Newer
Older
// Copyright 2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! The inclusion pallet is responsible for inclusion and availability of scheduled parachains
//! and parathreads.
//!
//! It is responsible for carrying candidates from being backable to being backed, and then from backed
//! to included.
use crate::{
configuration, disputes, dmp, hrmp, paras, paras_inherent::DisputedBitfield,
scheduler::CoreAssignment, shared, ump,
};
use bitvec::{order::Lsb0 as BitOrderLsb0, vec::BitVec};
use frame_support::pallet_prelude::*;
use parity_scale_codec::{Decode, Encode};
use primitives::v1::{
AvailabilityBitfield, BackedCandidate, CandidateCommitments, CandidateDescriptor,
CandidateHash, CandidateReceipt, CommittedCandidateReceipt, CoreIndex, GroupIndex, Hash,
HeadData, Id as ParaId, SigningContext, UncheckedSignedAvailabilityBitfields, ValidatorId,
ValidatorIndex, ValidityAttestation,
};
use scale_info::TypeInfo;
use sp_runtime::{traits::One, DispatchError};
use sp_std::{collections::btree_set::BTreeSet, prelude::*};
pub use pallet::*;
#[cfg(test)]
pub(crate) mod tests;
/// A bitfield signed by a validator indicating that it is keeping its piece of the erasure-coding
/// for any backed candidates referred to by a `1` bit available.
///
/// The bitfield's signature should be checked at the point of submission. Afterwards it can be
/// dropped.
#[derive(Encode, Decode, TypeInfo)]
#[cfg_attr(test, derive(Debug))]
pub struct AvailabilityBitfieldRecord<N> {
bitfield: AvailabilityBitfield, // one bit per core.
submitted_at: N, // for accounting, as meaning of bits may change over time.
}
/// Determines if all checks should be applied or if a subset was already completed
/// in a code path that will be executed afterwards or was already executed before.
#[derive(Clone, Copy, Encode, Decode, PartialEq, Eq, RuntimeDebug, TypeInfo)]
pub(crate) enum FullCheck {
/// Yes, do a full check, skip nothing.
Yes,
/// Skip a subset of checks that are already completed before.
///
/// Attention: Should only be used when absolutely sure that the required
/// checks are completed before.
Skip,
}
/// A backed candidate pending availability.
#[derive(Encode, Decode, PartialEq, TypeInfo)]
#[cfg_attr(test, derive(Debug))]
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
pub struct CandidatePendingAvailability<H, N> {
/// The availability core this is assigned to.
core: CoreIndex,
/// The candidate hash.
hash: CandidateHash,
/// The candidate descriptor.
descriptor: CandidateDescriptor<H>,
/// The received availability votes. One bit per validator.
availability_votes: BitVec<BitOrderLsb0, u8>,
/// The backers of the candidate pending availability.
backers: BitVec<BitOrderLsb0, u8>,
/// The block number of the relay-parent of the receipt.
relay_parent_number: N,
/// The block number of the relay-chain block this was backed in.
backed_in_number: N,
/// The group index backing this block.
backing_group: GroupIndex,
}
impl<H, N> CandidatePendingAvailability<H, N> {
/// Get the availability votes on the candidate.
pub(crate) fn availability_votes(&self) -> &BitVec<BitOrderLsb0, u8> {
&self.availability_votes
}
/// Get the relay-chain block number this was backed in.
pub(crate) fn backed_in_number(&self) -> &N {
&self.backed_in_number
}
/// Get the core index.
pub(crate) fn core_occupied(&self) -> CoreIndex {
self.core.clone()
}
/// Get the candidate hash.
pub(crate) fn candidate_hash(&self) -> CandidateHash {
self.hash
}
/// Get the candidate descriptor.
pub(crate) fn candidate_descriptor(&self) -> &CandidateDescriptor<H> {
&self.descriptor
}
#[cfg(any(feature = "runtime-benchmarks", test))]
pub(crate) fn new(
core: CoreIndex,
hash: CandidateHash,
descriptor: CandidateDescriptor<H>,
availability_votes: BitVec<BitOrderLsb0, u8>,
backers: BitVec<BitOrderLsb0, u8>,
relay_parent_number: N,
backed_in_number: N,
backing_group: GroupIndex,
) -> Self {
Self {
core,
hash,
descriptor,
availability_votes,
backers,
relay_parent_number,
backed_in_number,
backing_group,
}
}
}
/// A hook for applying validator rewards
pub trait RewardValidators {
// Reward the validators with the given indices for issuing backing statements.
fn reward_backing(validators: impl IntoIterator<Item = ValidatorIndex>);
// Reward the validators with the given indices for issuing availability bitfields.
