	/// same type, we just can't express that to the Rust type system without writing a `where`
	/// clause everywhere.
	type Origin: From<<Self as system::Trait>::Origin>
		+ Into<result::Result<parachains::Origin, <Self as Trait>::Origin>>;

	/// The system's currency for parathread payment.
	type Currency: ReservableCurrency<Self::AccountId>;

	/// The deposit to be paid to run a parathread.
	type ParathreadDeposit: Get<BalanceOf<Self>>;

	/// Handler for when two ParaIds are swapped.
	type SwapAux: SwapAux;

	/// The number of items in the parathread queue, aka the number of blocks in advance to schedule
	/// parachain execution.
	type QueueSize: Get<usize>;

	/// The number of rotations that you will have as grace if you miss a block.
	type MaxRetries: Get<u32>;
}

decl_storage! {
	trait Store for Module<T: Trait> as Registrar {
		// Vector of all parachain IDs, in ascending order.
		Parachains: Vec<ParaId>;

		/// The number of threads to schedule per block.
		ThreadCount: u32;

		/// An array of the queue of set of threads scheduled for the coming blocks; ordered by
		/// ascending para ID. There can be no duplicates of para ID in each list item.
		SelectedThreads: Vec<Vec<(ParaId, CollatorId)>>;

		/// Parathreads/chains scheduled for execution this block. If the collator ID is set, then
		/// a particular collator has already been chosen for the next block, and no other collator
		/// may provide the block. In this case we allow the possibility of the combination being
		/// retried in a later block, expressed by `Retriable`.
		///
		/// Ordered by ParaId.
		Active: Vec<(ParaId, Option<(CollatorId, Retriable)>)>;

		/// The next unused ParaId value. Start this high in order to keep low numbers for
		/// system-level chains.
		NextFreeId: ParaId = LOWEST_USER_ID;

		/// Pending swap operations.
		PendingSwap: map ParaId => Option<ParaId>;

		/// Map of all registered parathreads/chains.
		Paras get(paras): map ParaId => Option<ParaInfo>;

		/// The current queue for parathreads that should be retried.
		RetryQueue get(retry_queue): Vec<Vec<(ParaId, CollatorId)>>;

		/// Users who have paid a parathread's deposit
		Debtors: map ParaId => T::AccountId;
	}
	add_extra_genesis {
		config(parachains): Vec<(ParaId, Vec<u8>, Vec<u8>)>;
		config(_phdata): PhantomData<T>;
		build(build::<T>);
	}
}

#[cfg(feature = "std")]
fn build<T: Trait>(config: &GenesisConfig<T>) {
	use sr_primitives::traits::Zero;

	let mut p = config.parachains.clone();
	p.sort_unstable_by_key(|&(ref id, _, _)| *id);
	p.dedup_by_key(|&mut (ref id, _, _)| *id);

	let only_ids: Vec<ParaId> = p.iter().map(|&(ref id, _, _)| id).cloned().collect();

	Parachains::put(&only_ids);

	for (id, code, genesis) in p {
		Paras::insert(id, &primitives::parachain::PARACHAIN_INFO);
		// no ingress -- a chain cannot be routed to until it is live.
		<parachains::Code>::insert(&id, &code);
		<parachains::Heads>::insert(&id, &genesis);
		<parachains::Watermarks<T>>::insert(&id, T::BlockNumber::zero());
		// Save initial parachains in registrar
		Paras::insert(id, ParaInfo { scheduling: Scheduling::Always })
	}
}

/// Swap the existence of two items, provided by value, within an ordered list.
///
/// If neither item exists, or if both items exist this will do nothing. If exactly one of the
/// items exists, then it will be removed and the other inserted.
pub fn swap_ordered_existence<T: PartialOrd + Ord + Copy>(ids: &mut [T], one: T, other: T) {
	let maybe_one_pos = ids.binary_search(&one);
	let maybe_other_pos = ids.binary_search(&other);
	match (maybe_one_pos, maybe_other_pos) {
		(Ok(one_pos), Err(_)) => ids[one_pos] = other,
		(Err(_), Ok(other_pos)) => ids[other_pos] = one,
		_ => return,
	};
	ids.sort();
}

decl_module! {
	/// Parachains module.
	pub struct Module<T: Trait> for enum Call where origin: <T as system::Trait>::Origin {
		fn deposit_event() = default;

