Skip to content
mod.rs 34.9 KiB
Newer Older
// Copyright 2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! The inclusion pallet is responsible for inclusion and availability of scheduled parachains
//! and parathreads.
//!
//! It is responsible for carrying candidates from being backable to being backed, and then from backed
//! to included.

use crate::{
	configuration, disputes, dmp, hrmp, paras, paras_inherent::DisputedBitfield,
	scheduler::CoreAssignment, shared, ump,
};
use bitvec::{order::Lsb0 as BitOrderLsb0, vec::BitVec};
use frame_support::pallet_prelude::*;
use parity_scale_codec::{Decode, Encode};
use primitives::v1::{
	AvailabilityBitfield, BackedCandidate, CandidateCommitments, CandidateDescriptor,
	CandidateHash, CandidateReceipt, CommittedCandidateReceipt, CoreIndex, GroupIndex, Hash,
	HeadData, Id as ParaId, SigningContext, UncheckedSignedAvailabilityBitfields, ValidatorId,
	ValidatorIndex, ValidityAttestation,
};
use scale_info::TypeInfo;
use sp_runtime::{traits::One, DispatchError};
use sp_std::{collections::btree_set::BTreeSet, prelude::*};

pub use pallet::*;

#[cfg(test)]
pub(crate) mod tests;

/// A bitfield signed by a validator indicating that it is keeping its piece of the erasure-coding
/// for any backed candidates referred to by a `1` bit available.
///
/// The bitfield's signature should be checked at the point of submission. Afterwards it can be
/// dropped.
#[derive(Encode, Decode, TypeInfo)]
#[cfg_attr(test, derive(Debug))]
pub struct AvailabilityBitfieldRecord<N> {
	bitfield: AvailabilityBitfield, // one bit per core.
	submitted_at: N,                // for accounting, as meaning of bits may change over time.
}

/// Determines if all checks should be applied or if a subset was already completed
/// in a code path that will be executed afterwards or was already executed before.
#[derive(Clone, Copy, Encode, Decode, PartialEq, Eq, RuntimeDebug, TypeInfo)]
pub(crate) enum FullCheck {
	/// Yes, do a full check, skip nothing.
	Yes,
	/// Skip a subset of checks that are already completed before.
	///
	/// Attention: Should only be used when absolutely sure that the required
	/// checks are completed before.
	Skip,
}

/// A backed candidate pending availability.
#[derive(Encode, Decode, PartialEq, TypeInfo)]
#[cfg_attr(test, derive(Debug))]
pub struct CandidatePendingAvailability<H, N> {
	/// The availability core this is assigned to.
	core: CoreIndex,
	/// The candidate hash.
	hash: CandidateHash,
	/// The candidate descriptor.
	descriptor: CandidateDescriptor<H>,
	/// The received availability votes. One bit per validator.
	availability_votes: BitVec<BitOrderLsb0, u8>,
	/// The backers of the candidate pending availability.
	backers: BitVec<BitOrderLsb0, u8>,
	/// The block number of the relay-parent of the receipt.
	relay_parent_number: N,
	/// The block number of the relay-chain block this was backed in.
	backed_in_number: N,
	/// The group index backing this block.
	backing_group: GroupIndex,
}

impl<H, N> CandidatePendingAvailability<H, N> {
	/// Get the availability votes on the candidate.
	pub(crate) fn availability_votes(&self) -> &BitVec<BitOrderLsb0, u8> {
		&self.availability_votes
	}

	/// Get the relay-chain block number this was backed in.
	pub(crate) fn backed_in_number(&self) -> &N {
		&self.backed_in_number
	}

	/// Get the core index.
	pub(crate) fn core_occupied(&self) -> CoreIndex {
		self.core.clone()
	}

	/// Get the candidate hash.
	pub(crate) fn candidate_hash(&self) -> CandidateHash {
		self.hash
	}

	/// Get the candidate descriptor.
	pub(crate) fn candidate_descriptor(&self) -> &CandidateDescriptor<H> {
		&self.descriptor
	}

	#[cfg(any(feature = "runtime-benchmarks", test))]
	pub(crate) fn new(
		core: CoreIndex,
		hash: CandidateHash,
		descriptor: CandidateDescriptor<H>,
		availability_votes: BitVec<BitOrderLsb0, u8>,
		backers: BitVec<BitOrderLsb0, u8>,
		relay_parent_number: N,
		backed_in_number: N,
		backing_group: GroupIndex,
	) -> Self {
		Self {
			core,
			hash,
			descriptor,
			availability_votes,
			backers,
			relay_parent_number,
			backed_in_number,
			backing_group,
		}
	}
}