// Validators are sent to this hook when they have contributed to the availability
// of a candidate by setting a bit in their bitfield.
fn reward_bitfields(validators: impl IntoIterator<Item = ValidatorIndex>);
}
/// Helper return type for `process_candidates`.
#[derive(Encode, Decode, PartialEq, TypeInfo)]
#[cfg_attr(test, derive(Debug))]
pub(crate) struct ProcessedCandidates<H = Hash> {
pub(crate) core_indices: Vec<CoreIndex>,
pub(crate) candidate_receipt_with_backing_validator_indices:
Vec<(CandidateReceipt<H>, Vec<(ValidatorIndex, ValidityAttestation)>)>,
}
impl<H> Default for ProcessedCandidates<H> {
fn default() -> Self {
Self {
core_indices: Vec::new(),
candidate_receipt_with_backing_validator_indices: Vec::new(),
}
}
}
/// Number of backing votes we need for a valid backing.
pub fn minimum_backing_votes(n_validators: usize) -> usize {
// For considerations on this value see:
// https://github.com/paritytech/polkadot/pull/1656#issuecomment-999734650
// and
// https://github.com/paritytech/polkadot/issues/4386
sp_std::cmp::min(n_validators, 2)
}
#[frame_support::pallet]
pub mod pallet {
use super::*;
#[pallet::pallet]
#[pallet::generate_store(pub(super) trait Store)]
#[pallet::without_storage_info]
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
pub struct Pallet<T>(_);
#[pallet::config]
pub trait Config:
frame_system::Config
+ shared::Config
+ paras::Config
+ dmp::Config
+ ump::Config
+ hrmp::Config
+ configuration::Config
{
type Event: From<Event<Self>> + IsType<<Self as frame_system::Config>::Event>;
type DisputesHandler: disputes::DisputesHandler<Self::BlockNumber>;
type RewardValidators: RewardValidators;
}
#[pallet::event]
#[pallet::generate_deposit(pub(super) fn deposit_event)]
pub enum Event<T: Config> {
/// A candidate was backed. `[candidate, head_data]`
CandidateBacked(CandidateReceipt<T::Hash>, HeadData, CoreIndex, GroupIndex),
/// A candidate was included. `[candidate, head_data]`
CandidateIncluded(CandidateReceipt<T::Hash>, HeadData, CoreIndex, GroupIndex),
/// A candidate timed out. `[candidate, head_data]`
CandidateTimedOut(CandidateReceipt<T::Hash>, HeadData, CoreIndex),
}
#[pallet::error]
pub enum Error<T> {
/// Validator indices are out of order or contains duplicates.
UnsortedOrDuplicateValidatorIndices,
/// Dispute statement sets are out of order or contain duplicates.
UnsortedOrDuplicateDisputeStatementSet,
/// Backed candidates are out of order (core index) or contain duplicates.
UnsortedOrDuplicateBackedCandidates,
/// A different relay parent was provided compared to the on-chain stored one.
UnexpectedRelayParent,
/// Availability bitfield has unexpected size.
WrongBitfieldSize,
/// Bitfield consists of zeros only.
BitfieldAllZeros,
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
/// Multiple bitfields submitted by same validator or validators out of order by index.
BitfieldDuplicateOrUnordered,
/// Validator index out of bounds.
ValidatorIndexOutOfBounds,
/// Invalid signature
InvalidBitfieldSignature,
/// Candidate submitted but para not scheduled.
UnscheduledCandidate,
/// Candidate scheduled despite pending candidate already existing for the para.
CandidateScheduledBeforeParaFree,
/// Candidate included with the wrong collator.
WrongCollator,
/// Scheduled cores out of order.
ScheduledOutOfOrder,
/// Head data exceeds the configured maximum.
HeadDataTooLarge,
/// Code upgrade prematurely.
