Newer
Older
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! The inclusion pallet is responsible for inclusion and availability of scheduled parachains.
//! It is responsible for carrying candidates from being backable to being backed, and then from
//! backed to included.
configuration::{self, HostConfiguration},
disputes, dmp, hrmp, paras,
scheduler::{self, common::CoreAssignment},
shared::{self, AllowedRelayParentsTracker},
};
use bitvec::{order::Lsb0 as BitOrderLsb0, vec::BitVec};
use frame_support::{
defensive,
pallet_prelude::*,
traits::{Defensive, EnqueueMessage},
BoundedSlice,
};
use frame_system::pallet_prelude::*;
use pallet_message_queue::OnQueueChanged;
use parity_scale_codec::{Decode, Encode};
supermajority_threshold, well_known_keys, AvailabilityBitfield, BackedCandidate,
CandidateCommitments, CandidateDescriptor, CandidateHash, CandidateReceipt,
CommittedCandidateReceipt, CoreIndex, GroupIndex, Hash, HeadData, Id as ParaId,
SignedAvailabilityBitfields, SigningContext, UpwardMessage, ValidatorId, ValidatorIndex,
};
use scale_info::TypeInfo;
use sp_runtime::{traits::One, DispatchError, SaturatedConversion, Saturating};
#[cfg(feature = "std")]
use sp_std::fmt;
use sp_std::{collections::btree_set::BTreeSet, prelude::*};
pub use pallet::*;
#[cfg(test)]
pub(crate) mod tests;
#[cfg(feature = "runtime-benchmarks")]
mod benchmarking;
pub trait WeightInfo {
fn receive_upward_messages(i: u32) -> Weight;
}
pub struct TestWeightInfo;
impl WeightInfo for TestWeightInfo {
fn receive_upward_messages(_: u32) -> Weight {
Weight::MAX
}
}
impl WeightInfo for () {
fn receive_upward_messages(_: u32) -> Weight {
Weight::zero()
}
}
/// Maximum value that `config.max_upward_message_size` can be set to.
///
/// This is used for benchmarking sanely bounding relevant storage items. It is expected from the
/// `configuration` pallet to check these values before setting.
pub const MAX_UPWARD_MESSAGE_SIZE_BOUND: u32 = 128 * 1024;
/// A bitfield signed by a validator indicating that it is keeping its piece of the erasure-coding
/// for any backed candidates referred to by a `1` bit available.
///
/// The bitfield's signature should be checked at the point of submission. Afterwards it can be
/// dropped.
#[derive(Encode, Decode, TypeInfo)]
#[cfg_attr(test, derive(Debug))]
pub struct AvailabilityBitfieldRecord<N> {
bitfield: AvailabilityBitfield, // one bit per core.
submitted_at: N, // for accounting, as meaning of bits may change over time.
}
/// A backed candidate pending availability.
#[derive(Encode, Decode, PartialEq, TypeInfo)]
#[cfg_attr(test, derive(Debug))]
pub struct CandidatePendingAvailability<H, N> {
/// The availability core this is assigned to.
core: CoreIndex,
/// The candidate hash.
hash: CandidateHash,
/// The candidate descriptor.
descriptor: CandidateDescriptor<H>,
/// The received availability votes. One bit per validator.
availability_votes: BitVec<u8, BitOrderLsb0>,
/// The backers of the candidate pending availability.
/// The block number of the relay-parent of the receipt.
relay_parent_number: N,
/// The block number of the relay-chain block this was backed in.
backed_in_number: N,
/// The group index backing this block.
backing_group: GroupIndex,
}
impl<H, N> CandidatePendingAvailability<H, N> {
/// Get the availability votes on the candidate.
pub(crate) fn availability_votes(&self) -> &BitVec<u8, BitOrderLsb0> {
&self.availability_votes
}
/// Get the relay-chain block number this was backed in.
pub(crate) fn backed_in_number(&self) -> &N {
&self.backed_in_number
}
/// Get the core index.
pub(crate) fn core_occupied(&self) -> CoreIndex {
}
/// Get the candidate hash.
pub(crate) fn candidate_hash(&self) -> CandidateHash {
self.hash
}
/// Get the candidate descriptor.
pub(crate) fn candidate_descriptor(&self) -> &CandidateDescriptor<H> {
&self.descriptor
}
/// Get the candidate's relay parent's number.
