Newer
Older
// Copyright (C) 2018-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Environment definition of the wasm smart-contract runtime.
Alexander Theißen
committed
use crate::{
exec::{ExecError, ExecResult, Ext, StorageKey, TopicOf},
gas::{ChargedAmount, Token},
wasm::env_def::ConvertibleToWasm,
BalanceOf, CodeHash, Config, Error,
use bitflags::bitflags;
Igor Matuszewski
committed
use codec::{Decode, DecodeAll, Encode, MaxEncodedLen};
use frame_support::{dispatch::DispatchError, ensure, weights::Weight};
use pallet_contracts_primitives::{ExecReturnValue, ReturnFlags};
use pwasm_utils::parity_wasm::elements::ValueType;
use sp_core::{crypto::UncheckedFrom, Bytes};
use sp_io::hashing::{blake2_128, blake2_256, keccak_256, sha2_256};
use sp_runtime::traits::Bounded;
use sp_sandbox::SandboxMemory;
/// Every error that can be returned to a contract when it calls any of the host functions.
///
/// # Note
///
/// This enum can be extended in the future: New codes can be added but existing codes
/// will not be changed or removed. This means that any contract **must not** exhaustively
/// match return codes. Instead, contracts should prepare for unknown variants and deal with
/// those errors gracefuly in order to be forward compatible.
#[repr(u32)]
pub enum ReturnCode {
/// API call successful.
Success = 0,
/// The called function trapped and has its state changes reverted.
/// In this case no output buffer is returned.
CalleeTrapped = 1,
/// The called function ran to completion but decided to revert its state.
/// An output buffer is returned when one was supplied.
CalleeReverted = 2,
/// The passed key does not exist in storage.
KeyNotFound = 3,
/// Transfer failed because it would have brought the sender's total balance below the
/// subsistence threshold.
BelowSubsistenceThreshold = 4,
/// Transfer failed for other reasons. Most probably reserved or locked balance of the
/// sender prevents the transfer.
TransferFailed = 5,
/// The newly created contract is below the subsistence threshold after executing
/// its constructor.
NewContractNotFunded = 6,
/// No code could be found at the supplied code hash.
CodeNotFound = 7,
/// The contract that was called is no contract (a plain account).
/// The call to `seal_debug_message` had no effect because debug message
/// recording was disabled.
LoggingDisabled = 9,
/// The call dispatched by `seal_call_runtime` was executed but returned an error.
#[cfg(feature = "unstable-interface")]
CallRuntimeReturnedError = 10,
/// ECDSA pubkey recovery failed. Most probably wrong recovery id or signature.
#[cfg(feature = "unstable-interface")]
EcdsaRecoverFailed = 11,
}
impl ConvertibleToWasm for ReturnCode {
type NativeType = Self;
const VALUE_TYPE: ValueType = ValueType::I32;
fn to_typed_value(self) -> sp_sandbox::Value {
sp_sandbox::Value::I32(self as i32)
}
fn from_typed_value(_: sp_sandbox::Value) -> Option<Self> {
debug_assert!(false, "We will never receive a ReturnCode but only send it to wasm.");
None
}
}
impl From<ExecReturnValue> for ReturnCode {
fn from(from: ExecReturnValue) -> Self {
if from.flags.contains(ReturnFlags::REVERT) {
Self::CalleeReverted
} else {
Self::Success
}
}
}
Alexander Theißen
committed
/// The data passed through when a contract uses `seal_return`.
Alexander Theißen
committed
pub struct ReturnData {
/// The flags as passed through by the contract. They are still unchecked and
/// will later be parsed into a `ReturnFlags` bitflags struct.
flags: u32,
/// The output buffer passed by the contract as return data.
data: Vec<u8>,
}
/// Enumerates all possible reasons why a trap was generated.
/// This is either used to supply the caller with more information about why an error
/// occurred (the SupervisorError variant).
/// The other case is where the trap does not constitute an error but rather was invoked
/// as a quick way to terminate the application (all other variants).
Alexander Theißen
committed
pub enum TrapReason {
/// The supervisor trapped the contract because of an error condition occurred during
/// execution in privileged code.
SupervisorError(DispatchError),
Alexander Theißen
committed
/// Signals that trap was generated in response to call `seal_return` host function.
/// Signals that a trap was generated in response to a successful call to the
Alexander Theißen
committed
/// `seal_terminate` host function.
