Newer
Older
// Copyright (C) 2018-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Environment definition of the wasm smart-contract runtime.
Alexander Theißen
committed
use crate::{
HostFnWeights, Config, CodeHash, BalanceOf, Error,
Alexander Theißen
committed
exec::{Ext, StorageKey, TopicOf},
gas::{Gas, GasMeter, Token, ChargedAmount},
Alexander Theißen
committed
wasm::env_def::ConvertibleToWasm,
use parity_wasm::elements::ValueType;
use frame_support::{dispatch::DispatchError, ensure, traits::Get};
use codec::{Decode, DecodeAll, Encode};
use sp_runtime::traits::SaturatedConversion;
use sp_core::crypto::UncheckedFrom;
use sp_io::hashing::{
keccak_256,
blake2_256,
blake2_128,
sha2_256,
};
Alexander Theißen
committed
use pallet_contracts_primitives::{ExecResult, ExecReturnValue, ReturnFlags, ExecError};
/// Every error that can be returned to a contract when it calls any of the host functions.
///
/// # Note
///
/// This enum can be extended in the future: New codes can be added but existing codes
/// will not be changed or removed. This means that any contract **must not** exhaustively
/// match return codes. Instead, contracts should prepare for unknown variants and deal with
/// those errors gracefuly in order to be forward compatible.
#[repr(u32)]
pub enum ReturnCode {
/// API call successful.
Success = 0,
/// The called function trapped and has its state changes reverted.
/// In this case no output buffer is returned.
CalleeTrapped = 1,
/// The called function ran to completion but decided to revert its state.
/// An output buffer is returned when one was supplied.
CalleeReverted = 2,
/// The passed key does not exist in storage.
KeyNotFound = 3,
/// Transfer failed because it would have brought the sender's total balance below the
/// subsistence threshold.
BelowSubsistenceThreshold = 4,
/// Transfer failed for other reasons. Most probably reserved or locked balance of the
/// sender prevents the transfer.
TransferFailed = 5,
/// The newly created contract is below the subsistence threshold after executing
/// its constructor.
NewContractNotFunded = 6,
/// No code could be found at the supplied code hash.
CodeNotFound = 7,
/// The contract that was called is either no contract at all (a plain account)
/// or is a tombstone.
NotCallable = 8,
}
impl ConvertibleToWasm for ReturnCode {
type NativeType = Self;
const VALUE_TYPE: ValueType = ValueType::I32;
fn to_typed_value(self) -> sp_sandbox::Value {
sp_sandbox::Value::I32(self as i32)
}
fn from_typed_value(_: sp_sandbox::Value) -> Option<Self> {
debug_assert!(false, "We will never receive a ReturnCode but only send it to wasm.");
None
}
}
impl From<ExecReturnValue> for ReturnCode {
fn from(from: ExecReturnValue) -> Self {
if from.flags.contains(ReturnFlags::REVERT) {
Self::CalleeReverted
} else {
Self::Success
}
}
}
Alexander Theißen
committed
/// The data passed through when a contract uses `seal_return`.
Alexander Theißen
committed
pub struct ReturnData {
/// The flags as passed through by the contract. They are still unchecked and
/// will later be parsed into a `ReturnFlags` bitflags struct.
flags: u32,
/// The output buffer passed by the contract as return data.
data: Vec<u8>,
}
/// Enumerates all possible reasons why a trap was generated.
/// This is either used to supply the caller with more information about why an error
/// occurred (the SupervisorError variant).
/// The other case is where the trap does not constitute an error but rather was invoked
/// as a quick way to terminate the application (all other variants).
Alexander Theißen
committed
pub enum TrapReason {
/// The supervisor trapped the contract because of an error condition occurred during
/// execution in privileged code.
SupervisorError(DispatchError),
Alexander Theißen
committed
/// Signals that trap was generated in response to call `seal_return` host function.
/// Signals that a trap was generated in response to a successful call to the
Alexander Theißen
committed
/// `seal_terminate` host function.
/// Signals that a trap was generated because of a successful restoration.
Restoration,
Alexander Theißen
committed
impl<T: Into<DispatchError>> From<T> for TrapReason {
fn from(from: T) -> Self {
Self::SupervisorError(from.into())
}
}
#[cfg_attr(test, derive(Debug, PartialEq, Eq))]
#[derive(Copy, Clone)]
pub enum RuntimeToken {
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/// Charge the gas meter with the cost of a metering block. The charged costs are
/// the supplied cost of the block plus the overhead of the metering itself.
MeteringBlock(u32),
/// Weight of calling `seal_caller`.
Caller,
/// Weight of calling `seal_address`.
Address,
/// Weight of calling `seal_gas_left`.
GasLeft,
/// Weight of calling `seal_balance`.
Balance,
/// Weight of calling `seal_value_transferred`.
