Skip to content
  1. Apr 10, 2024
  2. Apr 09, 2024
    • Facundo Farall's avatar
      Upgrade `trie-db` from `0.28.0` to `0.29.0` (#3982) · 4e73c0fc
      Facundo Farall authored
      
      
      # Description
      - What does this PR do?
      1. Upgrades `trie-db`'s version to the latest release. This release
      includes, among others, an implementation of `DoubleEndedIterator` for
      the `TrieDB` struct, allowing to iterate both backwards and forwards
      within the leaves of a trie.
      2. Upgrades `trie-bench` to `0.39.0` for compatibility.
      3. Upgrades `criterion` to `0.5.1` for compatibility.
      - Why are these changes needed?
      Besides keeping up with the upgrade of `trie-db`, this specifically adds
      the functionality of iterating back on the leafs of a trie, with
      `sp-trie`. In a project we're currently working on, this comes very
      handy to verify a Merkle proof that is the response to a challenge. The
      challenge is a random hash that (most likely) will not be an existing
      leaf in the trie. So the challenged user, has to provide a Merkle proof
      of the previous and next existing leafs in the trie, that surround the
      random challenged hash.
      
      Without having DoubleEnded iterators, we're forced to iterate until we
      find the first existing leaf, like so:
      ```rust
              // ************* VERIFIER (RUNTIME) *************
              // Verify proof. This generates a partial trie based on the proof and
              // checks that the root hash matches the `expected_root`.
              let (memdb, root) = proof.to_memory_db(Some(&root)).unwrap();
              let trie = TrieDBBuilder::<LayoutV1<RefHasher>>::new(&memdb, &root).build();
      
              // Print all leaf node keys and values.
              println!("\nPrinting leaf nodes of partial tree...");
              for key in trie.key_iter().unwrap() {
                  if key.is_ok() {
                      println!("Leaf node key: {:?}", key.clone().unwrap());
      
                      let val = trie.get(&key.unwrap());
      
                      if val.is_ok() {
                          println!("Leaf node value: {:?}", val.unwrap());
                      } else {
                          println!("Leaf node value: None");
                      }
                  }
              }
      
              println!("RECONSTRUCTED TRIE {:#?}", trie);
      
              // Create an iterator over the leaf nodes.
              let mut iter = trie.iter().unwrap();
      
              // First element with a value should be the previous existing leaf to the challenged hash.
              let mut prev_key = None;
              for element in &mut iter {
                  if element.is_ok() {
                      let (key, _) = element.unwrap();
                      prev_key = Some(key);
                      break;
                  }
              }
              assert!(prev_key.is_some());
      
              // Since hashes are `Vec<u8>` ordered in big-endian, we can compare them directly.
              assert!(prev_key.unwrap() <= challenge_hash.to_vec());
      
              // The next element should exist (meaning there is no other existing leaf between the
              // previous and next leaf) and it should be greater than the challenged hash.
              let next_key = iter.next().unwrap().unwrap().0;
              assert!(next_key >= challenge_hash.to_vec());
      ```
      
      With DoubleEnded iterators, we can avoid that, like this:
      ```rust
              // ************* VERIFIER (RUNTIME) *************
              // Verify proof. This generates a partial trie based on the proof and
              // checks that the root hash matches the `expected_root`.
              let (memdb, root) = proof.to_memory_db(Some(&root)).unwrap();
              let trie = TrieDBBuilder::<LayoutV1<RefHasher>>::new(&memdb, &root).build();
      
              // Print all leaf node keys and values.
              println!("\nPrinting leaf nodes of partial tree...");
              for key in trie.key_iter().unwrap() {
                  if key.is_ok() {
                      println!("Leaf node key: {:?}", key.clone().unwrap());
      
                      let val = trie.get(&key.unwrap());
      
                      if val.is_ok() {
                          println!("Leaf node value: {:?}", val.unwrap());
                      } else {
                          println!("Leaf node value: None");
                      }
                  }
              }
      
              // println!("RECONSTRUCTED TRIE {:#?}", trie);
              println!("\nChallenged key: {:?}", challenge_hash);
      
              // Create an iterator over the leaf nodes.
              let mut double_ended_iter = trie.into_double_ended_iter().unwrap();
      
              // First element with a value should be the previous existing leaf to the challenged hash.
              double_ended_iter.seek(&challenge_hash.to_vec()).unwrap();
              let next_key = double_ended_iter.next_back().unwrap().unwrap().0;
              let prev_key = double_ended_iter.next_back().unwrap().unwrap().0;
      
              // Since hashes are `Vec<u8>` ordered in big-endian, we can compare them directly.
              println!("Prev key: {:?}", prev_key);
              assert!(prev_key <= challenge_hash.to_vec());
      
              println!("Next key: {:?}", next_key);
              assert!(next_key >= challenge_hash.to_vec());
      ```
      - How were these changes implemented and what do they affect?
      All that is needed for this functionality to be exposed is changing the
      version number of `trie-db` in all the `Cargo.toml`s applicable, and
      re-exporting some additional structs from `trie-db` in `sp-trie`.
      
      ---------
      
      Co-authored-by: default avatarBastian Köcher <[email protected]>
      4e73c0fc