		/// Register a parachain with given code.
		/// Fails if given ID is already used.
		#[weight = SimpleDispatchInfo::FixedOperational(5_000_000)]
		pub fn register_para(origin,
			#[compact] id: ParaId,
			info: ParaInfo,
			code: Vec<u8>,
			initial_head_data: Vec<u8>,
		) -> Result {
			ensure_root(origin)?;
			<Self as Registrar<T::AccountId>>::
				register_para(id, info, code, initial_head_data)
		}

		/// Deregister a parachain with given id
		#[weight = SimpleDispatchInfo::FixedOperational(10_000)]
		pub fn deregister_para(origin, #[compact] id: ParaId) -> Result {
			ensure_root(origin)?;
			<Self as Registrar<T::AccountId>>::deregister_para(id)
		}

		/// Reset the number of parathreads that can pay to be scheduled in a single block.
		///
		/// - `count`: The number of parathreads.
		///
		/// Must be called from Root origin.
		fn set_thread_count(origin, count: u32) {
			ensure_root(origin)?;
			ThreadCount::put(count);
		}

		/// Register a parathread for immediate use.
		///
		/// Must be sent from a Signed origin that is able to have ParathreadDeposit reserved.
		/// `code` and `initial_head_data` are used to initialize the parathread's state.
		fn register_parathread(origin,
			code: Vec<u8>,
			initial_head_data: Vec<u8>,
		) {
			let who = ensure_signed(origin)?;

			T::Currency::reserve(&who, T::ParathreadDeposit::get())?;

			let info = ParaInfo {
				scheduling: Scheduling::Dynamic,
			};
			let id = <Self as Registrar<T::AccountId>>::new_id();

			let _ = <Self as Registrar<T::AccountId>>::
				register_para(id, info, code, initial_head_data);

			<Debtors<T>>::insert(id, who);

			Self::deposit_event(Event::ParathreadRegistered(id));
		}

		/// Place a bid for a parathread to be progressed in the next block.
		///
		/// This is a kind of special transaction that should by heavily prioritized in the
		/// transaction pool according to the `value`; only `ThreadCount` of them may be presented
		/// in any single block.
		fn select_parathread(origin,
			#[compact] _id: ParaId,
			_collator: CollatorId,
			_head_hash: T::Hash,
		) {
			ensure_signed(origin)?;
			// Everything else is checked for in the transaction `SignedExtension`.
		}

		/// Deregister a parathread and retrieve the deposit.
		///
		/// Must be sent from a `Parachain` origin which is currently a parathread.
		///
		/// Ensure that before calling this that any funds you want emptied from the parathread's
		/// account is moved out; after this it will be impossible to retrieve them (without
		/// governance intervention).
		fn deregister_parathread(origin) {
			let id = parachains::ensure_parachain(<T as Trait>::Origin::from(origin))?;

			let info = Paras::get(id).ok_or("invalid id")?;
			if let Scheduling::Dynamic = info.scheduling {} else { Err("invalid parathread id")? }

			<Self as Registrar<T::AccountId>>::deregister_para(id)?;
			Self::force_unschedule(|i| i == id);

			let debtor = <Debtors<T>>::take(id);
			let _ = T::Currency::unreserve(&debtor, T::ParathreadDeposit::get());

			Self::deposit_event(Event::ParathreadRegistered(id));
		}

		/// Swap a parachain with another parachain or parathread. The origin must be a `Parachain`.
		/// The swap will happen only if there is already an opposite swap pending. If there is not,
		/// the swap will be stored in the pending swaps map, ready for a later confirmatory swap.
		///
		/// The `ParaId`s remain mapped to the same head data and code so external code can rely on
		/// `ParaId` to be a long-term identifier of a notional "parachain". However, their
		/// scheduling info (i.e. whether they're a parathread or parachain), auction information
		/// and the auction deposit are switched.
		fn swap(origin, #[compact] other: ParaId) {
			let id = parachains::ensure_parachain(<T as Trait>::Origin::from(origin))?;

			if PendingSwap::get(other) == Some(id) {
				// actually do the swap.
				T::SwapAux::ensure_can_swap(id, other)?;