pub(crate) fn relay_parent_number(&self) -> N
where
N: Clone,
{
self.relay_parent_number.clone()
}
#[cfg(any(feature = "runtime-benchmarks", test))]
pub(crate) fn new(
core: CoreIndex,
hash: CandidateHash,
descriptor: CandidateDescriptor<H>,
availability_votes: BitVec<u8, BitOrderLsb0>,
backers: BitVec<u8, BitOrderLsb0>,
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
relay_parent_number: N,
backed_in_number: N,
backing_group: GroupIndex,
) -> Self {
Self {
core,
hash,
descriptor,
availability_votes,
backers,
relay_parent_number,
backed_in_number,
backing_group,
}
}
}
/// A hook for applying validator rewards
pub trait RewardValidators {
// Reward the validators with the given indices for issuing backing statements.
fn reward_backing(validators: impl IntoIterator<Item = ValidatorIndex>);
// Reward the validators with the given indices for issuing availability bitfields.
// Validators are sent to this hook when they have contributed to the availability
// of a candidate by setting a bit in their bitfield.
fn reward_bitfields(validators: impl IntoIterator<Item = ValidatorIndex>);
}
/// Helper return type for `process_candidates`.
#[derive(Encode, Decode, PartialEq, TypeInfo)]
#[cfg_attr(test, derive(Debug))]
pub(crate) struct ProcessedCandidates<H = Hash> {
pub(crate) core_indices: Vec<(CoreIndex, ParaId)>,
pub(crate) candidate_receipt_with_backing_validator_indices:
Vec<(CandidateReceipt<H>, Vec<(ValidatorIndex, ValidityAttestation)>)>,
}
impl<H> Default for ProcessedCandidates<H> {
fn default() -> Self {
Self {
core_indices: Vec::new(),
candidate_receipt_with_backing_validator_indices: Vec::new(),
}
}
}
/// Number of backing votes we need for a valid backing.
Robert Klotzner
committed
///
/// WARNING: This check has to be kept in sync with the node side checks.
pub fn minimum_backing_votes(n_validators: usize) -> usize {
// For considerations on this value see:
// https://github.com/paritytech/polkadot/pull/1656#issuecomment-999734650
// and
// https://github.com/paritytech/polkadot/issues/4386
sp_std::cmp::min(n_validators, 2)
}
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/// Reads the footprint of queues for a specific origin type.
pub trait QueueFootprinter {
type Origin;
fn message_count(origin: Self::Origin) -> u64;
}
impl QueueFootprinter for () {
type Origin = UmpQueueId;
fn message_count(_: Self::Origin) -> u64 {
0
}
}
/// Aggregate message origin for the `MessageQueue` pallet.
///
/// Can be extended to serve further use-cases besides just UMP. Is stored in storage, so any change
/// to existing values will require a migration.
#[derive(Encode, Decode, Clone, MaxEncodedLen, Eq, PartialEq, RuntimeDebug, TypeInfo)]
pub enum AggregateMessageOrigin {
/// Inbound upward message.
#[codec(index = 0)]
Ump(UmpQueueId),
}
/// Identifies a UMP queue inside the `MessageQueue` pallet.
///
/// It is written in verbose form since future variants like `Loopback` and `Bridged` are already
/// forseeable.
#[derive(Encode, Decode, Clone, MaxEncodedLen, Eq, PartialEq, RuntimeDebug, TypeInfo)]
pub enum UmpQueueId {
/// The message originated from this parachain.
#[codec(index = 0)]
Para(ParaId),
}
#[cfg(feature = "runtime-benchmarks")]
impl From<u32> for AggregateMessageOrigin {
fn from(n: u32) -> Self {
// Some dummy for the benchmarks.
Self::Ump(UmpQueueId::Para(n.into()))
}
}
/// The maximal length of a UMP message.
pub type MaxUmpMessageLenOf<T> =
<<T as Config>::MessageQueue as EnqueueMessage<AggregateMessageOrigin>>::MaxMessageLen;
#[frame_support::pallet]
pub mod pallet {
use super::*;
#[pallet::pallet]
#[pallet::without_storage_info]
pub struct Pallet<T>(_);
#[pallet::config]
pub trait Config:
frame_system::Config
+ shared::Config
+ paras::Config
+ dmp::Config
+ hrmp::Config
+ configuration::Config
type RuntimeEvent: From<Event<Self>> + IsType<<Self as frame_system::Config>::RuntimeEvent>;
type DisputesHandler: disputes::DisputesHandler<BlockNumberFor<Self>>;
type RewardValidators: RewardValidators;
/// The system message queue.