Alexander Theißen
committed
impl<T: Into<DispatchError>> From<T> for TrapReason {
fn from(from: T) -> Self {
Self::SupervisorError(from.into())
}
}
#[cfg_attr(test, derive(Debug, PartialEq, Eq))]
#[derive(Copy, Clone)]
/// Charge the gas meter with the cost of a metering block. The charged costs are
/// the supplied cost of the block plus the overhead of the metering itself.
MeteringBlock(u32),
/// Weight of calling `seal_caller`.
Caller,
/// Weight of calling `seal_address`.
Address,
/// Weight of calling `seal_gas_left`.
GasLeft,
/// Weight of calling `seal_balance`.
Balance,
/// Weight of calling `seal_value_transferred`.
ValueTransferred,
/// Weight of calling `seal_minimum_balance`.
MinimumBalance,
/// Weight of calling `seal_contract_deposit`.
ContractDeposit,
/// Weight of calling `seal_block_number`.
BlockNumber,
/// Weight of calling `seal_now`.
Now,
/// Weight of calling `seal_weight_to_fee`.
WeightToFee,
/// Weight of calling `seal_input` without the weight of copying the input.
InputBase,
/// Weight of copying the input data for the given size.
InputCopyOut(u32),
/// Weight of calling `seal_return` for the given output size.
Return(u32),
/// Weight of calling `seal_terminate`.
Terminate,
/// Weight of calling `seal_random`. It includes the weight for copying the subject.
Random,
/// Weight of calling `seal_deposit_event` with the given number of topics and event size.
DepositEvent { num_topic: u32, len: u32 },
/// Weight of calling `seal_debug_message`.
DebugMessage,
/// Weight of calling `seal_set_storage` for the given storage item size.
SetStorage(u32),
/// Weight of calling `seal_clear_storage`.
ClearStorage,
/// Weight of calling `seal_get_storage` without output weight.
GetStorageBase,
/// Weight of an item received via `seal_get_storage` for the given size.
GetStorageCopyOut(u32),
/// Weight of calling `seal_transfer`.
Transfer,
/// Weight of calling `seal_call` for the given input size.
CallBase(u32),
/// Weight of the transfer performed during a call.
CallSurchargeTransfer,
/// Weight of output received through `seal_call` for the given size.
CallCopyOut(u32),
/// Weight of calling `seal_instantiate` for the given input and salt without output weight.
/// This includes the transfer as an instantiate without a value will always be below
/// the existential deposit and is disregarded as corner case.
InstantiateBase { input_data_len: u32, salt_len: u32 },
/// Weight of output received through `seal_instantiate` for the given size.
InstantiateCopyOut(u32),
/// Weight of calling `seal_hash_sha_256` for the given input size.
HashSha256(u32),
/// Weight of calling `seal_hash_keccak_256` for the given input size.
HashKeccak256(u32),
/// Weight of calling `seal_hash_blake2_256` for the given input size.
HashBlake256(u32),
/// Weight of calling `seal_hash_blake2_128` for the given input size.
HashBlake128(u32),
/// Weight of calling `seal_ecdsa_recover`.
#[cfg(feature = "unstable-interface")]
EcdsaRecovery,
/// Weight charged by a chain extension through `seal_call_chain_extension`.
ChainExtension(u64),
/// Weight charged for copying data from the sandbox.
#[cfg(feature = "unstable-interface")]
CopyIn(u32),
/// Weight charged for calling into the runtime.