ValueTransferred,
/// Weight of calling `seal_minimum_balance`.
MinimumBalance,
/// Weight of calling `seal_tombstone_deposit`.
TombstoneDeposit,
/// Weight of calling `seal_rent_allowance`.
RentAllowance,
/// Weight of calling `seal_block_number`.
BlockNumber,
/// Weight of calling `seal_now`.
Now,
/// Weight of calling `seal_weight_to_fee`.
WeightToFee,
/// Weight of calling `seal_input` without the weight of copying the input.
InputBase,
/// Weight of copying the input data for the given size.
InputCopyOut(u32),
/// Weight of calling `seal_return` for the given output size.
Return(u32),
/// Weight of calling `seal_terminate`.
Terminate,
/// Weight that is added to `seal_terminate` for every byte of the terminated contract.
TerminateSurchargeCodeSize(u32),
/// Weight of calling `seal_restore_to` per number of supplied delta entries.
RestoreTo(u32),
/// Weight that is added to `seal_restore_to` for the involved code sizes.
RestoreToSurchargeCodeSize{caller_code: u32, tombstone_code: u32},
/// Weight of calling `seal_random`. It includes the weight for copying the subject.
Random,
/// Weight of calling `seal_reposit_event` with the given number of topics and event size.
DepositEvent{num_topic: u32, len: u32},
/// Weight of calling `seal_set_rent_allowance`.
SetRentAllowance,
/// Weight of calling `seal_set_storage` for the given storage item size.
SetStorage(u32),
/// Weight of calling `seal_clear_storage`.
ClearStorage,
/// Weight of calling `seal_get_storage` without output weight.
GetStorageBase,
/// Weight of an item received via `seal_get_storage` for the given size.
GetStorageCopyOut(u32),
/// Weight of calling `seal_transfer`.
Transfer,
/// Weight of calling `seal_call` for the given input size.
CallBase(u32),
/// Weight that is added to `seal_call` for every byte of the called contract.
CallSurchargeCodeSize(u32),
/// Weight of the transfer performed during a call.
CallSurchargeTransfer,
/// Weight of output received through `seal_call` for the given size.
CallCopyOut(u32),
/// Weight of calling `seal_instantiate` for the given input and salt without output weight.
/// This includes the transfer as an instantiate without a value will always be below
/// the existential deposit and is disregarded as corner case.
InstantiateBase{input_data_len: u32, salt_len: u32},
/// Weight that is added to `seal_instantiate` for every byte of the instantiated contract.
InstantiateSurchargeCodeSize(u32),
/// Weight of output received through `seal_instantiate` for the given size.
InstantiateCopyOut(u32),
/// Weight of calling `seal_hash_sha_256` for the given input size.
HashSha256(u32),
/// Weight of calling `seal_hash_keccak_256` for the given input size.
HashKeccak256(u32),
/// Weight of calling `seal_hash_blake2_256` for the given input size.
HashBlake256(u32),
/// Weight of calling `seal_hash_blake2_128` for the given input size.
HashBlake128(u32),
/// Weight charged by a chain extension through `seal_call_chain_extension`.
ChainExtension(u64),
/// Weight charged for copying data from the sandbox.
CopyIn(u32),
impl<T: Config> Token<T> for RuntimeToken
where
T::AccountId: UncheckedFrom<T::Hash>, T::AccountId: AsRef<[u8]>
{
type Metadata = HostFnWeights<T>;
fn calculate_amount(&self, s: &Self::Metadata) -> Gas {
match *self {
MeteringBlock(amount) => s.gas.saturating_add(amount.into()),
Caller => s.caller,
Address => s.address,
GasLeft => s.gas_left,
Balance => s.balance,
ValueTransferred => s.value_transferred,
MinimumBalance => s.minimum_balance,
TombstoneDeposit => s.tombstone_deposit,
RentAllowance => s.rent_allowance,
BlockNumber => s.block_number,
Now => s.now,
WeightToFee => s.weight_to_fee,
InputBase => s.input,
InputCopyOut(len) => s.input_per_byte.saturating_mul(len.into()),
Return(len) => s.r#return
.saturating_add(s.return_per_byte.saturating_mul(len.into())),
Terminate => s.terminate,
TerminateSurchargeCodeSize(len) => s.terminate_per_code_byte.saturating_mul(len.into()),
RestoreTo(delta) => s.restore_to
.saturating_add(s.restore_to_per_delta.saturating_mul(delta.into())),
RestoreToSurchargeCodeSize{caller_code, tombstone_code} =>
s.restore_to_per_caller_code_byte.saturating_mul(caller_code.into()).saturating_add(
s.restore_to_per_tombstone_code_byte.saturating_mul(tombstone_code.into())
),
Random => s.random,