/// A hook for applying validator rewards
pub trait RewardValidators {
	// Reward the validators with the given indices for issuing backing statements.
	fn reward_backing(validators: impl IntoIterator<Item = ValidatorIndex>);
	// Reward the validators with the given indices for issuing availability bitfields.
	// Validators are sent to this hook when they have contributed to the availability
	// of a candidate by setting a bit in their bitfield.
	fn reward_bitfields(validators: impl IntoIterator<Item = ValidatorIndex>);
}

/// Helper return type for `process_candidates`.
#[derive(Encode, Decode, PartialEq, TypeInfo)]
#[cfg_attr(test, derive(Debug))]
pub(crate) struct ProcessedCandidates<H = Hash> {
	pub(crate) core_indices: Vec<CoreIndex>,
	pub(crate) candidate_receipt_with_backing_validator_indices:
		Vec<(CandidateReceipt<H>, Vec<(ValidatorIndex, ValidityAttestation)>)>,
}

impl<H> Default for ProcessedCandidates<H> {
	fn default() -> Self {
		Self {
			core_indices: Vec::new(),
			candidate_receipt_with_backing_validator_indices: Vec::new(),
		}
	}
}

/// Number of backing votes we need for a valid backing.
pub fn minimum_backing_votes(n_validators: usize) -> usize {
	// For considerations on this value see:
	// https://github.com/paritytech/polkadot/pull/1656#issuecomment-999734650
	// and
	// https://github.com/paritytech/polkadot/issues/4386
	sp_std::cmp::min(n_validators, 2)
}

#[frame_support::pallet]
pub mod pallet {
	use super::*;

	#[pallet::pallet]
	#[pallet::generate_store(pub(super) trait Store)]
	pub struct Pallet<T>(_);

	#[pallet::config]
	pub trait Config:
		frame_system::Config
		+ shared::Config
		+ paras::Config
		+ dmp::Config
		+ ump::Config
		+ hrmp::Config
		+ configuration::Config
	{
		type Event: From<Event<Self>> + IsType<<Self as frame_system::Config>::Event>;
		type DisputesHandler: disputes::DisputesHandler<Self::BlockNumber>;
		type RewardValidators: RewardValidators;
	}

	#[pallet::event]
	#[pallet::generate_deposit(pub(super) fn deposit_event)]
	pub enum Event<T: Config> {
		/// A candidate was backed. `[candidate, head_data]`
		CandidateBacked(CandidateReceipt<T::Hash>, HeadData, CoreIndex, GroupIndex),
		/// A candidate was included. `[candidate, head_data]`
		CandidateIncluded(CandidateReceipt<T::Hash>, HeadData, CoreIndex, GroupIndex),
		/// A candidate timed out. `[candidate, head_data]`
		CandidateTimedOut(CandidateReceipt<T::Hash>, HeadData, CoreIndex),
	}

	#[pallet::error]
	pub enum Error<T> {
		/// Validator indices are out of order or contains duplicates.
		UnsortedOrDuplicateValidatorIndices,
		/// Dispute statement sets are out of order or contain duplicates.
		UnsortedOrDuplicateDisputeStatementSet,
		/// Backed candidates are out of order (core index) or contain duplicates.
		UnsortedOrDuplicateBackedCandidates,
		/// A different relay parent was provided compared to the on-chain stored one.
		UnexpectedRelayParent,
		/// Availability bitfield has unexpected size.
		WrongBitfieldSize,
		/// Bitfield consists of zeros only.
		BitfieldAllZeros,
		/// Multiple bitfields submitted by same validator or validators out of order by index.
		BitfieldDuplicateOrUnordered,
		/// Validator index out of bounds.
		ValidatorIndexOutOfBounds,
		/// Invalid signature
		InvalidBitfieldSignature,
		/// Candidate submitted but para not scheduled.
		UnscheduledCandidate,
		/// Candidate scheduled despite pending candidate already existing for the para.
		CandidateScheduledBeforeParaFree,
		/// Candidate included with the wrong collator.
		WrongCollator,
		/// Scheduled cores out of order.
		ScheduledOutOfOrder,
		/// Head data exceeds the configured maximum.
		HeadDataTooLarge,
		/// Code upgrade prematurely.
		PrematureCodeUpgrade,
		/// Output code is too large
		NewCodeTooLarge,
		/// Candidate not in parent context.
		CandidateNotInParentContext,
		/// Invalid group index in core assignment.
		InvalidGroupIndex,
		/// Insufficient (non-majority) backing.
		InsufficientBacking,
		/// Invalid (bad signature, unknown validator, etc.) backing.
		InvalidBacking,
		/// Collator did not sign PoV.
		NotCollatorSigned,
		/// The validation data hash does not match expected.
		ValidationDataHashMismatch,
		/// The downward message queue is not processed correctly.
		IncorrectDownwardMessageHandling,
		/// At least one upward message sent does not pass the acceptance criteria.
		InvalidUpwardMessages,
		/// The candidate didn't follow the rules of HRMP watermark advancement.
		HrmpWatermarkMishandling,
		/// The HRMP messages sent by the candidate is not valid.
		InvalidOutboundHrmp,
		/// The validation code hash of the candidate is not valid.
		InvalidValidationCodeHash,
		/// The `para_head` hash in the candidate descriptor doesn't match the hash of the actual para head in the
		/// commitments.
		ParaHeadMismatch,
		/// A bitfield that references a freed core,
		/// either intentionally or as part of a concluded
		/// invalid dispute.
		BitfieldReferencesFreedCore,
	}