				// Remove intention to swap.
				PendingSwap::remove(other);
				Self::force_unschedule(|i| i == id || i == other);
				Parachains::mutate(|ids| swap_ordered_existence(ids, id, other));
				Paras::mutate(id, |i|
					Paras::mutate(other, |j|
						rstd::mem::swap(i, j)
					)
				);

				<Debtors<T>>::mutate(id, |i|
					<Debtors<T>>::mutate(other, |j|
						rstd::mem::swap(i, j)
					)
				);
				let _ = T::SwapAux::on_swap(id, other);
			} else {
				PendingSwap::insert(id, other);
			}
		}

		/// Block initializer. Clears SelectedThreads and constructs/replaces Active.
		fn on_initialize() {
			let next_up = SelectedThreads::mutate(|t| {
				let r = if t.len() >= T::QueueSize::get() {
					// Take the first set of parathreads in queue
					t.remove(0)
				} else {
					vec![]
				};
				while t.len() < T::QueueSize::get() {
					t.push(vec![]);
				}
				r
			});
			// mutable so that we can replace with `None` if parathread appears in new schedule.
			let mut retrying = Self::take_next_retry();
			if let Some(((para, _), _)) = retrying {
				// this isn't really ideal: better would be if there were an earlier pass that set
				// retrying to the first item in the Missed queue that isn't already scheduled, but
				// this is potentially O(m*n) in terms of missed queue size and parathread pool size.
				if next_up.iter().any(|x| x.0 == para) {
					retrying = None
				}
			}

			let mut paras = Parachains::get().into_iter()
				.map(|id| (id, None))
				.chain(next_up.into_iter()
					.map(|(para, collator)|
						(para, Some((collator, Retriable::WithRetries(0))))
					)
				).chain(retrying.into_iter()
					.map(|((para, collator), retries)|
						(para, Some((collator, Retriable::WithRetries(retries + 1))))
					)
				).collect::<Vec<_>>();
			// for Rust's timsort algorithm, sorting a concatenation of two sorted ranges is near
			// O(N).
			paras.sort_by_key(|&(ref id, _)| *id);

			Active::put(paras);
		}

		fn on_finalize() {
			// a block without this will panic, but let's not panic here.
			if let Some(proceeded_vec) = parachains::DidUpdate::get() {
				// Active is sorted and DidUpdate is a sorted subset of its elements.
				//
				// We just go through the contents of active and find any items that don't appear in
				// DidUpdate *and* which are enabled for retry.
				let mut proceeded = proceeded_vec.into_iter();
				let mut i = proceeded.next();
				for sched in Active::get().into_iter() {
					match i {
						// Scheduled parachain proceeded properly. Move onto next item.
						Some(para) if para == sched.0 => i = proceeded.next(),
						// Scheduled `sched` missed their block.
						// Queue for retry if it's allowed.
						_ => if let (i, Some((c, Retriable::WithRetries(n)))) = sched {
							Self::retry_later((i, c), n)
						},
					}
				}
			}
		}
	}
}

decl_event!{
	pub enum Event {
		/// A parathread was registered; its new ID is supplied.
		ParathreadRegistered(ParaId),

		/// The parathread of the supplied ID was de-registered.
		ParathreadDeregistered(ParaId),
	}
}

impl<T: Trait> Module<T> {
        /// Ensures that the given `ParaId` corresponds to a registered parathread, and returns a descriptor if so.
	pub fn ensure_thread_id(id: ParaId) -> Option<ParaInfo> {
		Paras::get(id).and_then(|info| if let Scheduling::Dynamic = info.scheduling {
			Some(info)
		} else {
			None
		})
	}

	fn retry_later(sched: (ParaId, CollatorId), retries: u32) {
		if retries < T::MaxRetries::get() {
			RetryQueue::mutate(|q| {
				q.resize(T::MaxRetries::get() as usize, vec![]);
				q[retries as usize].push(sched);
			});
		}
	}

	fn take_next_retry() -> Option<((ParaId, CollatorId), u32)> {
		RetryQueue::mutate(|q| {
			for (i, q) in q.iter_mut().enumerate() {
				if !q.is_empty() {
					return Some((q.remove(0), i as u32));
				}
			}
			None
		})
	}