#[cfg(feature = "unstable-interface")]
CallRuntime(Weight),
impl RuntimeCosts {
fn token<T>(&self, s: &HostFnWeights<T>) -> RuntimeToken
where
T: Config,
T::AccountId: UncheckedFrom<T::Hash> + AsRef<[u8]>,
{
use self::RuntimeCosts::*;
let weight = match *self {
MeteringBlock(amount) => s.gas.saturating_add(amount.into()),
Caller => s.caller,
Address => s.address,
GasLeft => s.gas_left,
Balance => s.balance,
ValueTransferred => s.value_transferred,
MinimumBalance => s.minimum_balance,
ContractDeposit => s.contract_deposit,
BlockNumber => s.block_number,
Now => s.now,
WeightToFee => s.weight_to_fee,
InputBase => s.input,
InputCopyOut(len) => s.input_per_byte.saturating_mul(len.into()),
Return(len) => s.r#return.saturating_add(s.return_per_byte.saturating_mul(len.into())),
Terminate => s.terminate,
Random => s.random,
DepositEvent { num_topic, len } => s
.deposit_event
.saturating_add(s.deposit_event_per_topic.saturating_mul(num_topic.into()))
.saturating_add(s.deposit_event_per_byte.saturating_mul(len.into())),
DebugMessage => s.debug_message,
SetStorage(len) =>
s.set_storage.saturating_add(s.set_storage_per_byte.saturating_mul(len.into())),
ClearStorage => s.clear_storage,
GetStorageBase => s.get_storage,
GetStorageCopyOut(len) => s.get_storage_per_byte.saturating_mul(len.into()),
Transfer => s.transfer,
CallBase(len) =>
s.call.saturating_add(s.call_per_input_byte.saturating_mul(len.into())),
CallSurchargeTransfer => s.call_transfer_surcharge,
CallCopyOut(len) => s.call_per_output_byte.saturating_mul(len.into()),
InstantiateBase { input_data_len, salt_len } => s
.instantiate
.saturating_add(s.instantiate_per_input_byte.saturating_mul(input_data_len.into()))
.saturating_add(s.instantiate_per_salt_byte.saturating_mul(salt_len.into())),
InstantiateCopyOut(len) => s.instantiate_per_output_byte.saturating_mul(len.into()),
HashSha256(len) => s
.hash_sha2_256
.saturating_add(s.hash_sha2_256_per_byte.saturating_mul(len.into())),
HashKeccak256(len) => s
.hash_keccak_256
.saturating_add(s.hash_keccak_256_per_byte.saturating_mul(len.into())),
HashBlake256(len) => s
.hash_blake2_256
.saturating_add(s.hash_blake2_256_per_byte.saturating_mul(len.into())),
HashBlake128(len) => s
.hash_blake2_128
.saturating_add(s.hash_blake2_128_per_byte.saturating_mul(len.into())),
#[cfg(feature = "unstable-interface")]
EcdsaRecovery => s.ecdsa_recover,
ChainExtension(amount) => amount,
#[cfg(feature = "unstable-interface")]
CopyIn(len) => s.return_per_byte.saturating_mul(len.into()),
#[cfg(feature = "unstable-interface")]
CallRuntime(weight) => weight,
};
RuntimeToken {
#[cfg(test)]
_created_from: *self,
weight,
#[cfg_attr(test, derive(Debug, PartialEq, Eq))]
#[derive(Copy, Clone)]
struct RuntimeToken {
#[cfg(test)]
_created_from: RuntimeCosts,
weight: Weight,
}
impl<T> Token<T> for RuntimeToken
where
T: Config,
T::AccountId: UncheckedFrom<T::Hash> + AsRef<[u8]>,
{
fn weight(&self) -> Weight {
self.weight
}
}
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
bitflags! {
/// Flags used to change the behaviour of `seal_call`.
struct CallFlags: u32 {
/// Forward the input of current function to the callee.
///
/// Supplied input pointers are ignored when set.
///
/// # Note
///
/// A forwarding call will consume the current contracts input. Any attempt to
/// access the input after this call returns will lead to [`Error::InputForwarded`].
/// It does not matter if this is due to calling `seal_input` or trying another
/// forwarding call. Consider using [`Self::CLONE_INPUT`] in order to preserve
/// the input.
const FORWARD_INPUT = 0b0000_0001;
/// Identical to [`Self::FORWARD_INPUT`] but without consuming the input.
///
/// This adds some additional weight costs to the call.
///
/// # Note
///
/// This implies [`Self::FORWARD_INPUT`] and takes precedence when both are set.
const CLONE_INPUT = 0b0000_0010;
/// Do not return from the call but rather return the result of the callee to the
/// callers caller.
///
/// # Note
///
/// This makes the current contract completely transparent to its caller by replacing
/// this contracts potential output by the callee ones. Any code after `seal_call`
/// can be safely considered unreachable.
const TAIL_CALL = 0b0000_0100;
/// Allow the callee to reenter into the current contract.
///
/// Without this flag any reentrancy into the current contract that originates from
/// the callee (or any of its callees) is denied. This includes the first callee:
/// You cannot call into yourself with this flag set.
const ALLOW_REENTRY = 0b0000_1000;
}
}
/// This is only appropriate when writing out data of constant size that does not depend on user
/// input. In this case the costs for this copy was already charged as part of the token at
/// the beginning of the API entry point.
fn already_charged(_: u32) -> Option<RuntimeCosts> {
None
/// Can only be used for one call.
pub struct Runtime<'a, E: Ext + 'a> {
ext: &'a mut E,
input_data: Option<Vec<u8>>,
memory: sp_sandbox::default_executor::Memory,
trap_reason: Option<TrapReason>,
impl<'a, E> Runtime<'a, E>
where
E: Ext + 'a,
<E::T as frame_system::Config>::AccountId:
UncheckedFrom<<E::T as frame_system::Config>::Hash> + AsRef<[u8]>,
pub fn new(
ext: &'a mut E,
input_data: Vec<u8>,
memory: sp_sandbox::default_executor::Memory,
) -> Self {
Runtime { ext, input_data: Some(input_data), memory, trap_reason: None }
/// Converts the sandbox result and the runtime state into the execution outcome.