DepositEvent{num_topic, len} => s.deposit_event
.saturating_add(s.deposit_event_per_topic.saturating_mul(num_topic.into()))
.saturating_add(s.deposit_event_per_byte.saturating_mul(len.into())),
SetRentAllowance => s.set_rent_allowance,
SetStorage(len) => s.set_storage
.saturating_add(s.set_storage_per_byte.saturating_mul(len.into())),
ClearStorage => s.clear_storage,
GetStorageBase => s.get_storage,
GetStorageCopyOut(len) => s.get_storage_per_byte.saturating_mul(len.into()),
Transfer => s.transfer,
CallBase(len) => s.call
.saturating_add(s.call_per_input_byte.saturating_mul(len.into())),
CallSurchargeCodeSize(len) => s.call_per_code_byte.saturating_mul(len.into()),
CallSurchargeTransfer => s.call_transfer_surcharge,
CallCopyOut(len) => s.call_per_output_byte.saturating_mul(len.into()),
InstantiateBase{input_data_len, salt_len} => s.instantiate
.saturating_add(s.instantiate_per_input_byte.saturating_mul(input_data_len.into()))
.saturating_add(s.instantiate_per_salt_byte.saturating_mul(salt_len.into())),
InstantiateSurchargeCodeSize(len) =>
s.instantiate_per_code_byte.saturating_mul(len.into()),
InstantiateCopyOut(len) => s.instantiate_per_output_byte
.saturating_mul(len.into()),
HashSha256(len) => s.hash_sha2_256
.saturating_add(s.hash_sha2_256_per_byte.saturating_mul(len.into())),
HashKeccak256(len) => s.hash_keccak_256
.saturating_add(s.hash_keccak_256_per_byte.saturating_mul(len.into())),
HashBlake256(len) => s.hash_blake2_256
.saturating_add(s.hash_blake2_256_per_byte.saturating_mul(len.into())),
HashBlake128(len) => s.hash_blake2_128
.saturating_add(s.hash_blake2_128_per_byte.saturating_mul(len.into())),
ChainExtension(amount) => amount,
CopyIn(len) => s.return_per_byte.saturating_mul(len.into()),
/// This is only appropriate when writing out data of constant size that does not depend on user
/// input. In this case the costs for this copy was already charged as part of the token at
/// the beginning of the API entry point.
fn already_charged(_: u32) -> Option<RuntimeToken> {
None
/// Finds duplicates in a given vector.
/// This function has complexity of O(n log n) and no additional memory is required, although
/// the order of items is not preserved.
fn has_duplicates<T: PartialEq + AsRef<[u8]>>(items: &mut Vec<T>) -> bool {
// Sort the vector
items.sort_by(|a, b| {
Ord::cmp(a.as_ref(), b.as_ref())
});
// And then find any two consecutive equal elements.
items.windows(2).any(|w| {
match w {
&[ref a, ref b] => a == b,
_ => false,
}
})
}
/// Can only be used for one call.
pub struct Runtime<'a, E: Ext + 'a> {
ext: &'a mut E,
input_data: Option<Vec<u8>>,
memory: sp_sandbox::Memory,
gas_meter: &'a mut GasMeter<E::T>,
trap_reason: Option<TrapReason>,
impl<'a, E> Runtime<'a, E>
where
E: Ext + 'a,
<E::T as frame_system::Config>::AccountId:
UncheckedFrom<<E::T as frame_system::Config>::Hash> + AsRef<[u8]>
{
pub fn new(
ext: &'a mut E,
input_data: Vec<u8>,
memory: sp_sandbox::Memory,
gas_meter: &'a mut GasMeter<E::T>,
) -> Self {
Runtime {
ext,
input_data: Some(input_data),
memory,
gas_meter,
trap_reason: None,
}
}
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
/// Converts the sandbox result and the runtime state into the execution outcome.
///
/// It evaluates information stored in the `trap_reason` variable of the runtime and
/// bases the outcome on the value if this variable. Only if `trap_reason` is `None`
/// the result of the sandbox is evaluated.
pub fn to_execution_result(
self,
sandbox_result: Result<sp_sandbox::ReturnValue, sp_sandbox::Error>,
) -> ExecResult {
// If a trap reason is set we base our decision solely on that.
if let Some(trap_reason) = self.trap_reason {
return match trap_reason {
// The trap was the result of the execution `return` host function.
TrapReason::Return(ReturnData{ flags, data }) => {
let flags = ReturnFlags::from_bits(flags).ok_or_else(||
"used reserved bit in return flags"
)?;
Ok(ExecReturnValue {
flags,
data,
})
},
TrapReason::Termination => {
Ok(ExecReturnValue {
flags: ReturnFlags::empty(),
data: Vec::new(),
})
},
TrapReason::Restoration => {
Ok(ExecReturnValue {
flags: ReturnFlags::empty(),
data: Vec::new(),
})
},
TrapReason::SupervisorError(error) => Err(error)?,
}
}
// Check the exact type of the error.
match sandbox_result {
// No traps were generated. Proceed normally.