	/// Forcibly remove the threads matching `m` from all current and future scheduling.
	fn force_unschedule(m: impl Fn(ParaId) -> bool) {
		RetryQueue::mutate(|qs| for q in qs.iter_mut() {
			q.retain(|i| !m(i.0))
		});
		SelectedThreads::mutate(|qs| for q in qs.iter_mut() {
			q.retain(|i| !m(i.0))
		});
		Active::mutate(|a| for i in a.iter_mut() {
			if m(i.0) {
				if let Some((_, ref mut r)) = i.1 {
					*r = Retriable::Never;
				}
			}
		});
	}
}

impl<T: Trait> ActiveParas for Module<T> {
	fn active_paras() -> Vec<(ParaId, Option<(CollatorId, Retriable)>)> {
		Active::get()
	}
}

/// Ensure that parathread selections happen prioritized by fees.
#[derive(Encode, Decode, Clone, Eq, PartialEq)]
pub struct LimitParathreadCommits<T: Trait + Send + Sync>(rstd::marker::PhantomData<T>) where
	<T as system::Trait>::Call: IsSubType<Module<T>, T>;

#[cfg(feature = "std")]
impl<T: Trait + Send + Sync> rstd::fmt::Debug for LimitParathreadCommits<T> where
	<T as system::Trait>::Call: IsSubType<Module<T>, T>
{
	fn fmt(&self, f: &mut rstd::fmt::Formatter) -> rstd::fmt::Result {
		write!(f, "LimitParathreadCommits<T>")
	}
}

/// Custom validity errors used in Polkadot while validating transactions.
#[repr(u8)]
pub enum Error {
	/// Parathread ID has already been submitted for this block.
	Duplicate = 0,
	/// Parathread ID does not identify a parathread.
	InvalidId = 1,
}

impl<T: Trait + Send + Sync> SignedExtension for LimitParathreadCommits<T> where
	<T as system::Trait>::Call: IsSubType<Module<T>, T>
{
	type AccountId = T::AccountId;
	type Call = <T as system::Trait>::Call;
	type AdditionalSigned = ();
	type Pre = ();

	fn additional_signed(&self)
		-> rstd::result::Result<Self::AdditionalSigned, TransactionValidityError>
	{
		Ok(())
	}

	fn validate(
		&self,
		_who: &Self::AccountId,
		call: &Self::Call,
		_info: DispatchInfo,
		_len: usize,
	) -> TransactionValidity {
		let mut r = ValidTransaction::default();
		if let Some(local_call) = call.is_sub_type() {
			if let Call::select_parathread(id, collator, hash) = local_call {
				// ensure that the para ID is actually a parathread.
				let e = TransactionValidityError::from(InvalidTransaction::Custom(Error::InvalidId as u8));
				<Module<T>>::ensure_thread_id(*id).ok_or(e)?;

				// ensure that we haven't already had a full complement of selected parathreads.
				let mut upcoming_selected_threads = SelectedThreads::get();
				if upcoming_selected_threads.is_empty() {
					upcoming_selected_threads.push(vec![]);
				}
				let i = upcoming_selected_threads.len() - 1;
				let selected_threads = &mut upcoming_selected_threads[i];
				let thread_count = ThreadCount::get() as usize;
				ensure!(
					selected_threads.len() < thread_count,
					InvalidTransaction::ExhaustsResources.into()
				);

				// ensure that this is not selecting a duplicate parathread ID
				let e = TransactionValidityError::from(InvalidTransaction::Custom(Error::Duplicate as u8));
				let pos = selected_threads
					.binary_search_by(|&(ref other_id, _)| other_id.cmp(id))
					.err()
					.ok_or(e)?;

				// ensure that this is a live bid (i.e. that the thread's chain head matches)
				let e = TransactionValidityError::from(InvalidTransaction::Custom(Error::InvalidId as u8));
				let head = <parachains::Module<T>>::parachain_head(id).ok_or(e)?;
				let actual = T::Hashing::hash(&head);
				ensure!(&actual == hash, InvalidTransaction::Stale.into());

				// updated the selected threads.
				selected_threads.insert(pos, (*id, collator.clone()));
				rstd::mem::drop(selected_threads);
				SelectedThreads::put(upcoming_selected_threads);