///
/// It evaluates information stored in the `trap_reason` variable of the runtime and
/// bases the outcome on the value if this variable. Only if `trap_reason` is `None`
/// the result of the sandbox is evaluated.
pub fn to_execution_result(
self,
sandbox_result: Result<sp_sandbox::ReturnValue, sp_sandbox::Error>,
) -> ExecResult {
// If a trap reason is set we base our decision solely on that.
if let Some(trap_reason) = self.trap_reason {
return match trap_reason {
// The trap was the result of the execution `return` host function.
TrapReason::Return(ReturnData { flags, data }) => {
let flags = ReturnFlags::from_bits(flags)
.ok_or_else(|| "used reserved bit in return flags")?;
Ok(ExecReturnValue { flags, data: Bytes(data) })
TrapReason::Termination =>
Ok(ExecReturnValue { flags: ReturnFlags::empty(), data: Bytes(Vec::new()) }),
TrapReason::SupervisorError(error) => Err(error)?,
}
}
// Check the exact type of the error.
match sandbox_result {
// No traps were generated. Proceed normally.
Ok(_) => Ok(ExecReturnValue { flags: ReturnFlags::empty(), data: Bytes(Vec::new()) }),
// `Error::Module` is returned only if instantiation or linking failed (i.e.
// wasm binary tried to import a function that is not provided by the host).
// This shouldn't happen because validation process ought to reject such binaries.
//
// Because panics are really undesirable in the runtime code, we treat this as
// a trap for now. Eventually, we might want to revisit this.
Err(sp_sandbox::Error::Module) => Err("validation error")?,
// Any other kind of a trap should result in a failure.
Err(sp_sandbox::Error::Execution) | Err(sp_sandbox::Error::OutOfBounds) =>
Err(Error::<E::T>::ContractTrapped)?,
/// Get a mutable reference to the inner `Ext`.
///
/// This is mainly for the chain extension to have access to the environment the
/// contract is executing in.
pub fn ext(&mut self) -> &mut E {
self.ext
}
Alexander Theißen
committed
/// Store the reason for a host function triggered trap.
///
/// This is called by the `define_env` macro in order to store any error returned by
/// the host functions defined through the said macro. It should **not** be called
/// manually.
pub fn set_trap_reason(&mut self, reason: TrapReason) {
self.trap_reason = Some(reason);
}
/// Charge the gas meter with the specified token.
///
/// Returns `Err(HostError)` if there is not enough gas.
pub fn charge_gas(&mut self, costs: RuntimeCosts) -> Result<ChargedAmount, DispatchError> {
let token = costs.token(&self.ext.schedule().host_fn_weights);
self.ext.gas_meter().charge(token)
/// Adjust a previously charged amount down to its actual amount.
///
/// This is when a maximum a priori amount was charged and then should be partially
/// refunded to match the actual amount.
pub fn adjust_gas(&mut self, charged: ChargedAmount, actual_costs: RuntimeCosts) {
let token = actual_costs.token(&self.ext.schedule().host_fn_weights);
self.ext.gas_meter().adjust_gas(charged, token);
}
/// Read designated chunk from the sandbox memory.
///
/// Returns `Err` if one of the following conditions occurs:
///
/// - requested buffer is not within the bounds of the sandbox memory.
pub fn read_sandbox_memory(&self, ptr: u32, len: u32) -> Result<Vec<u8>, DispatchError> {
ensure!(len <= self.ext.schedule().limits.max_memory_size(), Error::<E::T>::OutOfBounds);
let mut buf = vec![0u8; len as usize];
self.memory
.get(ptr, buf.as_mut_slice())
Alexander Theißen
committed
.map_err(|_| Error::<E::T>::OutOfBounds)?;
Ok(buf)
/// Read designated chunk from the sandbox memory into the supplied buffer.
///
/// Returns `Err` if one of the following conditions occurs:
///
/// - requested buffer is not within the bounds of the sandbox memory.
pub fn read_sandbox_memory_into_buf(
&self,
ptr: u32,
buf: &mut [u8],
) -> Result<(), DispatchError> {
Alexander Theißen
committed
self.memory.get(ptr, buf).map_err(|_| Error::<E::T>::OutOfBounds.into())
/// Reads and decodes a type with a size fixed at compile time from contract memory.