	/// The latest bitfield for each validator, referred to by their index in the validator set.
	#[pallet::storage]
	pub(crate) type AvailabilityBitfields<T: Config> =
		StorageMap<_, Twox64Concat, ValidatorIndex, AvailabilityBitfieldRecord<T::BlockNumber>>;

	/// Candidates pending availability by `ParaId`.
	#[pallet::storage]
	pub(crate) type PendingAvailability<T: Config> =
		StorageMap<_, Twox64Concat, ParaId, CandidatePendingAvailability<T::Hash, T::BlockNumber>>;

	/// The commitments of candidates pending availability, by `ParaId`.
	#[pallet::storage]
	pub(crate) type PendingAvailabilityCommitments<T: Config> =
		StorageMap<_, Twox64Concat, ParaId, CandidateCommitments>;

	#[pallet::call]
	impl<T: Config> Pallet<T> {}
}

const LOG_TARGET: &str = "runtime::inclusion";

impl<T: Config> Pallet<T> {
	/// Block initialization logic, called by initializer.
	pub(crate) fn initializer_initialize(_now: T::BlockNumber) -> Weight {
		0
	}

	/// Block finalization logic, called by initializer.
	pub(crate) fn initializer_finalize() {}

	/// Handle an incoming session change.
	pub(crate) fn initializer_on_new_session(
		_notification: &crate::initializer::SessionChangeNotification<T::BlockNumber>,
	) {
		// unlike most drain methods, drained elements are not cleared on `Drop` of the iterator
		// and require consumption.
		for _ in <PendingAvailabilityCommitments<T>>::drain() {}
		for _ in <PendingAvailability<T>>::drain() {}
		for _ in <AvailabilityBitfields<T>>::drain() {}
	}

	/// Extract the freed cores based on cores that became available.
	///
	/// Updates storage items `PendingAvailability` and `AvailabilityBitfields`.
	pub(crate) fn update_pending_availability_and_get_freed_cores<F>(
		expected_bits: usize,
		validators: &[ValidatorId],
		signed_bitfields: UncheckedSignedAvailabilityBitfields,
		core_lookup: F,
		enact_candidate: bool,
	) -> Vec<(CoreIndex, CandidateHash)>
	where
		F: Fn(CoreIndex) -> Option<ParaId>,
	{
		let mut assigned_paras_record = (0..expected_bits)
			.map(|bit_index| core_lookup(CoreIndex::from(bit_index as u32)))
			.map(|opt_para_id| {
				opt_para_id.map(|para_id| (para_id, PendingAvailability::<T>::get(&para_id)))
			})
			.collect::<Vec<_>>();

		let now = <frame_system::Pallet<T>>::block_number();
		for (checked_bitfield, validator_index) in
			signed_bitfields.into_iter().map(|signed_bitfield| {
				// extracting unchecked data, since it's checked in `fn sanitize_bitfields` already.
				let validator_idx = signed_bitfield.unchecked_validator_index();
				let checked_bitfield = signed_bitfield.unchecked_into_payload();
				(checked_bitfield, validator_idx)
			}) {
			for (bit_idx, _) in checked_bitfield.0.iter().enumerate().filter(|(_, is_av)| **is_av) {
				let pending_availability = if let Some((_, pending_availability)) =
					assigned_paras_record[bit_idx].as_mut()
				{
					pending_availability
				} else {
					// For honest validators, this happens in case of unoccupied cores,
					// which in turn happens in case of a disputed candidate.
					// A malicious one might include arbitrary indices, but they are represented
					// by `None` values and will be sorted out in the next if case.
					continue
				};