Ok(_) => {
Ok(ExecReturnValue { flags: ReturnFlags::empty(), data: Vec::new() })
}
// `Error::Module` is returned only if instantiation or linking failed (i.e.
// wasm binary tried to import a function that is not provided by the host).
// This shouldn't happen because validation process ought to reject such binaries.
//
// Because panics are really undesirable in the runtime code, we treat this as
// a trap for now. Eventually, we might want to revisit this.
Err(sp_sandbox::Error::Module) =>
Err("validation error")?,
// Any other kind of a trap should result in a failure.
Err(sp_sandbox::Error::Execution) | Err(sp_sandbox::Error::OutOfBounds) =>
Err(Error::<E::T>::ContractTrapped)?
}
/// Get a mutable reference to the inner `Ext`.
///
/// This is mainly for the chain extension to have access to the environment the
/// contract is executing in.
pub fn ext(&mut self) -> &mut E {
self.ext
}
Alexander Theißen
committed
/// Store the reason for a host function triggered trap.
///
/// This is called by the `define_env` macro in order to store any error returned by
/// the host functions defined through the said macro. It should **not** be called
/// manually.
pub fn set_trap_reason(&mut self, reason: TrapReason) {
self.trap_reason = Some(reason);
}
/// Charge the gas meter with the specified token.
///
/// Returns `Err(HostError)` if there is not enough gas.
pub fn charge_gas<Tok>(&mut self, token: Tok) -> Result<ChargedAmount, DispatchError>
where
Tok: Token<E::T, Metadata=HostFnWeights<E::T>>,
{
self.gas_meter.charge(&self.ext.schedule().host_fn_weights, token)
}
/// Correct previously charged gas amount.
pub fn adjust_gas<Tok>(&mut self, charged_amount: ChargedAmount, adjusted_amount: Tok)
where
Tok: Token<E::T, Metadata=HostFnWeights<E::T>>,
{
self.gas_meter.adjust_gas(
charged_amount,
&self.ext.schedule().host_fn_weights,
adjusted_amount,
);
/// Read designated chunk from the sandbox memory.
///
/// Returns `Err` if one of the following conditions occurs:
///
/// - requested buffer is not within the bounds of the sandbox memory.
pub fn read_sandbox_memory(&self, ptr: u32, len: u32)
Alexander Theißen
committed
-> Result<Vec<u8>, DispatchError>
ensure!(len <= self.ext.schedule().limits.max_memory_size(), Error::<E::T>::OutOfBounds);
let mut buf = vec![0u8; len as usize];
self.memory.get(ptr, buf.as_mut_slice())
Alexander Theißen
committed
.map_err(|_| Error::<E::T>::OutOfBounds)?;
Ok(buf)
/// Read designated chunk from the sandbox memory into the supplied buffer.
///
/// Returns `Err` if one of the following conditions occurs:
///
/// - requested buffer is not within the bounds of the sandbox memory.
pub fn read_sandbox_memory_into_buf(&self, ptr: u32, buf: &mut [u8])
Alexander Theißen
committed
-> Result<(), DispatchError>
Alexander Theißen
committed
self.memory.get(ptr, buf).map_err(|_| Error::<E::T>::OutOfBounds.into())
/// Read designated chunk from the sandbox memory and attempt to decode into the specified type.
///
/// Returns `Err` if one of the following conditions occurs:
///
/// - requested buffer is not within the bounds of the sandbox memory.
/// - the buffer contents cannot be decoded as the required type.
///
/// # Note
///
/// It is safe to forgo benchmarking and charging weight relative to `len` for fixed
/// size types (basically everything not containing a heap collection):
/// Despite the fact that we are usually about to read the encoding of a fixed size
/// type, we cannot know the encoded size of that type. We therefore are required to
/// use the length provided by the contract. This length is untrusted and therefore
/// we charge weight relative to the provided size upfront that covers the copy costs.
/// On success this cost is refunded as the copying was already covered in the
/// overall cost of the host function. This is different from `read_sandbox_memory`
/// where the size is dynamic and the costs resulting from that dynamic size must
/// be charged relative to this dynamic size anyways (before reading) by constructing
/// the benchmark for that.
pub fn read_sandbox_memory_as<D: Decode>(&mut self, ptr: u32, len: u32)
Alexander Theißen
committed
-> Result<D, DispatchError>
let amount = self.charge_gas(RuntimeToken::CopyIn(len))?;
let buf = self.read_sandbox_memory(ptr, len)?;
let decoded = D::decode_all(&mut &buf[..])
.map_err(|_| DispatchError::from(Error::<E::T>::DecodingFailed))?;
self.gas_meter.refund(amount);
Ok(decoded)
/// Write the given buffer and its length to the designated locations in sandbox memory and
/// charge gas according to the token returned by `create_token`.