///
/// # Note
///
/// The weight of reading a fixed value is included in the overall weight of any
/// contract callable function.
pub fn read_sandbox_memory_as<D: Decode + MaxEncodedLen>(
&self,
ptr: u32,
) -> Result<D, DispatchError> {
let buf = self.read_sandbox_memory(ptr, D::max_encoded_len() as u32)?;
let decoded = D::decode_all(&mut &buf[..])
.map_err(|_| DispatchError::from(Error::<E::T>::DecodingFailed))?;
Ok(decoded)
}
/// Read designated chunk from the sandbox memory and attempt to decode into the specified type.
///
/// Returns `Err` if one of the following conditions occurs:
///
/// - requested buffer is not within the bounds of the sandbox memory.
/// - the buffer contents cannot be decoded as the required type.
///
/// # Note
///
/// There must be an extra benchmark for determining the influence of `len` with
/// regard to the overall weight.
pub fn read_sandbox_memory_as_unbounded<D: Decode>(
&self,
ptr: u32,
len: u32,
) -> Result<D, DispatchError> {
let buf = self.read_sandbox_memory(ptr, len)?;
let decoded = D::decode_all(&mut &buf[..])
.map_err(|_| DispatchError::from(Error::<E::T>::DecodingFailed))?;
Ok(decoded)
/// Write the given buffer and its length to the designated locations in sandbox memory and
/// charge gas according to the token returned by `create_token`.
//
/// `out_ptr` is the location in sandbox memory where `buf` should be written to.
/// `out_len_ptr` is an in-out location in sandbox memory. It is read to determine the
/// length of the buffer located at `out_ptr`. If that buffer is large enough the actual
/// `buf.len()` is written to this location.
///
/// If `out_ptr` is set to the sentinel value of `u32::MAX` and `allow_skip` is true the
/// operation is skipped and `Ok` is returned. This is supposed to help callers to make copying
/// output optional. For example to skip copying back the output buffer of an `seal_call`
/// when the caller is not interested in the result.
///
/// `create_token` can optionally instruct this function to charge the gas meter with the token
/// it returns. `create_token` receives the variable amount of bytes that are about to be copied
/// by this function.
///
/// In addition to the error conditions of `write_sandbox_memory` this functions returns
/// `Err` if the size of the buffer located at `out_ptr` is too small to fit `buf`.
pub fn write_sandbox_output(
&mut self,
out_ptr: u32,
out_len_ptr: u32,
buf: &[u8],
allow_skip: bool,
create_token: impl FnOnce(u32) -> Option<RuntimeCosts>,
) -> Result<(), DispatchError> {
let buf_len = buf.len() as u32;
let len: u32 = self.read_sandbox_memory_as(out_len_ptr)?;
if len < buf_len {
Alexander Theißen
committed
Err(Error::<E::T>::OutputBufferTooSmall)?
}
if let Some(costs) = create_token(buf_len) {
self.charge_gas(costs)?;
}
self.memory
.set(out_ptr, buf)
.and_then(|_| self.memory.set(out_len_ptr, &buf_len.encode()))
.map_err(|_| Error::<E::T>::OutOfBounds)?;
Ok(())
/// Write the given buffer to the designated location in the sandbox memory.
///
/// Returns `Err` if one of the following conditions occurs:
///
/// - designated area is not within the bounds of the sandbox memory.
fn write_sandbox_memory(&mut self, ptr: u32, buf: &[u8]) -> Result<(), DispatchError> {
self.memory.set(ptr, buf).map_err(|_| Error::<E::T>::OutOfBounds.into())
}
/// Computes the given hash function on the supplied input.
///
/// Reads from the sandboxed input buffer into an intermediate buffer.
/// Returns the result directly to the output buffer of the sandboxed memory.
///
/// It is the callers responsibility to provide an output buffer that
/// is large enough to hold the expected amount of bytes returned by the
/// chosen hash function.