///
/// The message queue provides general queueing and processing functionality. Currently it
/// replaces the old `UMP` dispatch queue. Other use-cases can be implemented as well by
/// adding new variants to `AggregateMessageOrigin`.
type MessageQueue: EnqueueMessage<AggregateMessageOrigin>;
/// Weight info for the calls of this pallet.
type WeightInfo: WeightInfo;
}
#[pallet::event]
#[pallet::generate_deposit(pub(super) fn deposit_event)]
pub enum Event<T: Config> {
/// A candidate was backed. `[candidate, head_data]`
CandidateBacked(CandidateReceipt<T::Hash>, HeadData, CoreIndex, GroupIndex),
/// A candidate was included. `[candidate, head_data]`
CandidateIncluded(CandidateReceipt<T::Hash>, HeadData, CoreIndex, GroupIndex),
/// A candidate timed out. `[candidate, head_data]`
CandidateTimedOut(CandidateReceipt<T::Hash>, HeadData, CoreIndex),
/// Some upward messages have been received and will be processed.
UpwardMessagesReceived { from: ParaId, count: u32 },
}
#[pallet::error]
pub enum Error<T> {
/// Validator indices are out of order or contains duplicates.
UnsortedOrDuplicateValidatorIndices,
/// Dispute statement sets are out of order or contain duplicates.
UnsortedOrDuplicateDisputeStatementSet,
/// Backed candidates are out of order (core index) or contain duplicates.
UnsortedOrDuplicateBackedCandidates,
/// A different relay parent was provided compared to the on-chain stored one.
UnexpectedRelayParent,
/// Availability bitfield has unexpected size.
WrongBitfieldSize,
/// Bitfield consists of zeros only.
BitfieldAllZeros,
/// Multiple bitfields submitted by same validator or validators out of order by index.
BitfieldDuplicateOrUnordered,
/// Validator index out of bounds.
ValidatorIndexOutOfBounds,
/// Invalid signature
InvalidBitfieldSignature,
/// Candidate submitted but para not scheduled.
UnscheduledCandidate,
/// Candidate scheduled despite pending candidate already existing for the para.
CandidateScheduledBeforeParaFree,
/// Scheduled cores out of order.
ScheduledOutOfOrder,
/// Head data exceeds the configured maximum.
HeadDataTooLarge,
/// Code upgrade prematurely.
PrematureCodeUpgrade,
/// Output code is too large
NewCodeTooLarge,
/// The candidate's relay-parent was not allowed. Either it was
/// not recent enough or it didn't advance based on the last parachain block.
DisallowedRelayParent,
/// Failed to compute group index for the core: either it's out of bounds
/// or the relay parent doesn't belong to the current session.
InvalidAssignment,
/// Invalid group index in core assignment.
InvalidGroupIndex,
/// Insufficient (non-majority) backing.
InsufficientBacking,
/// Invalid (bad signature, unknown validator, etc.) backing.
InvalidBacking,
/// Collator did not sign PoV.
NotCollatorSigned,
/// The validation data hash does not match expected.
ValidationDataHashMismatch,
/// The downward message queue is not processed correctly.
IncorrectDownwardMessageHandling,
/// At least one upward message sent does not pass the acceptance criteria.
InvalidUpwardMessages,
/// The candidate didn't follow the rules of HRMP watermark advancement.
HrmpWatermarkMishandling,
/// The HRMP messages sent by the candidate is not valid.
InvalidOutboundHrmp,
/// The validation code hash of the candidate is not valid.
InvalidValidationCodeHash,
/// The `para_head` hash in the candidate descriptor doesn't match the hash of the actual
/// para head in the commitments.
ParaHeadMismatch,
/// A bitfield that references a freed core,
/// either intentionally or as part of a concluded
/// invalid dispute.
BitfieldReferencesFreedCore,
}
/// The latest bitfield for each validator, referred to by their index in the validator set.