//
/// `out_ptr` is the location in sandbox memory where `buf` should be written to.
/// `out_len_ptr` is an in-out location in sandbox memory. It is read to determine the
/// length of the buffer located at `out_ptr`. If that buffer is large enough the actual
/// `buf.len()` is written to this location.
///
/// If `out_ptr` is set to the sentinel value of `u32::max_value()` and `allow_skip` is true the
/// operation is skipped and `Ok` is returned. This is supposed to help callers to make copying
/// output optional. For example to skip copying back the output buffer of an `seal_call`
/// when the caller is not interested in the result.
///
/// `create_token` can optionally instruct this function to charge the gas meter with the token
/// it returns. `create_token` receives the variable amount of bytes that are about to be copied by
/// this function.
///
/// In addition to the error conditions of `write_sandbox_memory` this functions returns
/// `Err` if the size of the buffer located at `out_ptr` is too small to fit `buf`.
pub fn write_sandbox_output(
&mut self,
out_ptr: u32,
out_len_ptr: u32,
buf: &[u8],
allow_skip: bool,
create_token: impl FnOnce(u32) -> Option<RuntimeToken>,
Alexander Theißen
committed
) -> Result<(), DispatchError>
{
if allow_skip && out_ptr == u32::max_value() {
return Ok(());
}
let buf_len = buf.len() as u32;
let len: u32 = self.read_sandbox_memory_as(out_len_ptr, 4)?;
if len < buf_len {
Alexander Theißen
committed
Err(Error::<E::T>::OutputBufferTooSmall)?
}
if let Some(token) = create_token(buf_len) {
self.charge_gas(token)?;
}
self.memory.set(out_ptr, buf).and_then(|_| {
self.memory.set(out_len_ptr, &buf_len.encode())
})
Alexander Theißen
committed
.map_err(|_| Error::<E::T>::OutOfBounds)?;
Ok(())
/// Write the given buffer to the designated location in the sandbox memory.
///
/// Returns `Err` if one of the following conditions occurs:
///
/// - designated area is not within the bounds of the sandbox memory.
fn write_sandbox_memory(&mut self, ptr: u32, buf: &[u8]) -> Result<(), DispatchError> {
self.memory.set(ptr, buf).map_err(|_| Error::<E::T>::OutOfBounds.into())
}
/// Computes the given hash function on the supplied input.
///
/// Reads from the sandboxed input buffer into an intermediate buffer.
/// Returns the result directly to the output buffer of the sandboxed memory.
///
/// It is the callers responsibility to provide an output buffer that
/// is large enough to hold the expected amount of bytes returned by the
/// chosen hash function.
///
/// # Note
///
/// The `input` and `output` buffers may overlap.
fn compute_hash_on_intermediate_buffer<F, R>(
&mut self,
hash_fn: F,
input_ptr: u32,
input_len: u32,
output_ptr: u32,
Alexander Theißen
committed
) -> Result<(), DispatchError>
where
F: FnOnce(&[u8]) -> R,
R: AsRef<[u8]>,
{
// Copy input into supervisor memory.
let input = self.read_sandbox_memory(input_ptr, input_len)?;
// Compute the hash on the input buffer using the given hash function.
let hash = hash_fn(&input);
// Write the resulting hash back into the sandboxed output buffer.
self.write_sandbox_memory(output_ptr, hash.as_ref())?;
Ok(())
}
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
/// Fallible conversion of `DispatchError` to `ReturnCode`.
fn err_into_return_code(from: DispatchError) -> Result<ReturnCode, DispatchError> {
use ReturnCode::*;
let below_sub = Error::<E::T>::BelowSubsistenceThreshold.into();
let transfer_failed = Error::<E::T>::TransferFailed.into();
let not_funded = Error::<E::T>::NewContractNotFunded.into();
let no_code = Error::<E::T>::CodeNotFound.into();
let invalid_contract = Error::<E::T>::NotCallable.into();
match from {
x if x == below_sub => Ok(BelowSubsistenceThreshold),
x if x == transfer_failed => Ok(TransferFailed),
x if x == not_funded => Ok(NewContractNotFunded),
x if x == no_code => Ok(CodeNotFound),
x if x == invalid_contract => Ok(NotCallable),
err => Err(err)
}
}
/// Fallible conversion of a `ExecResult` to `ReturnCode`.
fn exec_into_return_code(from: ExecResult) -> Result<ReturnCode, DispatchError> {
use pallet_contracts_primitives::ErrorOrigin::Callee;
let ExecError { error, origin } = match from {
Ok(retval) => return Ok(retval.into()),
Err(err) => err,
};
match (error, origin) {
(_, Callee) => Ok(ReturnCode::CalleeTrapped),
(err, _) => Self::err_into_return_code(err)
}
// ***********************************************************
// * AFTER MAKING A CHANGE MAKE SURE TO UPDATE COMPLEXITY.MD *
// ***********************************************************
// Define a function `fn init_env<E: Ext>() -> HostFunctionSet<E>` that returns
// a function set which can be imported by an executed contract.