				// provides the state-transition for this head-data-hash; this should cue the pool
				// to throw out competing transactions with lesser fees.
				r.provides = vec![hash.encode()];
			}
		}
		Ok(r)
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use bitvec::vec::BitVec;
	use sr_io::TestExternalities;
	use substrate_primitives::{H256, Pair};
	use sr_primitives::{
		traits::{
			BlakeTwo256, IdentityLookup, ConvertInto, OnInitialize, OnFinalize, Dispatchable,
			AccountIdConversion,
		}, testing::{UintAuthorityId, Header}, Perbill
	};
	use primitives::{
		parachain::{
			ValidatorId, Info as ParaInfo, Scheduling, LOWEST_USER_ID, AttestedCandidate,
			CandidateReceipt, HeadData, ValidityAttestation, Statement, Chain, CollatorPair,
		},
		Balance, BlockNumber,
	};
	use srml_support::{
		impl_outer_origin, impl_outer_dispatch, assert_ok, parameter_types, assert_noop,
	};
	use keyring::Sr25519Keyring;

	use crate::parachains;
	use crate::slots;
	use crate::attestations;

	impl_outer_origin! {
		pub enum Origin for Test {
			parachains,
		}
	}

	impl_outer_dispatch! {
		pub enum Call for Test where origin: Origin {
			parachains::Parachains,
			registrar::Registrar,
		}
	}

	#[derive(Clone, Eq, PartialEq)]
	pub struct Test;
	parameter_types! {
		pub const BlockHashCount: u32 = 250;
		pub const MaximumBlockWeight: u32 = 4 * 1024 * 1024;
		pub const MaximumBlockLength: u32 = 4 * 1024 * 1024;
		pub const AvailableBlockRatio: Perbill = Perbill::from_percent(75);
	}
	impl system::Trait for Test {
		type Origin = Origin;
		type Call = Call;
		type Index = u64;
		type BlockNumber = u64;
		type Hash = H256;
		type Hashing = BlakeTwo256;
		type AccountId = u64;
		type Lookup = IdentityLookup<u64>;
		type Header = Header;
		type WeightMultiplierUpdate = ();
		type Event = ();
		type BlockHashCount = BlockHashCount;
		type MaximumBlockWeight = MaximumBlockWeight;
		type MaximumBlockLength = MaximumBlockLength;
		type AvailableBlockRatio = AvailableBlockRatio;
		type Version = ();
	}

	parameter_types! {
		pub const ExistentialDeposit: Balance = 0;
		pub const TransferFee: Balance = 0;
		pub const CreationFee: Balance = 0;
		pub const TransactionBaseFee: Balance = 0;
		pub const TransactionByteFee: Balance = 0;
	}

	impl balances::Trait for Test {
		type Balance = Balance;
		type OnFreeBalanceZero = ();
		type OnNewAccount = ();
		type Event = ();
		type TransactionPayment = ();
		type DustRemoval = ();
		type TransferPayment = ();
		type ExistentialDeposit = ExistentialDeposit;
		type TransferFee = TransferFee;
		type CreationFee = CreationFee;
		type TransactionBaseFee = TransactionBaseFee;
		type TransactionByteFee = TransactionByteFee;
		type WeightToFee = ConvertInto;
	}

	parameter_types!{
		pub const LeasePeriod: u64 = 10;
		pub const EndingPeriod: u64 = 3;
	}

	impl slots::Trait for Test {
		type Event = ();
		type Currency = balances::Module<Test>;
		type Parachains = Registrar;
		type EndingPeriod = EndingPeriod;
		type LeasePeriod = LeasePeriod;
		type Randomness = RandomnessCollectiveFlip;
	}

	parameter_types!{
		pub const AttestationPeriod: BlockNumber = 100;
	}

	impl attestations::Trait for Test {
		type AttestationPeriod = AttestationPeriod;
		type ValidatorIdentities = parachains::ValidatorIdentities<Test>;
		type RewardAttestation = ();
	}

	parameter_types! {
		pub const Period: BlockNumber = 1;
		pub const Offset: BlockNumber = 0;
		pub const DisabledValidatorsThreshold: Perbill = Perbill::from_percent(17);
	}