#[pallet::storage]
pub(crate) type AvailabilityBitfields<T: Config> =
StorageMap<_, Twox64Concat, ValidatorIndex, AvailabilityBitfieldRecord<BlockNumberFor<T>>>;
/// Candidates pending availability by `ParaId`.
#[pallet::storage]
pub(crate) type PendingAvailability<T: Config> = StorageMap<
_,
Twox64Concat,
ParaId,
CandidatePendingAvailability<T::Hash, BlockNumberFor<T>>,
>;
/// The commitments of candidates pending availability, by `ParaId`.
#[pallet::storage]
pub(crate) type PendingAvailabilityCommitments<T: Config> =
StorageMap<_, Twox64Concat, ParaId, CandidateCommitments>;
#[pallet::call]
impl<T: Config> Pallet<T> {}
}
const LOG_TARGET: &str = "runtime::inclusion";
/// The reason that a candidate's outputs were rejected for.
#[derive(derive_more::From)]
#[cfg_attr(feature = "std", derive(Debug))]
enum AcceptanceCheckErr<BlockNumber> {
HeadDataTooLarge,
/// Code upgrades are not permitted at the current time.
PrematureCodeUpgrade,
/// The new runtime blob is too large.
NewCodeTooLarge,
/// The candidate violated this DMP acceptance criteria.
ProcessedDownwardMessages(dmp::ProcessedDownwardMessagesAcceptanceErr),
/// The candidate violated this UMP acceptance criteria.
UpwardMessages(UmpAcceptanceCheckErr),
/// The candidate violated this HRMP watermark acceptance criteria.
HrmpWatermark(hrmp::HrmpWatermarkAcceptanceErr<BlockNumber>),
/// The candidate violated this outbound HRMP acceptance criteria.
OutboundHrmp(hrmp::OutboundHrmpAcceptanceErr),
}
/// An error returned by [`Pallet::check_upward_messages`] that indicates a violation of one of
/// acceptance criteria rules.
#[cfg_attr(test, derive(PartialEq))]
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
/// The maximal number of messages that can be submitted in one batch was exceeded.
MoreMessagesThanPermitted { sent: u32, permitted: u32 },
/// The maximal size of a single message was exceeded.
MessageSize { idx: u32, msg_size: u32, max_size: u32 },
/// The allowed number of messages in the queue was exceeded.
CapacityExceeded { count: u64, limit: u64 },
/// The allowed combined message size in the queue was exceeded.
TotalSizeExceeded { total_size: u64, limit: u64 },
/// A para-chain cannot send UMP messages while it is offboarding.
IsOffboarding,
}
#[cfg(feature = "std")]
impl fmt::Debug for UmpAcceptanceCheckErr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match *self {
UmpAcceptanceCheckErr::MoreMessagesThanPermitted { sent, permitted } => write!(
fmt,
"more upward messages than permitted by config ({} > {})",
sent, permitted,
),
UmpAcceptanceCheckErr::MessageSize { idx, msg_size, max_size } => write!(
fmt,
"upward message idx {} larger than permitted by config ({} > {})",
idx, msg_size, max_size,
),
UmpAcceptanceCheckErr::CapacityExceeded { count, limit } => write!(
fmt,
"the ump queue would have more items than permitted by config ({} > {})",
count, limit,
),
UmpAcceptanceCheckErr::TotalSizeExceeded { total_size, limit } => write!(
fmt,
"the ump queue would have grown past the max size permitted by config ({} > {})",
total_size, limit,
),
UmpAcceptanceCheckErr::IsOffboarding =>
write!(fmt, "upward message rejected because the para is off-boarding",),
}
}
}
impl<T: Config> Pallet<T> {
/// Block initialization logic, called by initializer.
pub(crate) fn initializer_initialize(_now: BlockNumberFor<T>) -> Weight {
}
/// Block finalization logic, called by initializer.
pub(crate) fn initializer_finalize() {}
/// Handle an incoming session change.
pub(crate) fn initializer_on_new_session(
_notification: &crate::initializer::SessionChangeNotification<BlockNumberFor<T>>,
outgoing_paras: &[ParaId],
) {
// unlike most drain methods, drained elements are not cleared on `Drop` of the iterator
// and require consumption.
for _ in <PendingAvailabilityCommitments<T>>::drain() {}
for _ in <PendingAvailability<T>>::drain() {}
for _ in <AvailabilityBitfields<T>>::drain() {}
Self::cleanup_outgoing_ump_dispatch_queues(outgoing_paras);
}
pub(crate) fn cleanup_outgoing_ump_dispatch_queues(outgoing: &[ParaId]) {
for outgoing_para in outgoing {
Self::cleanup_outgoing_ump_dispatch_queue(*outgoing_para);
}
}
pub(crate) fn cleanup_outgoing_ump_dispatch_queue(para: ParaId) {
T::MessageQueue::sweep_queue(AggregateMessageOrigin::Ump(UmpQueueId::Para(para)));
}
/// Extract the freed cores based on cores that became available.