//
// # Note
//
// Any input that leads to a out of bound error (reading or writing) or failing to decode
// data passed to the supervisor will lead to a trap. This is not documented explicitly
// for every function.
// Account for used gas. Traps if gas used is greater than gas limit.
//
// NOTE: This is a implementation defined call and is NOT a part of the public API.
// This call is supposed to be called only by instrumentation injected code.
//
// - amount: How much gas is used.
gas(ctx, amount: u32) => {
ctx.charge_gas(RuntimeToken::MeteringBlock(amount))?;
Ok(())
// Set the value at the given key in the contract storage.
// The value length must not exceed the maximum defined by the contracts module parameters.
// Storing an empty value is disallowed.
//
// # Parameters
//
// - `key_ptr`: pointer into the linear memory where the location to store the value is placed.
// - `value_ptr`: pointer into the linear memory where the value to set is placed.
// - `value_len`: the length of the value in bytes.
//
//
// - If value length exceeds the configured maximum value length of a storage entry.
// - Upon trying to set an empty storage entry (value length is 0).
Alexander Theißen
committed
seal_set_storage(ctx, key_ptr: u32, value_ptr: u32, value_len: u32) => {
ctx.charge_gas(RuntimeToken::SetStorage(value_len))?;
if value_len > ctx.ext.max_value_size() {
Alexander Theißen
committed
Err(Error::<E::T>::ValueTooLarge)?;
Andrew Jones
committed
let mut key: StorageKey = [0; 32];
ctx.read_sandbox_memory_into_buf(key_ptr, &mut key)?;
let value = Some(ctx.read_sandbox_memory(value_ptr, value_len)?);
ctx.ext.set_storage(key, value).map_err(Into::into)
// Clear the value at the given key in the contract storage.
//
// # Parameters
//
// - `key_ptr`: pointer into the linear memory where the location to clear the value is placed.
Alexander Theißen
committed
seal_clear_storage(ctx, key_ptr: u32) => {
ctx.charge_gas(RuntimeToken::ClearStorage)?;
let mut key: StorageKey = [0; 32];
ctx.read_sandbox_memory_into_buf(key_ptr, &mut key)?;
ctx.ext.set_storage(key, None).map_err(Into::into)
// Retrieve the value under the given key from storage.
// # Parameters
//
// - `key_ptr`: pointer into the linear memory where the key of the requested value is placed.
// - `out_ptr`: pointer to the linear memory where the value is written to.
// - `out_len_ptr`: in-out pointer into linear memory where the buffer length
// is read from and the value length is written to.
//
// # Errors
//
// `ReturnCode::KeyNotFound`
Alexander Theißen
committed
seal_get_storage(ctx, key_ptr: u32, out_ptr: u32, out_len_ptr: u32) -> ReturnCode => {
ctx.charge_gas(RuntimeToken::GetStorageBase)?;
Andrew Jones
committed
let mut key: StorageKey = [0; 32];
ctx.read_sandbox_memory_into_buf(key_ptr, &mut key)?;
if let Some(value) = ctx.ext.get_storage(&key) {
ctx.write_sandbox_output(out_ptr, out_len_ptr, &value, false, |len| {
Some(RuntimeToken::GetStorageCopyOut(len))
})?;
// Transfer some value to another account.
//
//
// - account_ptr: a pointer to the address of the beneficiary account
// Should be decodable as an `T::AccountId`. Traps otherwise.
// - account_len: length of the address buffer.
// - value_ptr: a pointer to the buffer with value, how much value to send.
// Should be decodable as a `T::Balance`. Traps otherwise.
// - value_len: length of the value buffer.
// `ReturnCode::BelowSubsistenceThreshold`
// `ReturnCode::TransferFailed`
Alexander Theißen
committed
seal_transfer(
ctx,
account_ptr: u32,
account_len: u32,
value_ptr: u32,
value_len: u32
ctx.charge_gas(RuntimeToken::Transfer)?;
let callee: <<E as Ext>::T as frame_system::Config>::AccountId =
ctx.read_sandbox_memory_as(account_ptr, account_len)?;
ctx.read_sandbox_memory_as(value_ptr, value_len)?;
let result = ctx.ext.transfer(&callee, value);
Alexander Theißen
committed
match result {
Ok(()) => Ok(ReturnCode::Success),
Err(err) => {
let code = Runtime::<E>::err_into_return_code(err)?;
Ok(code)
}
}
// The callees output buffer is copied to `output_ptr` and its length to `output_len_ptr`.
// The copy of the output buffer can be skipped by supplying the sentinel value
// of `u32::max_value()` to `output_ptr`.