///
/// # Note
///
/// The `input` and `output` buffers may overlap.
fn compute_hash_on_intermediate_buffer<F, R>(
&mut self,
hash_fn: F,
input_ptr: u32,
input_len: u32,
output_ptr: u32,
Alexander Theißen
committed
) -> Result<(), DispatchError>
where
F: FnOnce(&[u8]) -> R,
R: AsRef<[u8]>,
{
// Copy input into supervisor memory.
let input = self.read_sandbox_memory(input_ptr, input_len)?;
// Compute the hash on the input buffer using the given hash function.
let hash = hash_fn(&input);
// Write the resulting hash back into the sandboxed output buffer.
self.write_sandbox_memory(output_ptr, hash.as_ref())?;
Ok(())
}
/// Fallible conversion of `DispatchError` to `ReturnCode`.
fn err_into_return_code(from: DispatchError) -> Result<ReturnCode, DispatchError> {
use ReturnCode::*;
let below_sub = Error::<E::T>::BelowSubsistenceThreshold.into();
let transfer_failed = Error::<E::T>::TransferFailed.into();
let not_funded = Error::<E::T>::NewContractNotFunded.into();
let no_code = Error::<E::T>::CodeNotFound.into();
let not_found = Error::<E::T>::ContractNotFound.into();
match from {
x if x == below_sub => Ok(BelowSubsistenceThreshold),
x if x == transfer_failed => Ok(TransferFailed),
x if x == not_funded => Ok(NewContractNotFunded),
x if x == no_code => Ok(CodeNotFound),
x if x == not_found => Ok(NotCallable),
}
}
/// Fallible conversion of a `ExecResult` to `ReturnCode`.
fn exec_into_return_code(from: ExecResult) -> Result<ReturnCode, DispatchError> {
use crate::exec::ErrorOrigin::Callee;
let ExecError { error, origin } = match from {
Ok(retval) => return Ok(retval.into()),
Err(err) => err,
};
match (error, origin) {
(_, Callee) => Ok(ReturnCode::CalleeTrapped),
(err, _) => Self::err_into_return_code(err),
fn call(
&mut self,
flags: CallFlags,
callee_ptr: u32,
gas: u64,
value_ptr: u32,
input_data_ptr: u32,
input_data_len: u32,
output_ptr: u32,
output_len_ptr: u32,
) -> Result<ReturnCode, TrapReason> {
self.charge_gas(RuntimeCosts::CallBase(input_data_len))?;
let callee: <<E as Ext>::T as frame_system::Config>::AccountId =
self.read_sandbox_memory_as(callee_ptr)?;
let value: BalanceOf<<E as Ext>::T> = self.read_sandbox_memory_as(value_ptr)?;
let input_data = if flags.contains(CallFlags::CLONE_INPUT) {
self.input_data.as_ref().ok_or_else(|| Error::<E::T>::InputForwarded)?.clone()
} else if flags.contains(CallFlags::FORWARD_INPUT) {
self.input_data.take().ok_or_else(|| Error::<E::T>::InputForwarded)?
} else {
self.read_sandbox_memory(input_data_ptr, input_data_len)?
};
if value > 0u32.into() {
self.charge_gas(RuntimeCosts::CallSurchargeTransfer)?;
}
let ext = &mut self.ext;
let call_outcome =
ext.call(gas, callee, value, input_data, flags.contains(CallFlags::ALLOW_REENTRY));
// `TAIL_CALL` only matters on an `OK` result. Otherwise the call stack comes to
// a halt anyways without anymore code being executed.
if flags.contains(CallFlags::TAIL_CALL) {
if let Ok(return_value) = call_outcome {
return Err(TrapReason::Return(ReturnData {
flags: return_value.flags.bits(),
data: return_value.data.0,
}
}
if let Ok(output) = &call_outcome {
self.write_sandbox_output(output_ptr, output_len_ptr, &output.data, true, |len| {
Some(RuntimeCosts::CallCopyOut(len))
})?;
}
Ok(Runtime::<E>::exec_into_return_code(call_outcome)?)
}
fn instantiate(
&mut self,
code_hash_ptr: u32,
gas: u64,
value_ptr: u32,
input_data_ptr: u32,
input_data_len: u32,
address_ptr: u32,
address_len_ptr: u32,
output_ptr: u32,
output_len_ptr: u32,
salt_ptr: u32,
salt_len: u32,
) -> Result<ReturnCode, TrapReason> {
self.charge_gas(RuntimeCosts::InstantiateBase { input_data_len, salt_len })?;
let code_hash: CodeHash<<E as Ext>::T> = self.read_sandbox_memory_as(code_hash_ptr)?;
let value: BalanceOf<<E as Ext>::T> = self.read_sandbox_memory_as(value_ptr)?;
let input_data = self.read_sandbox_memory(input_data_ptr, input_data_len)?;
let salt = self.read_sandbox_memory(salt_ptr, salt_len)?;
let instantiate_outcome = self.ext.instantiate(gas, code_hash, value, input_data, &salt);
if let Ok((address, output)) = &instantiate_outcome {
if !output.flags.contains(ReturnFlags::REVERT) {
self.write_sandbox_output(
address_ptr,
address_len_ptr,
&address.encode(),
true,
already_charged,
)?;
}
self.write_sandbox_output(output_ptr, output_len_ptr, &output.data, true, |len| {
Some(RuntimeCosts::InstantiateCopyOut(len))
})?;
}
Ok(Runtime::<E>::exec_into_return_code(instantiate_outcome.map(|(_, retval)| retval))?)