///
/// Bitfields are expected to have been sanitized already. E.g. via `sanitize_bitfields`!
///
/// Updates storage items `PendingAvailability` and `AvailabilityBitfields`.
/// Returns a `Vec` of `CandidateHash`es and their respective `AvailabilityCore`s that became
/// available, and cores free.
pub(crate) fn update_pending_availability_and_get_freed_cores<F>(
expected_bits: usize,
validators: &[ValidatorId],
signed_bitfields: SignedAvailabilityBitfields,
core_lookup: F,
) -> Vec<(CoreIndex, CandidateHash)>
where
F: Fn(CoreIndex) -> Option<ParaId>,
{
let mut assigned_paras_record = (0..expected_bits)
.map(|bit_index| core_lookup(CoreIndex::from(bit_index as u32)))
.map(|opt_para_id| {
opt_para_id.map(|para_id| (para_id, PendingAvailability::<T>::get(¶_id)))
})
.collect::<Vec<_>>();
let now = <frame_system::Pallet<T>>::block_number();
for (checked_bitfield, validator_index) in
signed_bitfields.into_iter().map(|signed_bitfield| {
let validator_idx = signed_bitfield.validator_index();
let checked_bitfield = signed_bitfield.into_payload();
(checked_bitfield, validator_idx)
}) {
for (bit_idx, _) in checked_bitfield.0.iter().enumerate().filter(|(_, is_av)| **is_av) {
let pending_availability = if let Some((_, pending_availability)) =
assigned_paras_record[bit_idx].as_mut()
{
pending_availability
} else {
// For honest validators, this happens in case of unoccupied cores,
// which in turn happens in case of a disputed candidate.
// A malicious one might include arbitrary indices, but they are represented
// by `None` values and will be sorted out in the next if case.
continue
};
// defensive check - this is constructed by loading the availability bitfield
// record, which is always `Some` if the core is occupied - that's why we're here.
let validator_index = validator_index.0 as usize;
if let Some(mut bit) =
pending_availability.as_mut().and_then(|candidate_pending_availability| {
candidate_pending_availability.availability_votes.get_mut(validator_index)
}) {
*bit = true;
}
}
let record =
AvailabilityBitfieldRecord { bitfield: checked_bitfield, submitted_at: now };
<AvailabilityBitfields<T>>::insert(&validator_index, record);
}
let threshold = availability_threshold(validators.len());
let mut freed_cores = Vec::with_capacity(expected_bits);
for (para_id, pending_availability) in assigned_paras_record
.into_iter()
.filter_map(|(id, p)| p.map(|p| (id, p)))
{
if pending_availability.availability_votes.count_ones() >= threshold {
<PendingAvailability<T>>::remove(¶_id);
let commitments = match PendingAvailabilityCommitments::<T>::take(¶_id) {
Some(commitments) => commitments,
None => {
log::warn!(
target: LOG_TARGET,
"Inclusion::process_bitfields: PendingAvailability and PendingAvailabilityCommitments
are out of sync, did someone mess with the storage?",
);
continue
},
};
let receipt = CommittedCandidateReceipt {
descriptor: pending_availability.descriptor,
commitments,
};
let _weight = Self::enact_candidate(
pending_availability.relay_parent_number,
receipt,
pending_availability.backers,
pending_availability.availability_votes,
pending_availability.core,
pending_availability.backing_group,
);
freed_cores.push((pending_availability.core, pending_availability.hash));
} else {
<PendingAvailability<T>>::insert(¶_id, &pending_availability);
}
}
freed_cores
}
/// Process candidates that have been backed. Provide the relay storage root, a set of
/// candidates and scheduled cores.