				// defensive check - this is constructed by loading the availability bitfield record,
				// which is always `Some` if the core is occupied - that's why we're here.
				let validator_index = validator_index.0 as usize;
				if let Some(mut bit) =
					pending_availability.as_mut().and_then(|candidate_pending_availability| {
						candidate_pending_availability.availability_votes.get_mut(validator_index)
					}) {
					*bit = true;
				}
			}

			let record =
				AvailabilityBitfieldRecord { bitfield: checked_bitfield, submitted_at: now };

			<AvailabilityBitfields<T>>::insert(&validator_index, record);
		}

		let threshold = availability_threshold(validators.len());

		let mut freed_cores = Vec::with_capacity(expected_bits);
		for (para_id, pending_availability) in assigned_paras_record
			.into_iter()
			.filter_map(|x| x)
			.filter_map(|(id, p)| p.map(|p| (id, p)))
		{
			if pending_availability.availability_votes.count_ones() >= threshold {
				<PendingAvailability<T>>::remove(&para_id);
				let commitments = match PendingAvailabilityCommitments::<T>::take(&para_id) {
					Some(commitments) => commitments,
					None => {
						log::warn!(
							target: LOG_TARGET,
							"Inclusion::process_bitfields: PendingAvailability and PendingAvailabilityCommitments
							are out of sync, did someone mess with the storage?",
						);
						continue
					},
				};

					let receipt = CommittedCandidateReceipt {
						descriptor: pending_availability.descriptor,
						commitments,
					};
					let _weight = Self::enact_candidate(
						pending_availability.relay_parent_number,
						receipt,
						pending_availability.backers,
						pending_availability.availability_votes,
						pending_availability.core,
						pending_availability.backing_group,
					);
				}

				freed_cores.push((pending_availability.core, pending_availability.hash));
			} else {
				<PendingAvailability<T>>::insert(&para_id, &pending_availability);
			}
		}

		freed_cores
	}

	/// Process a set of incoming bitfields.
	///
	/// Returns a `Vec` of `CandidateHash`es and their respective `AvailabilityCore`s that became available,
	/// and cores free.
	pub(crate) fn process_bitfields(
		expected_bits: usize,
		signed_bitfields: UncheckedSignedAvailabilityBitfields,
		disputed_bitfield: DisputedBitfield,
		core_lookup: impl Fn(CoreIndex) -> Option<ParaId>,
		full_check: FullCheck,
	) -> Result<Vec<(CoreIndex, CandidateHash)>, crate::inclusion::Error<T>> {
		let validators = shared::Pallet::<T>::active_validator_keys();
		let session_index = shared::Pallet::<T>::session_index();
		let parent_hash = frame_system::Pallet::<T>::parent_hash();

		let checked_bitfields = crate::paras_inherent::assure_sanity_bitfields::<T>(
			signed_bitfields,
			disputed_bitfield,
			expected_bits,
			parent_hash,
			session_index,
			&validators[..],
		let freed_cores = Self::update_pending_availability_and_get_freed_cores::<_>(
			expected_bits,
			&validators[..],
			checked_bitfields,
			core_lookup,
	}

	/// Process candidates that have been backed. Provide the relay storage root, a set of candidates
	/// and scheduled cores.
	///
	/// Both should be sorted ascending by core index, and the candidates should be a subset of
	/// scheduled cores. If these conditions are not met, the execution of the function fails.
	pub(crate) fn process_candidates<GV>(
		parent_storage_root: T::Hash,
		candidates: Vec<BackedCandidate<T::Hash>>,
		scheduled: Vec<CoreAssignment>,
		group_validators: GV,
		full_check: FullCheck,
	) -> Result<ProcessedCandidates<T::Hash>, DispatchError>
	where
		GV: Fn(GroupIndex) -> Option<Vec<ValidatorIndex>>,
	{
		ensure!(candidates.len() <= scheduled.len(), Error::<T>::UnscheduledCandidate);

		if scheduled.is_empty() {
			return Ok(ProcessedCandidates::default())
		}

		let validators = shared::Pallet::<T>::active_validator_keys();
		let parent_hash = <frame_system::Pallet<T>>::parent_hash();