//
//
// - callee_ptr: a pointer to the address of the callee contract.
// Should be decodable as an `T::AccountId`. Traps otherwise.
// - callee_len: length of the address buffer.
// - gas: how much gas to devote to the execution.
// - value_ptr: a pointer to the buffer with value, how much value to send.
// Should be decodable as a `T::Balance`. Traps otherwise.
// - value_len: length of the value buffer.
// - input_data_ptr: a pointer to a buffer to be used as input data to the callee.
// - input_data_len: length of the input data buffer.
// - output_ptr: a pointer where the output buffer is copied to.
// - output_len_ptr: in-out pointer to where the length of the buffer is read from
// and the actual length is written to.
//
// # Errors
//
// An error means that the call wasn't successful output buffer is returned unless
// stated otherwise.
// `ReturnCode::CalleeReverted`: Output buffer is returned.
// `ReturnCode::CalleeTrapped`
// `ReturnCode::BelowSubsistenceThreshold`
// `ReturnCode::TransferFailed`
// `ReturnCode::NotCallable`
Alexander Theißen
committed
seal_call(
ctx,
callee_ptr: u32,
callee_len: u32,
gas: u64,
value_ptr: u32,
value_len: u32,
input_data_ptr: u32,
input_data_len: u32,
output_ptr: u32,
output_len_ptr: u32
) -> ReturnCode => {
ctx.charge_gas(RuntimeToken::CallBase(input_data_len))?;
let callee: <<E as Ext>::T as frame_system::Config>::AccountId =
ctx.read_sandbox_memory_as(callee_ptr, callee_len)?;
let value: BalanceOf<<E as Ext>::T> = ctx.read_sandbox_memory_as(value_ptr, value_len)?;
let input_data = ctx.read_sandbox_memory(input_data_ptr, input_data_len)?;
if value > 0u32.into() {
ctx.charge_gas(RuntimeToken::CallSurchargeTransfer)?;
let charged = ctx.charge_gas(
RuntimeToken::CallSurchargeCodeSize(<E::T as Config>::MaxCodeSize::get())
)?;
let nested_gas_limit = if gas == 0 {
ctx.gas_meter.gas_left()
} else {
};
let ext = &mut ctx.ext;
let call_outcome = ctx.gas_meter.with_nested(nested_gas_limit, |nested_meter| {
match nested_meter {
Some(nested_meter) => {
ext.call(
&callee,
value,
nested_meter,
input_data,
// there is not enough gas to allocate for the nested call.
None => Err((Error::<<E as Ext>::T>::OutOfGas.into(), 0)),
let code_len = match &call_outcome {
Ok((_, len)) => len,
Err((_, len)) => len,
};
ctx.adjust_gas(charged, RuntimeToken::CallSurchargeCodeSize(*code_len));
if let Ok((output, _)) = &call_outcome {
ctx.write_sandbox_output(output_ptr, output_len_ptr, &output.data, true, |len| {
Some(RuntimeToken::CallCopyOut(len))
})?;
Ok(Runtime::<E>::exec_into_return_code(call_outcome.map(|r| r.0).map_err(|r| r.0))?)
// Instantiate a contract with the specified code hash.
// This function creates an account and executes the constructor defined in the code specified
// by the code hash. The address of this new account is copied to `address_ptr` and its length
// to `address_len_ptr`. The constructors output buffer is copied to `output_ptr` and its
Alexander Theißen
committed
// length to `output_len_ptr`. The copy of the output buffer and address can be skipped by
// supplying the sentinel value of `u32::max_value()` to `output_ptr` or `address_ptr`.
//
Alexander Theißen
committed
// After running the constructor it is verfied that the contract account holds at
// least the subsistence threshold. If that is not the case the instantion fails and
// the contract is not created.
// - code_hash_ptr: a pointer to the buffer that contains the initializer code.
// - code_hash_len: length of the initializer code buffer.
// - gas: how much gas to devote to the execution of the initializer code.
// - value_ptr: a pointer to the buffer with value, how much value to send.
// Should be decodable as a `T::Balance`. Traps otherwise.
// - value_len: length of the value buffer.
// - input_data_ptr: a pointer to a buffer to be used as input data to the initializer code.
// - input_data_len: length of the input data buffer.
// - address_ptr: a pointer where the new account's address is copied to.
// - address_len_ptr: in-out pointer to where the length of the buffer is read from
// and the actual length is written to.
// - output_ptr: a pointer where the output buffer is copied to.
// - output_len_ptr: in-out pointer to where the length of the buffer is read from
// and the actual length is written to.
// - salt_ptr: Pointer to raw bytes used for address deriviation. See `fn contract_address`.
// - salt_len: length in bytes of the supplied salt.
// Please consult the `ReturnCode` enum declaration for more information on those
// errors. Here we only note things specific to this function.