	impl session::Trait for Test {
		type OnSessionEnding = ();
		type Keys = UintAuthorityId;
		type ShouldEndSession = session::PeriodicSessions<Period, Offset>;
		type SessionHandler = ();
		type Event = ();
		type SelectInitialValidators = ();
		type ValidatorId = u64;
		type ValidatorIdOf = ();
		type DisabledValidatorsThreshold = DisabledValidatorsThreshold;
	}

	impl parachains::Trait for Test {
		type Origin = Origin;
		type Call = Call;
		type ParachainCurrency = balances::Module<Test>;
		type ActiveParachains = Registrar;
		type Registrar = Registrar;
		type Randomness = RandomnessCollectiveFlip;
	}

	parameter_types! {
		pub const ParathreadDeposit: Balance = 10;
		pub const QueueSize: usize = 2;
		pub const MaxRetries: u32 = 3;
	}

	impl Trait for Test {
		type Event = ();
		type Origin = Origin;
		type Currency = balances::Module<Test>;
		type ParathreadDeposit = ParathreadDeposit;
		type SwapAux = slots::Module<Test>;
		type QueueSize = QueueSize;
		type MaxRetries = MaxRetries;
	}

	type Balances = balances::Module<Test>;
	type Parachains = parachains::Module<Test>;
	type System = system::Module<Test>;
	type Slots = slots::Module<Test>;
	type Registrar = Module<Test>;
	type RandomnessCollectiveFlip = randomness_collective_flip::Module<Test>;

	const AUTHORITY_KEYS: [Sr25519Keyring; 8] = [
		Sr25519Keyring::Alice,
		Sr25519Keyring::Bob,
		Sr25519Keyring::Charlie,
		Sr25519Keyring::Dave,
		Sr25519Keyring::Eve,
		Sr25519Keyring::Ferdie,
		Sr25519Keyring::One,
		Sr25519Keyring::Two,
	];

	fn new_test_ext(parachains: Vec<(ParaId, Vec<u8>, Vec<u8>)>) -> TestExternalities {
		let mut t = system::GenesisConfig::default().build_storage::<Test>().unwrap();

		let authority_keys = [
			Sr25519Keyring::Alice,
			Sr25519Keyring::Bob,
			Sr25519Keyring::Charlie,
			Sr25519Keyring::Dave,
			Sr25519Keyring::Eve,
			Sr25519Keyring::Ferdie,
			Sr25519Keyring::One,
			Sr25519Keyring::Two,
		];

		// stashes are the index.
		let session_keys: Vec<_> = authority_keys.iter().enumerate()
			.map(|(i, _k)| (i as u64, UintAuthorityId(i as u64)))
			.collect();

		let authorities: Vec<_> = authority_keys.iter().map(|k| ValidatorId::from(k.public())).collect();

		let balances: Vec<_> = (0..authority_keys.len()).map(|i| (i as u64, 10_000_000)).collect();

		parachains::GenesisConfig {
			authorities: authorities.clone(),
		}.assimilate_storage(&mut t).unwrap();

		GenesisConfig::<Test> {
			parachains,
			_phdata: Default::default(),
		}.assimilate_storage(&mut t).unwrap();

		session::GenesisConfig::<Test> {
			keys: session_keys,
		}.assimilate_storage(&mut t).unwrap();

		balances::GenesisConfig::<Test> {
			balances,
			vesting: vec![],
		}.assimilate_storage(&mut t).unwrap();

		t.into()
	}

	fn init_block() {
		println!("Initializing {}", System::block_number());
		System::on_initialize(System::block_number());
		Registrar::on_initialize(System::block_number());
		Parachains::on_initialize(System::block_number());
		Slots::on_initialize(System::block_number());
	}

	fn run_to_block(n: u64) {
		println!("Running until block {}", n);
		while System::block_number() < n {
			if System::block_number() > 1 {
				println!("Finalizing {}", System::block_number());
				if !parachains::DidUpdate::exists() {
					println!("Null heads update");
					assert_ok!(Parachains::set_heads(system::RawOrigin::None.into(), vec![]));
				}
				Slots::on_finalize(System::block_number());
				Parachains::on_finalize(System::block_number());
				Registrar::on_finalize(System::block_number());
				System::on_finalize(System::block_number());
			}
			System::set_block_number(System::block_number() + 1);
			init_block();
		}
	}