		// At the moment we assume (and in fact enforce, below) that the relay-parent is always one
		// before of the block where we include a candidate (i.e. this code path).
		let now = <frame_system::Pallet<T>>::block_number();
		let relay_parent_number = now - One::one();
		let check_ctx = CandidateCheckContext::<T>::new(now, relay_parent_number);

		// Collect candidate receipts with backers.
		let mut candidate_receipt_with_backing_validator_indices =
			Vec::with_capacity(candidates.len());

		// Do all checks before writing storage.
		let core_indices_and_backers = {
			let mut skip = 0;
			let mut core_indices_and_backers = Vec::with_capacity(candidates.len());
			let mut last_core = None;

			let mut check_assignment_in_order = |assignment: &CoreAssignment| -> DispatchResult {
				ensure!(
					last_core.map_or(true, |core| assignment.core > core),
					Error::<T>::ScheduledOutOfOrder,
				);

				last_core = Some(assignment.core);
				Ok(())
			};

			let signing_context =
				SigningContext { parent_hash, session_index: shared::Pallet::<T>::session_index() };

			// We combine an outer loop over candidates with an inner loop over the scheduled,
			// where each iteration of the outer loop picks up at the position
			// in scheduled just after the past iteration left off.
			//
			// If the candidates appear in the same order as they appear in `scheduled`,
			// then they should always be found. If the end of `scheduled` is reached,
			// then the candidate was either not scheduled or out-of-order.
			//
			// In the meantime, we do certain sanity checks on the candidates and on the scheduled
			// list.
			'next_backed_candidate: for (candidate_idx, backed_candidate) in
				candidates.iter().enumerate()
			{
				if let FullCheck::Yes = full_check {
					check_ctx.verify_backed_candidate(
						parent_hash,
						candidate_idx,
						backed_candidate,
					)?;
				}

				let para_id = backed_candidate.descriptor().para_id;
				let mut backers = bitvec::bitvec![BitOrderLsb0, u8; 0; validators.len()];

				for (i, assignment) in scheduled[skip..].iter().enumerate() {
					check_assignment_in_order(assignment)?;

					if para_id == assignment.para_id {
						if let Some(required_collator) = assignment.required_collator() {
							ensure!(
								required_collator == &backed_candidate.descriptor().collator,
								Error::<T>::WrongCollator,
							);
						}

						{
							// this should never fail because the para is registered
							let persisted_validation_data =
								match crate::util::make_persisted_validation_data::<T>(
									para_id,
									relay_parent_number,
									parent_storage_root,
								) {
									Some(l) => l,
									None => {
										// We don't want to error out here because it will
										// brick the relay-chain. So we return early without
										// doing anything.
										return Ok(ProcessedCandidates::default())
									},
								};

							let expected = persisted_validation_data.hash();

							ensure!(
								expected ==
									backed_candidate.descriptor().persisted_validation_data_hash,
								Error::<T>::ValidationDataHashMismatch,
							);
						}

						ensure!(
							<PendingAvailability<T>>::get(&para_id).is_none() &&
								<PendingAvailabilityCommitments<T>>::get(&para_id).is_none(),
							Error::<T>::CandidateScheduledBeforeParaFree,
						);

						// account for already skipped, and then skip this one.
						skip = i + skip + 1;

						let group_vals = group_validators(assignment.group_idx)
							.ok_or_else(|| Error::<T>::InvalidGroupIndex)?;

						// check the signatures in the backing and that it is a majority.
						{
							let maybe_amount_validated = primitives::v1::check_candidate_backing(
								&backed_candidate,
								&signing_context,
								group_vals.len(),
								|intra_group_vi| {
									group_vals
										.get(intra_group_vi)
										.and_then(|vi| validators.get(vi.0 as usize))
										.map(|v| v.clone())
								},
							);

							match maybe_amount_validated {
								Ok(amount_validated) => ensure!(
									amount_validated >= minimum_backing_votes(group_vals.len()),
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
									Error::<T>::InsufficientBacking,
								),
								Err(()) => {
									Err(Error::<T>::InvalidBacking)?;
								},
							}

							let mut backer_idx_and_attestation =
								Vec::<(ValidatorIndex, ValidityAttestation)>::with_capacity(
									backed_candidate.validator_indices.count_ones(),
								);
							let candidate_receipt = backed_candidate.receipt();

							for ((bit_idx, _), attestation) in backed_candidate
								.validator_indices
								.iter()
								.enumerate()
								.filter(|(_, signed)| **signed)
								.zip(backed_candidate.validity_votes.iter().cloned())
							{
								let val_idx = group_vals
									.get(bit_idx)
									.expect("this query succeeded above; qed");
								backer_idx_and_attestation.push((*val_idx, attestation));

								backers.set(val_idx.0 as _, true);
							}
							candidate_receipt_with_backing_validator_indices
								.push((candidate_receipt, backer_idx_and_attestation));
						}

						core_indices_and_backers.push((
							assignment.core,
							backers,
							assignment.group_idx,
						));
						continue 'next_backed_candidate
					}
				}