// An error means that the account wasn't created and no address or output buffer
// is returned unless stated otherwise.
// `ReturnCode::CalleeReverted`: Output buffer is returned.
// `ReturnCode::CalleeTrapped`
// `ReturnCode::BelowSubsistenceThreshold`
// `ReturnCode::TransferFailed`
// `ReturnCode::NewContractNotFunded`
// `ReturnCode::CodeNotFound`
Alexander Theißen
committed
seal_instantiate(
code_hash_ptr: u32,
code_hash_len: u32,
gas: u64,
value_ptr: u32,
value_len: u32,
input_data_ptr: u32,
input_data_len: u32,
address_ptr: u32,
address_len_ptr: u32,
output_ptr: u32,
output_len_ptr: u32,
salt_ptr: u32,
salt_len: u32
ctx.charge_gas(RuntimeToken::InstantiateBase {input_data_len, salt_len})?;
let code_hash: CodeHash<<E as Ext>::T> =
ctx.read_sandbox_memory_as(code_hash_ptr, code_hash_len)?;
let value: BalanceOf<<E as Ext>::T> = ctx.read_sandbox_memory_as(value_ptr, value_len)?;
let input_data = ctx.read_sandbox_memory(input_data_ptr, input_data_len)?;
let salt = ctx.read_sandbox_memory(salt_ptr, salt_len)?;
let charged = ctx.charge_gas(
RuntimeToken::InstantiateSurchargeCodeSize(<E::T as Config>::MaxCodeSize::get())
)?;
let nested_gas_limit = if gas == 0 {
ctx.gas_meter.gas_left()
} else {
let instantiate_outcome = ctx.gas_meter.with_nested(nested_gas_limit, |nested_meter| {
Some(nested_meter) => {
ext.instantiate(
input_data,
&salt,
// there is not enough gas to allocate for the nested call.
None => Err((Error::<<E as Ext>::T>::OutOfGas.into(), 0)),
let code_len = match &instantiate_outcome {
Ok((_, _, code_len)) => code_len,
Err((_, code_len)) => code_len,
};
ctx.adjust_gas(charged, RuntimeToken::InstantiateSurchargeCodeSize(*code_len));
if let Ok((address, output, _)) = &instantiate_outcome {
if !output.flags.contains(ReturnFlags::REVERT) {
ctx.write_sandbox_output(
address_ptr, address_len_ptr, &address.encode(), true, already_charged,
ctx.write_sandbox_output(output_ptr, output_len_ptr, &output.data, true, |len| {
Some(RuntimeToken::InstantiateCopyOut(len))
})?;
Ok(Runtime::<E>::exec_into_return_code(
instantiate_outcome.map(|(_, retval, _)| retval).map_err(|(err, _)| err)
)?)
// Remove the calling account and transfer remaining balance.
//
// This function never returns. Either the termination was successful and the
// execution of the destroyed contract is halted. Or it failed during the termination
// which is considered fatal and results in a trap + rollback.
//
// - beneficiary_ptr: a pointer to the address of the beneficiary account where all
// where all remaining funds of the caller are transfered.
// Should be decodable as an `T::AccountId`. Traps otherwise.
// - beneficiary_len: length of the address buffer.
//
// # Traps
//
// - The contract is live i.e is already on the call stack.
// - Failed to send the balance to the beneficiary.
// - The deletion queue is full.
Alexander Theißen
committed
seal_terminate(
ctx,
beneficiary_ptr: u32,
beneficiary_len: u32
) => {
ctx.charge_gas(RuntimeToken::Terminate)?;
let beneficiary: <<E as Ext>::T as frame_system::Config>::AccountId =
ctx.read_sandbox_memory_as(beneficiary_ptr, beneficiary_len)?;
let charged = ctx.charge_gas(
RuntimeToken::TerminateSurchargeCodeSize(<E::T as Config>::MaxCodeSize::get())
)?;
let (result, code_len) = match ctx.ext.terminate(&beneficiary) {
Ok(len) => (Ok(()), len),
Err((err, len)) => (Err(err), len),
};
ctx.adjust_gas(charged, RuntimeToken::TerminateSurchargeCodeSize(code_len));
result?;
Alexander Theißen
committed
Err(TrapReason::Termination)
// Stores the input passed by the caller into the supplied buffer.
//
// The value is stored to linear memory at the address pointed to by `out_ptr`.
// `out_len_ptr` must point to a u32 value that describes the available space at
// `out_ptr`. This call overwrites it with the size of the value. If the available
// space at `out_ptr` is less than the size of the value a trap is triggered.
//
// # Note
//
// This function can only be called once. Calling it multiple times will trigger a trap.
seal_input(ctx, out_ptr: u32, out_len_ptr: u32) => {
ctx.charge_gas(RuntimeToken::InputBase)?;