	fn schedule_thread(id: ParaId, head_data: &[u8], col: &CollatorId) {
		let tx: LimitParathreadCommits<Test> = LimitParathreadCommits(Default::default());
		let hdh = BlakeTwo256::hash(head_data);
		let inner_call = super::Call::select_parathread(id, col.clone(), hdh);
		let call = Call::Registrar(inner_call);
		let origin = 4u64;
		assert!(tx.validate(&origin, &call, Default::default(), 0).is_ok());
		assert_ok!(call.dispatch(Origin::signed(origin)));
	}

	fn user_id(i: u32) -> ParaId {
	}

	fn attest(id: ParaId, collator: &CollatorPair, head_data: &[u8], block_data: &[u8]) -> AttestedCandidate {
		let block_data_hash = BlakeTwo256::hash(block_data);
		let candidate = CandidateReceipt {
			parachain_index: id,
			collator: collator.public(),
			signature: block_data_hash.using_encoded(|d| collator.sign(d)),
			head_data: HeadData(head_data.to_vec()),
			egress_queue_roots: vec![],
			fees: 0,
			block_data_hash,
			upward_messages: vec![],
		};
		let payload = (Statement::Valid(candidate.hash()), System::parent_hash()).encode();
		let roster = Parachains::calculate_duty_roster().0.validator_duty;
		AttestedCandidate {
			candidate,
			validity_votes: AUTHORITY_KEYS.iter()
				.enumerate()
				.filter(|(i, _)| roster[*i] == Chain::Parachain(id))
				.map(|(_, k)| k.sign(&payload).into())
				.map(ValidityAttestation::Explicit)
				.collect(),
			validator_indices: roster.iter()
				.map(|i| i == &Chain::Parachain(id))
				.collect::<BitVec>(),
		}
	}

	#[test]
	fn basic_setup_works() {
		new_test_ext(vec![]).execute_with(|| {
			assert_eq!(super::Parachains::get(), vec![]);
			assert_eq!(ThreadCount::get(), 0);
			assert_eq!(Active::get(), vec![]);
			assert_eq!(NextFreeId::get(), LOWEST_USER_ID);
			assert_eq!(PendingSwap::get(&ParaId::from(0u32)), None);
			assert_eq!(Paras::get(&ParaId::from(0u32)), None);
		});
	}

	#[test]
	fn genesis_registration_works() {
		let parachains = vec![
			(5u32.into(), vec![1,2,3], vec![1]),
			(100u32.into(), vec![4,5,6], vec![2,]),
		];

		new_test_ext(parachains).execute_with(|| {
			// Need to trigger on_initialize
			run_to_block(2);
			// Genesis registration works
			assert_eq!(Registrar::active_paras(), vec![(5u32.into(), None), (100u32.into(), None)]);
			assert_eq!(
				Registrar::paras(&ParaId::from(5u32)),
				Some(ParaInfo { scheduling: Scheduling::Always }),
			);
			assert_eq!(
				Registrar::paras(&ParaId::from(100u32)),
				Some(ParaInfo { scheduling: Scheduling::Always }),
			);
			assert_eq!(Parachains::parachain_code(&ParaId::from(5u32)), Some(vec![1, 2, 3]));
			assert_eq!(Parachains::parachain_code(&ParaId::from(100u32)), Some(vec![4, 5, 6]));
		});
	}

	#[test]
	fn swap_chain_and_thread_works() {
		new_test_ext(vec![]).execute_with(|| {
			assert_ok!(Registrar::set_thread_count(Origin::ROOT, 1));

			// Need to trigger on_initialize
			run_to_block(2);

			// Register a new parathread
			assert_ok!(Registrar::register_parathread(
				Origin::signed(1u64),
				vec![1; 3],
				vec![1; 3],
			));