				// end of loop reached means that the candidate didn't appear in the non-traversed
				// section of the `scheduled` slice. either it was not scheduled or didn't appear in
				// `candidates` in the correct order.
				ensure!(false, Error::<T>::UnscheduledCandidate);
			}

			// check remainder of scheduled cores, if any.
			for assignment in scheduled[skip..].iter() {
				check_assignment_in_order(assignment)?;
			}

			core_indices_and_backers
		};

		// one more sweep for actually writing to storage.
		let core_indices =
			core_indices_and_backers.iter().map(|&(ref c, _, _)| c.clone()).collect();
		for (candidate, (core, backers, group)) in
			candidates.into_iter().zip(core_indices_and_backers)
		{
			let para_id = candidate.descriptor().para_id;

			// initialize all availability votes to 0.
			let availability_votes: BitVec<BitOrderLsb0, u8> =
				bitvec::bitvec![BitOrderLsb0, u8; 0; validators.len()];

			Self::deposit_event(Event::<T>::CandidateBacked(
				candidate.candidate.to_plain(),
				candidate.candidate.commitments.head_data.clone(),
				core,
				group,
			));

			let candidate_hash = candidate.candidate.hash();

			let (descriptor, commitments) =
				(candidate.candidate.descriptor, candidate.candidate.commitments);

			<PendingAvailability<T>>::insert(
				&para_id,
				CandidatePendingAvailability {
					core,
					hash: candidate_hash,
					descriptor,
					availability_votes,
					relay_parent_number,
					backers: backers.to_bitvec(),
					backed_in_number: check_ctx.now,
					backing_group: group,
				},
			);
			<PendingAvailabilityCommitments<T>>::insert(&para_id, commitments);
		}

		Ok(ProcessedCandidates::<T::Hash> {
			core_indices,
			candidate_receipt_with_backing_validator_indices,
		})
	}

	/// Run the acceptance criteria checks on the given candidate commitments.
	pub(crate) fn check_validation_outputs_for_runtime_api(
		para_id: ParaId,
		validation_outputs: primitives::v1::CandidateCommitments,
	) -> bool {
		// This function is meant to be called from the runtime APIs against the relay-parent, hence
		// `relay_parent_number` is equal to `now`.
		let now = <frame_system::Pallet<T>>::block_number();
		let relay_parent_number = now;
		let check_ctx = CandidateCheckContext::<T>::new(now, relay_parent_number);

		if let Err(err) = check_ctx.check_validation_outputs(
			para_id,
			&validation_outputs.head_data,
			&validation_outputs.new_validation_code,
			validation_outputs.processed_downward_messages,
			&validation_outputs.upward_messages,
			T::BlockNumber::from(validation_outputs.hrmp_watermark),
			&validation_outputs.horizontal_messages,
		) {
			log::debug!(
				target: LOG_TARGET,
				"Validation outputs checking for parachain `{}` failed: {:?}",
				u32::from(para_id),
				err,
			);
			false
		} else {
			true
		}
	}

	fn enact_candidate(
		relay_parent_number: T::BlockNumber,
		receipt: CommittedCandidateReceipt<T::Hash>,
		backers: BitVec<BitOrderLsb0, u8>,
		availability_votes: BitVec<BitOrderLsb0, u8>,
		core_index: CoreIndex,
		backing_group: GroupIndex,
	) -> Weight {
		let plain = receipt.to_plain();
		let commitments = receipt.commitments;
		let config = <configuration::Pallet<T>>::config();

		T::RewardValidators::reward_backing(
			backers
				.iter()
				.enumerate()
				.filter(|(_, backed)| **backed)
				.map(|(i, _)| ValidatorIndex(i as _)),
		);

		T::RewardValidators::reward_bitfields(
			availability_votes
				.iter()
				.enumerate()
				.filter(|(_, voted)| **voted)
				.map(|(i, _)| ValidatorIndex(i as _)),
		);