}
fn terminate(&mut self, beneficiary_ptr: u32) -> Result<(), TrapReason> {
self.charge_gas(RuntimeCosts::Terminate)?;
let beneficiary: <<E as Ext>::T as frame_system::Config>::AccountId =
self.read_sandbox_memory_as(beneficiary_ptr)?;
self.ext.terminate(&beneficiary)?;
Err(TrapReason::Termination)
}
// ***********************************************************
// * AFTER MAKING A CHANGE MAKE SURE TO UPDATE COMPLEXITY.MD *
// ***********************************************************
// Define a function `fn init_env<E: Ext>() -> HostFunctionSet<E>` that returns
// a function set which can be imported by an executed contract.
//
// # Note
//
// Any input that leads to a out of bound error (reading or writing) or failing to decode
// data passed to the supervisor will lead to a trap. This is not documented explicitly
// for every function.
// Account for used gas. Traps if gas used is greater than gas limit.
//
// NOTE: This is a implementation defined call and is NOT a part of the public API.
// This call is supposed to be called only by instrumentation injected code.
//
[seal0] gas(ctx, amount: u32) => {
ctx.charge_gas(RuntimeCosts::MeteringBlock(amount))?;
Ok(())
// Set the value at the given key in the contract storage.
// The value length must not exceed the maximum defined by the contracts module parameters.
// Storing an empty value is disallowed.
//
// # Parameters
//
// - `key_ptr`: pointer into the linear memory where the location to store the value is placed.
// - `value_ptr`: pointer into the linear memory where the value to set is placed.
// - `value_len`: the length of the value in bytes.
//
//
// - If value length exceeds the configured maximum value length of a storage entry.
// - Upon trying to set an empty storage entry (value length is 0).
[seal0] seal_set_storage(ctx, key_ptr: u32, value_ptr: u32, value_len: u32) => {
ctx.charge_gas(RuntimeCosts::SetStorage(value_len))?;
if value_len > ctx.ext.max_value_size() {
Alexander Theißen
committed
Err(Error::<E::T>::ValueTooLarge)?;
Andrew Jones
committed
let mut key: StorageKey = [0; 32];
ctx.read_sandbox_memory_into_buf(key_ptr, &mut key)?;
let value = Some(ctx.read_sandbox_memory(value_ptr, value_len)?);
ctx.ext.set_storage(key, value).map_err(Into::into)
// Clear the value at the given key in the contract storage.
//
// # Parameters
//
// - `key_ptr`: pointer into the linear memory where the location to clear the value is placed.
[seal0] seal_clear_storage(ctx, key_ptr: u32) => {
ctx.charge_gas(RuntimeCosts::ClearStorage)?;
let mut key: StorageKey = [0; 32];
ctx.read_sandbox_memory_into_buf(key_ptr, &mut key)?;
ctx.ext.set_storage(key, None).map_err(Into::into)
// Retrieve the value under the given key from storage.
// # Parameters
//
// - `key_ptr`: pointer into the linear memory where the key of the requested value is placed.
// - `out_ptr`: pointer to the linear memory where the value is written to.
// - `out_len_ptr`: in-out pointer into linear memory where the buffer length
// is read from and the value length is written to.
//
// # Errors
//
// `ReturnCode::KeyNotFound`
[seal0] seal_get_storage(ctx, key_ptr: u32, out_ptr: u32, out_len_ptr: u32) -> ReturnCode => {
ctx.charge_gas(RuntimeCosts::GetStorageBase)?;
Andrew Jones
committed
let mut key: StorageKey = [0; 32];
ctx.read_sandbox_memory_into_buf(key_ptr, &mut key)?;
if let Some(value) = ctx.ext.get_storage(&key) {
ctx.write_sandbox_output(out_ptr, out_len_ptr, &value, false, |len| {
Some(RuntimeCosts::GetStorageCopyOut(len))
// Transfer some value to another account.
//
//
// - account_ptr: a pointer to the address of the beneficiary account
// Should be decodable as an `T::AccountId`. Traps otherwise.
// - account_len: length of the address buffer.
// - value_ptr: a pointer to the buffer with value, how much value to send.