///
/// Both should be sorted ascending by core index, and the candidates should be a subset of
/// scheduled cores. If these conditions are not met, the execution of the function fails.
pub(crate) fn process_candidates<GV>(
allowed_relay_parents: &AllowedRelayParentsTracker<T::Hash, BlockNumberFor<T>>,
candidates: Vec<BackedCandidate<T::Hash>>,
scheduled: Vec<CoreAssignment<BlockNumberFor<T>>>,
group_validators: GV,
) -> Result<ProcessedCandidates<T::Hash>, DispatchError>
where
GV: Fn(GroupIndex) -> Option<Vec<ValidatorIndex>>,
{
let now = <frame_system::Pallet<T>>::block_number();
ensure!(candidates.len() <= scheduled.len(), Error::<T>::UnscheduledCandidate);
if scheduled.is_empty() {
return Ok(ProcessedCandidates::default())
}
let validators = shared::Pallet::<T>::active_validator_keys();
// Collect candidate receipts with backers.
let mut candidate_receipt_with_backing_validator_indices =
Vec::with_capacity(candidates.len());
// Do all checks before writing storage.
let core_indices_and_backers = {
let mut skip = 0;
let mut core_indices_and_backers = Vec::with_capacity(candidates.len());
let mut last_core = None;
let mut check_assignment_in_order =
|assignment: &CoreAssignment<BlockNumberFor<T>>| -> DispatchResult {
ensure!(
last_core.map_or(true, |core| assignment.core > core),
Error::<T>::ScheduledOutOfOrder,
);
last_core = Some(assignment.core);
Ok(())
};
// We combine an outer loop over candidates with an inner loop over the scheduled,
// where each iteration of the outer loop picks up at the position
// in scheduled just after the past iteration left off.
//
// If the candidates appear in the same order as they appear in `scheduled`,
// then they should always be found. If the end of `scheduled` is reached,
// then the candidate was either not scheduled or out-of-order.
//
// In the meantime, we do certain sanity checks on the candidates and on the scheduled
// list.
'next_backed_candidate: for (candidate_idx, backed_candidate) in
candidates.iter().enumerate()
{
let relay_parent_hash = backed_candidate.descriptor().relay_parent;
let para_id = backed_candidate.descriptor().para_id;
let prev_context = <paras::Pallet<T>>::para_most_recent_context(para_id);
let check_ctx = CandidateCheckContext::<T>::new(prev_context);
let signing_context = SigningContext {
parent_hash: relay_parent_hash,
session_index: shared::Pallet::<T>::session_index(),
};
let relay_parent_number = match check_ctx.verify_backed_candidate(
&allowed_relay_parents,
candidate_idx,
backed_candidate,
)? {
Err(FailedToCreatePVD) => {
log::debug!(
target: LOG_TARGET,
"Failed to create PVD for candidate {}",
candidate_idx,
);
// We don't want to error out here because it will
// brick the relay-chain. So we return early without
// doing anything.
return Ok(ProcessedCandidates::default())
},
Ok(rpn) => rpn,
let para_id = backed_candidate.descriptor().para_id;
let mut backers = bitvec::bitvec![u8, BitOrderLsb0; 0; validators.len()];
for (i, core_assignment) in scheduled[skip..].iter().enumerate() {
check_assignment_in_order(core_assignment)?;
if para_id == core_assignment.paras_entry.para_id() {
ensure!(
<PendingAvailability<T>>::get(¶_id).is_none() &&
<PendingAvailabilityCommitments<T>>::get(¶_id).is_none(),
Error::<T>::CandidateScheduledBeforeParaFree,
);
// account for already skipped, and then skip this one.
skip = i + skip + 1;
// The candidate based upon relay parent `N` should be backed by a group
// assigned to core at block `N + 1`. Thus, `relay_parent_number + 1`
// will always land in the current session.
let group_idx = <scheduler::Pallet<T>>::group_assigned_to_core(
core_assignment.core,
relay_parent_number + One::one(),
)
.ok_or_else(|| {
log::warn!(
target: LOG_TARGET,
"Failed to compute group index for candidate {}",
candidate_idx
);
Error::<T>::InvalidAssignment
})?;
let group_vals = group_validators(group_idx)
.ok_or_else(|| Error::<T>::InvalidGroupIndex)?;
// check the signatures in the backing and that it is a majority.