PrematureCodeUpgrade,
/// Output code is too large
NewCodeTooLarge,
/// Candidate not in parent context.
CandidateNotInParentContext,
/// Invalid group index in core assignment.
InvalidGroupIndex,
/// Insufficient (non-majority) backing.
InsufficientBacking,
/// Invalid (bad signature, unknown validator, etc.) backing.
InvalidBacking,
/// Collator did not sign PoV.
NotCollatorSigned,
/// The validation data hash does not match expected.
ValidationDataHashMismatch,
/// The downward message queue is not processed correctly.
IncorrectDownwardMessageHandling,
/// At least one upward message sent does not pass the acceptance criteria.
InvalidUpwardMessages,
/// The candidate didn't follow the rules of HRMP watermark advancement.
HrmpWatermarkMishandling,
/// The HRMP messages sent by the candidate is not valid.
InvalidOutboundHrmp,
/// The validation code hash of the candidate is not valid.
InvalidValidationCodeHash,
/// The `para_head` hash in the candidate descriptor doesn't match the hash of the actual para head in the
/// commitments.
ParaHeadMismatch,
/// A bitfield that references a freed core,
/// either intentionally or as part of a concluded
/// invalid dispute.
BitfieldReferencesFreedCore,
}
/// The latest bitfield for each validator, referred to by their index in the validator set.
#[pallet::storage]
pub(crate) type AvailabilityBitfields<T: Config> =
StorageMap<_, Twox64Concat, ValidatorIndex, AvailabilityBitfieldRecord<T::BlockNumber>>;
/// Candidates pending availability by `ParaId`.
#[pallet::storage]
pub(crate) type PendingAvailability<T: Config> =
StorageMap<_, Twox64Concat, ParaId, CandidatePendingAvailability<T::Hash, T::BlockNumber>>;
/// The commitments of candidates pending availability, by `ParaId`.
#[pallet::storage]
pub(crate) type PendingAvailabilityCommitments<T: Config> =
StorageMap<_, Twox64Concat, ParaId, CandidateCommitments>;
#[pallet::call]
impl<T: Config> Pallet<T> {}
}
const LOG_TARGET: &str = "runtime::inclusion";
impl<T: Config> Pallet<T> {
/// Block initialization logic, called by initializer.
pub(crate) fn initializer_initialize(_now: T::BlockNumber) -> Weight {
0
}
/// Block finalization logic, called by initializer.
pub(crate) fn initializer_finalize() {}
/// Handle an incoming session change.
pub(crate) fn initializer_on_new_session(
_notification: &crate::initializer::SessionChangeNotification<T::BlockNumber>,
) {
// unlike most drain methods, drained elements are not cleared on `Drop` of the iterator
// and require consumption.
for _ in <PendingAvailabilityCommitments<T>>::drain() {}
for _ in <PendingAvailability<T>>::drain() {}
for _ in <AvailabilityBitfields<T>>::drain() {}
}
/// Extract the freed cores based on cores that became available.
///
/// Updates storage items `PendingAvailability` and `AvailabilityBitfields`.
pub(crate) fn update_pending_availability_and_get_freed_cores<F>(
expected_bits: usize,
validators: &[ValidatorId],
signed_bitfields: UncheckedSignedAvailabilityBitfields,
core_lookup: F,
enact_candidate: bool,
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
) -> Vec<(CoreIndex, CandidateHash)>
where
F: Fn(CoreIndex) -> Option<ParaId>,
{
let mut assigned_paras_record = (0..expected_bits)
.map(|bit_index| core_lookup(CoreIndex::from(bit_index as u32)))
.map(|opt_para_id| {
opt_para_id.map(|para_id| (para_id, PendingAvailability::<T>::get(¶_id)))
})
.collect::<Vec<_>>();
let now = <frame_system::Pallet<T>>::block_number();
for (checked_bitfield, validator_index) in
signed_bitfields.into_iter().map(|signed_bitfield| {
// extracting unchecked data, since it's checked in `fn sanitize_bitfields` already.
let validator_idx = signed_bitfield.unchecked_validator_index();
let checked_bitfield = signed_bitfield.unchecked_into_payload();
(checked_bitfield, validator_idx)
}) {
for (bit_idx, _) in checked_bitfield.0.iter().enumerate().filter(|(_, is_av)| **is_av) {
let pending_availability = if let Some((_, pending_availability)) =
assigned_paras_record[bit_idx].as_mut()
{
pending_availability
} else {
// For honest validators, this happens in case of unoccupied cores,
// which in turn happens in case of a disputed candidate.