		// initial weight is config read.
		let mut weight = T::DbWeight::get().reads_writes(1, 0);
		if let Some(new_code) = commitments.new_validation_code {
			weight += <paras::Pallet<T>>::schedule_code_upgrade(
				receipt.descriptor.para_id,
				new_code,
				relay_parent_number,
				&config,
			);
		}

		// enact the messaging facet of the candidate.
		weight += <dmp::Pallet<T>>::prune_dmq(
			receipt.descriptor.para_id,
			commitments.processed_downward_messages,
		);
		weight += <ump::Pallet<T>>::receive_upward_messages(
			receipt.descriptor.para_id,
			commitments.upward_messages,
		);
		weight += <hrmp::Pallet<T>>::prune_hrmp(
			receipt.descriptor.para_id,
			T::BlockNumber::from(commitments.hrmp_watermark),
		);
		weight += <hrmp::Pallet<T>>::queue_outbound_hrmp(
			receipt.descriptor.para_id,
			commitments.horizontal_messages,
		);

		Self::deposit_event(Event::<T>::CandidateIncluded(
			plain,
			commitments.head_data.clone(),
			core_index,
			backing_group,
		));

		weight +
			<paras::Pallet<T>>::note_new_head(
				receipt.descriptor.para_id,
				commitments.head_data,
				relay_parent_number,
			)
	}

	/// Cleans up all paras pending availability that the predicate returns true for.
	///
	/// The predicate accepts the index of the core and the block number the core has been occupied
	/// since (i.e. the block number the candidate was backed at in this fork of the relay chain).
	///
	/// Returns a vector of cleaned-up core IDs.
	pub(crate) fn collect_pending(
		pred: impl Fn(CoreIndex, T::BlockNumber) -> bool,
	) -> Vec<CoreIndex> {
		let mut cleaned_up_ids = Vec::new();
		let mut cleaned_up_cores = Vec::new();

		for (para_id, pending_record) in <PendingAvailability<T>>::iter() {
			if pred(pending_record.core, pending_record.backed_in_number) {
				cleaned_up_ids.push(para_id);
				cleaned_up_cores.push(pending_record.core);
			}
		}

		for para_id in cleaned_up_ids {
			let pending = <PendingAvailability<T>>::take(&para_id);
			let commitments = <PendingAvailabilityCommitments<T>>::take(&para_id);

			if let (Some(pending), Some(commitments)) = (pending, commitments) {
				// defensive: this should always be true.
				let candidate = CandidateReceipt {
					descriptor: pending.descriptor,
					commitments_hash: commitments.hash(),
				};

				Self::deposit_event(Event::<T>::CandidateTimedOut(
					candidate,
					commitments.head_data,
					pending.core,
				));
			}
		}

		cleaned_up_cores
	}

	/// Cleans up all paras pending availability that are in the given list of disputed candidates.
	///
	/// Returns a vector of cleaned-up core IDs.
	pub(crate) fn collect_disputed(disputed: &BTreeSet<CandidateHash>) -> Vec<CoreIndex> {
		let mut cleaned_up_ids = Vec::new();
		let mut cleaned_up_cores = Vec::new();

		for (para_id, pending_record) in <PendingAvailability<T>>::iter() {
			if disputed.contains(&pending_record.hash) {
				cleaned_up_ids.push(para_id);
				cleaned_up_cores.push(pending_record.core);
			}
		}

		for para_id in cleaned_up_ids {
			let _ = <PendingAvailability<T>>::take(&para_id);
			let _ = <PendingAvailabilityCommitments<T>>::take(&para_id);
		}

		cleaned_up_cores
	}

	/// Forcibly enact the candidate with the given ID as though it had been deemed available
	/// by bitfields.
	///
	/// Is a no-op if there is no candidate pending availability for this para-id.
	/// This should generally not be used but it is useful during execution of Runtime APIs,
	/// where the changes to the state are expected to be discarded directly after.
	pub(crate) fn force_enact(para: ParaId) {
		let pending = <PendingAvailability<T>>::take(&para);
		let commitments = <PendingAvailabilityCommitments<T>>::take(&para);

		if let (Some(pending), Some(commitments)) = (pending, commitments) {
			let candidate =
				CommittedCandidateReceipt { descriptor: pending.descriptor, commitments };

			Self::enact_candidate(
				pending.relay_parent_number,
				candidate,
				pending.backers,
				pending.availability_votes,
				pending.core,
				pending.backing_group,
			);
		}
	}