{
let maybe_amount_validated = primitives::check_candidate_backing(
&backed_candidate,
&signing_context,
group_vals.len(),
|intra_group_vi| {
group_vals
.get(intra_group_vi)
.and_then(|vi| validators.get(vi.0 as usize))
.map(|v| v.clone())
},
);
match maybe_amount_validated {
Ok(amount_validated) => ensure!(
amount_validated >= minimum_backing_votes(group_vals.len()),
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
Error::<T>::InsufficientBacking,
),
Err(()) => {
Err(Error::<T>::InvalidBacking)?;
},
}
let mut backer_idx_and_attestation =
Vec::<(ValidatorIndex, ValidityAttestation)>::with_capacity(
backed_candidate.validator_indices.count_ones(),
);
let candidate_receipt = backed_candidate.receipt();
for ((bit_idx, _), attestation) in backed_candidate
.validator_indices
.iter()
.enumerate()
.filter(|(_, signed)| **signed)
.zip(backed_candidate.validity_votes.iter().cloned())
{
let val_idx = group_vals
.get(bit_idx)
.expect("this query succeeded above; qed");
backer_idx_and_attestation.push((*val_idx, attestation));
backers.set(val_idx.0 as _, true);
}
candidate_receipt_with_backing_validator_indices
.push((candidate_receipt, backer_idx_and_attestation));
}
core_indices_and_backers.push((
(core_assignment.core, core_assignment.paras_entry.para_id()),
group_idx,
relay_parent_number,
));
continue 'next_backed_candidate
}
}
// end of loop reached means that the candidate didn't appear in the non-traversed
// section of the `scheduled` slice. either it was not scheduled or didn't appear in
// `candidates` in the correct order.
ensure!(false, Error::<T>::UnscheduledCandidate);
}
// check remainder of scheduled cores, if any.
for assignment in scheduled[skip..].iter() {
check_assignment_in_order(assignment)?;
}
core_indices_and_backers
};
// one more sweep for actually writing to storage.
let core_indices = core_indices_and_backers.iter().map(|(c, ..)| *c).collect();
for (candidate, (core, backers, group, relay_parent_number)) in
candidates.into_iter().zip(core_indices_and_backers)
{
let para_id = candidate.descriptor().para_id;
// initialize all availability votes to 0.
let availability_votes: BitVec<u8, BitOrderLsb0> =
bitvec::bitvec![u8, BitOrderLsb0; 0; validators.len()];
Self::deposit_event(Event::<T>::CandidateBacked(
candidate.candidate.to_plain(),
candidate.candidate.commitments.head_data.clone(),
group,
));
let candidate_hash = candidate.candidate.hash();
let (descriptor, commitments) =
(candidate.candidate.descriptor, candidate.candidate.commitments);
<PendingAvailability<T>>::insert(
¶_id,
CandidatePendingAvailability {
hash: candidate_hash,
descriptor,
availability_votes,
relay_parent_number,
backers: backers.to_bitvec(),
backing_group: group,
},
);
<PendingAvailabilityCommitments<T>>::insert(¶_id, commitments);
}
Ok(ProcessedCandidates::<T::Hash> {
core_indices,
candidate_receipt_with_backing_validator_indices,
})
}
/// Run the acceptance criteria checks on the given candidate commitments.
pub(crate) fn check_validation_outputs_for_runtime_api(
para_id: ParaId,
relay_parent_number: BlockNumberFor<T>,
validation_outputs: primitives::CandidateCommitments,
let prev_context = <paras::Pallet<T>>::para_most_recent_context(para_id);
let check_ctx = CandidateCheckContext::<T>::new(prev_context);
if check_ctx
.check_validation_outputs(
para_id,
&validation_outputs.head_data,
&validation_outputs.new_validation_code,
validation_outputs.processed_downward_messages,
&validation_outputs.upward_messages,
BlockNumberFor::<T>::from(validation_outputs.hrmp_watermark),
&validation_outputs.horizontal_messages,
)
.is_err()
{
log::debug!(
target: LOG_TARGET,
"Validation outputs checking for parachain `{}` failed",
u32::from(para_id),
);
false
} else {
true
}
}
fn enact_candidate(
relay_parent_number: BlockNumberFor<T>,
receipt: CommittedCandidateReceipt<T::Hash>,
backers: BitVec<u8, BitOrderLsb0>,
availability_votes: BitVec<u8, BitOrderLsb0>,
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
core_index: CoreIndex,
backing_group: GroupIndex,
) -> Weight {
let plain = receipt.to_plain();
let commitments = receipt.commitments;
let config = <configuration::Pallet<T>>::config();
T::RewardValidators::reward_backing(
backers
.iter()
.enumerate()
.filter(|(_, backed)| **backed)
.map(|(i, _)| ValidatorIndex(i as _)),
);
T::RewardValidators::reward_bitfields(
availability_votes
.iter()
.enumerate()
.filter(|(_, voted)| **voted)
.map(|(i, _)| ValidatorIndex(i as _)),
);
// initial weight is config read.