			// Lease out a new parachain
			assert_ok!(Slots::new_auction(Origin::ROOT, 5, 1));
			assert_ok!(Slots::bid(Origin::signed(1), 0, 1, 1, 4, 1));

			run_to_block(9);
			// Ensure that the thread is scheduled around the swap time.
			let col = Sr25519Keyring::One.public().into();
			schedule_thread(user_id(0), &[1; 3], &col);

			run_to_block(10);
			let h = BlakeTwo256::hash(&[2u8; 3]);
			assert_ok!(Slots::fix_deploy_data(Origin::signed(1), 0, user_id(1), h, vec![2; 3]));
			assert_ok!(Slots::elaborate_deploy_data(Origin::signed(0), user_id(1), vec![2; 3]));
			assert_ok!(Slots::set_offboarding(Origin::signed(user_id(1).into_account()), 1));

			run_to_block(11);
			// should be one active parachain and one active parathread.
			assert_eq!(Registrar::active_paras(), vec![
				(user_id(0), Some((col.clone(), Retriable::WithRetries(0)))),
				(user_id(1), None),
			]);

			// One half of the swap call does not actually trigger the swap.
			assert_ok!(Registrar::swap(parachains::Origin::Parachain(user_id(0)).into(), user_id(1)));

			// Nothing changes from what was originally registered
			assert_eq!(Registrar::paras(&user_id(0)), Some(ParaInfo { scheduling: Scheduling::Dynamic }));
			assert_eq!(Registrar::paras(&user_id(1)), Some(ParaInfo { scheduling: Scheduling::Always }));
			assert_eq!(super::Parachains::get(), vec![user_id(1)]);
			assert_eq!(Slots::managed_ids(), vec![user_id(1)]);
			assert_eq!(Slots::deposits(user_id(1)), vec![1; 3]);
			assert_eq!(Slots::offboarding(user_id(1)), 1);
			assert_eq!(Parachains::parachain_code(&user_id(0)), Some(vec![1u8; 3]));
			assert_eq!(Parachains::parachain_head(&user_id(0)), Some(vec![1u8; 3]));
			assert_eq!(Parachains::parachain_code(&user_id(1)), Some(vec![2u8; 3]));
			assert_eq!(Parachains::parachain_head(&user_id(1)), Some(vec![2u8; 3]));
			// Intention to swap is added
			assert_eq!(PendingSwap::get(user_id(0)), Some(user_id(1)));

			// Intention to swap is reciprocated, swap actually happens
			assert_ok!(Registrar::swap(parachains::Origin::Parachain(user_id(1)).into(), user_id(0)));

			assert_eq!(Registrar::paras(&user_id(0)), Some(ParaInfo { scheduling: Scheduling::Always }));
			assert_eq!(Registrar::paras(&user_id(1)), Some(ParaInfo { scheduling: Scheduling::Dynamic }));
			assert_eq!(super::Parachains::get(), vec![user_id(0)]);
			assert_eq!(Slots::managed_ids(), vec![user_id(0)]);
			assert_eq!(Slots::deposits(user_id(0)), vec![1; 3]);
			assert_eq!(Slots::offboarding(user_id(0)), 1);
			assert_eq!(Parachains::parachain_code(&user_id(0)), Some(vec![1u8; 3]));
			assert_eq!(Parachains::parachain_head(&user_id(0)), Some(vec![1u8; 3]));
			assert_eq!(Parachains::parachain_code(&user_id(1)), Some(vec![2u8; 3]));
			assert_eq!(Parachains::parachain_head(&user_id(1)), Some(vec![2u8; 3]));

			// Intention to swap is no longer present
			assert_eq!(PendingSwap::get(user_id(0)), None);
			assert_eq!(PendingSwap::get(user_id(1)), None);

			run_to_block(12);
			// thread should not be queued or scheduled any more, even though it would otherwise be
			// being retried..
			assert_eq!(Registrar::active_paras(), vec![(user_id(0), None)]);
		});
	}

	#[test]
	fn swap_handles_funds_correctly() {
		new_test_ext(vec![]).execute_with(|| {
			assert_ok!(Registrar::set_thread_count(Origin::ROOT, 1));

			// Need to trigger on_initialize
			run_to_block(2);

			let initial_1_balance = Balances::free_balance(1);
			let initial_2_balance = Balances::free_balance(2);

			// User 1 register a new parathread
			assert_ok!(Registrar::register_parathread(
				Origin::signed(1),
				vec![1; 3],
				vec![1; 3],
			));

			// User 2 leases out a new parachain
			assert_ok!(Slots::new_auction(Origin::ROOT, 5, 1));
			assert_ok!(Slots::bid(Origin::signed(2), 0, 1, 1, 4, 1));