	/// Returns the `CommittedCandidateReceipt` pending availability for the para provided, if any.
	pub(crate) fn candidate_pending_availability(
		para: ParaId,
	) -> Option<CommittedCandidateReceipt<T::Hash>> {
		<PendingAvailability<T>>::get(&para)
			.map(|p| p.descriptor)
			.and_then(|d| <PendingAvailabilityCommitments<T>>::get(&para).map(move |c| (d, c)))
			.map(|(d, c)| CommittedCandidateReceipt { descriptor: d, commitments: c })
	}

	/// Returns the metadata around the candidate pending availability for the
	/// para provided, if any.
	pub(crate) fn pending_availability(
		para: ParaId,
	) -> Option<CandidatePendingAvailability<T::Hash, T::BlockNumber>> {
		<PendingAvailability<T>>::get(&para)
	}
}

const fn availability_threshold(n_validators: usize) -> usize {
	let mut threshold = (n_validators * 2) / 3;
	threshold += (n_validators * 2) % 3;
	threshold
}

#[derive(derive_more::From, Debug)]
enum AcceptanceCheckErr<BlockNumber> {
	HeadDataTooLarge,
	PrematureCodeUpgrade,
	NewCodeTooLarge,
	ProcessedDownwardMessages(dmp::ProcessedDownwardMessagesAcceptanceErr),
	UpwardMessages(ump::AcceptanceCheckErr),
	HrmpWatermark(hrmp::HrmpWatermarkAcceptanceErr<BlockNumber>),
	OutboundHrmp(hrmp::OutboundHrmpAcceptanceErr),
}

impl<BlockNumber> AcceptanceCheckErr<BlockNumber> {
	/// Returns the same error so that it can be threaded through a needle of `DispatchError` and
	/// ultimately returned from a `Dispatchable`.
	fn strip_into_dispatch_err<T: Config>(self) -> Error<T> {
		use AcceptanceCheckErr::*;
		match self {
			HeadDataTooLarge => Error::<T>::HeadDataTooLarge,
			PrematureCodeUpgrade => Error::<T>::PrematureCodeUpgrade,
			NewCodeTooLarge => Error::<T>::NewCodeTooLarge,
			ProcessedDownwardMessages(_) => Error::<T>::IncorrectDownwardMessageHandling,
			UpwardMessages(_) => Error::<T>::InvalidUpwardMessages,
			HrmpWatermark(_) => Error::<T>::HrmpWatermarkMishandling,
			OutboundHrmp(_) => Error::<T>::InvalidOutboundHrmp,
		}
	}
}

/// A collection of data required for checking a candidate.
pub(crate) struct CandidateCheckContext<T: Config> {
	config: configuration::HostConfiguration<T::BlockNumber>,
	now: T::BlockNumber,
	relay_parent_number: T::BlockNumber,
}

impl<T: Config> CandidateCheckContext<T> {
	pub(crate) fn new(now: T::BlockNumber, relay_parent_number: T::BlockNumber) -> Self {
		Self { config: <configuration::Pallet<T>>::config(), now, relay_parent_number }
	}

	/// Execute verification of the candidate.
	///
	/// Assures:
	///  * correct expected relay parent reference
	///  * collator signature check passes
	///  * code hash of commitments matches current code hash
	///  * para head in the descriptor and commitments match
	pub(crate) fn verify_backed_candidate(
		&self,
		parent_hash: <T as frame_system::Config>::Hash,
		candidate_idx: usize,
		backed_candidate: &BackedCandidate<<T as frame_system::Config>::Hash>,
	) -> Result<(), Error<T>> {
		let para_id = backed_candidate.descriptor().para_id;

		// we require that the candidate is in the context of the parent block.
		ensure!(
			backed_candidate.descriptor().relay_parent == parent_hash,
			Error::<T>::CandidateNotInParentContext,
		);
		ensure!(
			backed_candidate.descriptor().check_collator_signature().is_ok(),
			Error::<T>::NotCollatorSigned,
		);

		let validation_code_hash = <paras::Pallet<T>>::current_code_hash(para_id)
			// A candidate for a parachain without current validation code is not scheduled.
			.ok_or_else(|| Error::<T>::UnscheduledCandidate)?;
		ensure!(
			backed_candidate.descriptor().validation_code_hash == validation_code_hash,
			Error::<T>::InvalidValidationCodeHash,
		);

		ensure!(
			backed_candidate.descriptor().para_head ==
				backed_candidate.candidate.commitments.head_data.hash(),
			Error::<T>::ParaHeadMismatch,
		);

		if let Err(err) = self.check_validation_outputs(
			para_id,
			&backed_candidate.candidate.commitments.head_data,