// Should be decodable as a `T::Balance`. Traps otherwise.
// - value_len: length of the value buffer.
// `ReturnCode::BelowSubsistenceThreshold`
// `ReturnCode::TransferFailed`
ctx.charge_gas(RuntimeCosts::Transfer)?;
let callee: <<E as Ext>::T as frame_system::Config>::AccountId =
ctx.read_sandbox_memory_as(account_ptr)?;
ctx.read_sandbox_memory_as(value_ptr)?;
let result = ctx.ext.transfer(&callee, value);
Alexander Theißen
committed
match result {
Ok(()) => Ok(ReturnCode::Success),
Err(err) => {
let code = Runtime::<E>::err_into_return_code(err)?;
Ok(code)
}
}
// Make a call to another contract.
//
// # Deprecation
//
// This is equivalent to calling the newer version of this function with
// `flags` set to `ALLOW_REENTRY`. See the newer version for documentation.
//
// # Note
//
// The values `_callee_len` and `_value_len` are ignored because the encoded sizes
// of those types are fixed through `[`MaxEncodedLen`]. The fields exist for backwards
// compatibility. Consider switching to the newest version of this function.
[seal0] seal_call(
ctx,
callee_ptr: u32,
gas: u64,
value_ptr: u32,
input_data_ptr: u32,
input_data_len: u32,
output_ptr: u32,
output_len_ptr: u32
) -> ReturnCode => {
ctx.call(
CallFlags::ALLOW_REENTRY,
callee_ptr,
gas,
value_ptr,
input_data_ptr,
input_data_len,
output_ptr,
output_len_ptr,
)
},
// The callees output buffer is copied to `output_ptr` and its length to `output_len_ptr`.
// The copy of the output buffer can be skipped by supplying the sentinel value
//
// - flags: See [`CallFlags`] for a documenation of the supported flags.
// - callee_ptr: a pointer to the address of the callee contract.
// Should be decodable as an `T::AccountId`. Traps otherwise.
// - gas: how much gas to devote to the execution.
// - value_ptr: a pointer to the buffer with value, how much value to send.
// Should be decodable as a `T::Balance`. Traps otherwise.
// - input_data_ptr: a pointer to a buffer to be used as input data to the callee.
// - input_data_len: length of the input data buffer.
// - output_ptr: a pointer where the output buffer is copied to.
// - output_len_ptr: in-out pointer to where the length of the buffer is read from
// and the actual length is written to.
//
// # Errors
//
// An error means that the call wasn't successful output buffer is returned unless
// stated otherwise.
// `ReturnCode::CalleeReverted`: Output buffer is returned.
// `ReturnCode::CalleeTrapped`
// `ReturnCode::BelowSubsistenceThreshold`
// `ReturnCode::TransferFailed`
// `ReturnCode::NotCallable`
flags: u32,
callee_ptr: u32,
gas: u64,
value_ptr: u32,
input_data_ptr: u32,
input_data_len: u32,
output_ptr: u32,
output_len_ptr: u32
) -> ReturnCode => {
ctx.call(
CallFlags::from_bits(flags).ok_or_else(|| "used reserved bit in CallFlags")?,
callee_ptr,
gas,
value_ptr,
input_data_ptr,
input_data_len,
output_ptr,
output_len_ptr,
)
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
// Instantiate a contract with the specified code hash.
//
// # Deprecation
//
// This is equivalent to calling the newer version of this function. The newer version
// drops the now unnecessary length fields.
//
// # Note
//
// The values `_code_hash_len` and `_value_len` are ignored because the encoded sizes
// of those types are fixed through `[`MaxEncodedLen`]. The fields exist for backwards
// compatibility. Consider switching to the newest version of this function.
[seal0] seal_instantiate(
ctx,
code_hash_ptr: u32,
_code_hash_len: u32,
gas: u64,
value_ptr: u32,
_value_len: u32,
input_data_ptr: u32,
input_data_len: u32,
address_ptr: u32,
address_len_ptr: u32,
output_ptr: u32,
output_len_ptr: u32,
salt_ptr: u32,
salt_len: u32
) -> ReturnCode => {
ctx.instantiate (
code_hash_ptr,
gas,
value_ptr,
input_data_ptr,
input_data_len,
address_ptr,
address_len_ptr,
output_ptr,
output_len_ptr,
salt_ptr,
salt_len,
)
},
// Instantiate a contract with the specified code hash.
// This function creates an account and executes the constructor defined in the code specified
// by the code hash. The address of this new account is copied to `address_ptr` and its length