let mut weight = T::DbWeight::get().reads_writes(1, 0);
if let Some(new_code) = commitments.new_validation_code {
// Block number of candidate's inclusion.
let now = <frame_system::Pallet<T>>::block_number();
weight.saturating_add(<paras::Pallet<T>>::schedule_code_upgrade(
receipt.descriptor.para_id,
new_code,
}
// enact the messaging facet of the candidate.
weight.saturating_accrue(<dmp::Pallet<T>>::prune_dmq(
receipt.descriptor.para_id,
commitments.processed_downward_messages,
));
weight.saturating_accrue(Self::receive_upward_messages(
receipt.descriptor.para_id,
commitments.upward_messages.as_slice(),
));
weight.saturating_accrue(<hrmp::Pallet<T>>::prune_hrmp(
receipt.descriptor.para_id,
BlockNumberFor::<T>::from(commitments.hrmp_watermark),
));
weight.saturating_accrue(<hrmp::Pallet<T>>::queue_outbound_hrmp(
receipt.descriptor.para_id,
commitments.horizontal_messages,
Self::deposit_event(Event::<T>::CandidateIncluded(
plain,
commitments.head_data.clone(),
core_index,
backing_group,
));
weight.saturating_add(<paras::Pallet<T>>::note_new_head(
receipt.descriptor.para_id,
commitments.head_data,
relay_parent_number,
))
}
pub(crate) fn relay_dispatch_queue_size(para_id: ParaId) -> (u32, u32) {
let fp = T::MessageQueue::footprint(AggregateMessageOrigin::Ump(UmpQueueId::Para(para_id)));
(fp.count as u32, fp.size as u32)
}
/// Check that all the upward messages sent by a candidate pass the acceptance criteria.
pub(crate) fn check_upward_messages(
config: &HostConfiguration<BlockNumberFor<T>>,
para: ParaId,
upward_messages: &[UpwardMessage],
) -> Result<(), UmpAcceptanceCheckErr> {
// Cannot send UMP messages while off-boarding.
if <paras::Pallet<T>>::is_offboarding(para) {
ensure!(upward_messages.is_empty(), UmpAcceptanceCheckErr::IsOffboarding);
}
let additional_msgs = upward_messages.len() as u32;
if additional_msgs > config.max_upward_message_num_per_candidate {
return Err(UmpAcceptanceCheckErr::MoreMessagesThanPermitted {
permitted: config.max_upward_message_num_per_candidate,
})
}
let (para_queue_count, mut para_queue_size) = Self::relay_dispatch_queue_size(para);
if para_queue_count.saturating_add(additional_msgs) > config.max_upward_queue_count {
return Err(UmpAcceptanceCheckErr::CapacityExceeded {
count: para_queue_count.saturating_add(additional_msgs).into(),
limit: config.max_upward_queue_count.into(),
})
}
for (idx, msg) in upward_messages.into_iter().enumerate() {
let msg_size = msg.len() as u32;
if msg_size > config.max_upward_message_size {
return Err(UmpAcceptanceCheckErr::MessageSize {
idx: idx as u32,
max_size: config.max_upward_message_size,
})
}
// make sure that the queue is not overfilled.
// we do it here only once since returning false invalidates the whole relay-chain
// block.
if para_queue_size.saturating_add(msg_size) > config.max_upward_queue_size {
return Err(UmpAcceptanceCheckErr::TotalSizeExceeded {
total_size: para_queue_size.saturating_add(msg_size).into(),
limit: config.max_upward_queue_size.into(),
para_queue_size.saturating_accrue(msg_size);