// A malicious one might include arbitrary indices, but they are represented
// by `None` values and will be sorted out in the next if case.
continue
};
// defensive check - this is constructed by loading the availability bitfield record,
// which is always `Some` if the core is occupied - that's why we're here.
let validator_index = validator_index.0 as usize;
if let Some(mut bit) =
pending_availability.as_mut().and_then(|candidate_pending_availability| {
candidate_pending_availability.availability_votes.get_mut(validator_index)
}) {
*bit = true;
}
}
let record =
AvailabilityBitfieldRecord { bitfield: checked_bitfield, submitted_at: now };
<AvailabilityBitfields<T>>::insert(&validator_index, record);
}
let threshold = availability_threshold(validators.len());
let mut freed_cores = Vec::with_capacity(expected_bits);
for (para_id, pending_availability) in assigned_paras_record
.into_iter()
.filter_map(|x| x)
.filter_map(|(id, p)| p.map(|p| (id, p)))
{
if pending_availability.availability_votes.count_ones() >= threshold {
<PendingAvailability<T>>::remove(¶_id);
let commitments = match PendingAvailabilityCommitments::<T>::take(¶_id) {
Some(commitments) => commitments,
None => {
log::warn!(
target: LOG_TARGET,
"Inclusion::process_bitfields: PendingAvailability and PendingAvailabilityCommitments
are out of sync, did someone mess with the storage?",
);
continue
},
};
if enact_candidate {
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
let receipt = CommittedCandidateReceipt {
descriptor: pending_availability.descriptor,
commitments,
};
let _weight = Self::enact_candidate(
pending_availability.relay_parent_number,
receipt,
pending_availability.backers,
pending_availability.availability_votes,
pending_availability.core,
pending_availability.backing_group,
);
}
freed_cores.push((pending_availability.core, pending_availability.hash));
} else {
<PendingAvailability<T>>::insert(¶_id, &pending_availability);
}
}
freed_cores
}
/// Process a set of incoming bitfields.
///
/// Returns a `Vec` of `CandidateHash`es and their respective `AvailabilityCore`s that became available,
/// and cores free.
pub(crate) fn process_bitfields(
expected_bits: usize,
signed_bitfields: UncheckedSignedAvailabilityBitfields,
disputed_bitfield: DisputedBitfield,
core_lookup: impl Fn(CoreIndex) -> Option<ParaId>,
full_check: FullCheck,
) -> Result<Vec<(CoreIndex, CandidateHash)>, crate::inclusion::Error<T>> {
let validators = shared::Pallet::<T>::active_validator_keys();
let session_index = shared::Pallet::<T>::session_index();
let parent_hash = frame_system::Pallet::<T>::parent_hash();
let checked_bitfields = crate::paras_inherent::assure_sanity_bitfields::<T>(
signed_bitfields,
disputed_bitfield,
expected_bits,
parent_hash,
session_index,
&validators[..],
full_check,
)?;
let freed_cores = Self::update_pending_availability_and_get_freed_cores::<_>(
expected_bits,
&validators[..],
checked_bitfields,
core_lookup,
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
}
/// Process candidates that have been backed. Provide the relay storage root, a set of candidates
/// and scheduled cores.
///
/// Both should be sorted ascending by core index, and the candidates should be a subset of
/// scheduled cores. If these conditions are not met, the execution of the function fails.
pub(crate) fn process_candidates<GV>(
parent_storage_root: T::Hash,
candidates: Vec<BackedCandidate<T::Hash>>,
scheduled: Vec<CoreAssignment>,
group_validators: GV,
full_check: FullCheck,
) -> Result<ProcessedCandidates<T::Hash>, DispatchError>
where
GV: Fn(GroupIndex) -> Option<Vec<ValidatorIndex>>,
{
ensure!(candidates.len() <= scheduled.len(), Error::<T>::UnscheduledCandidate);
if scheduled.is_empty() {
return Ok(ProcessedCandidates::default())
}
let validators = shared::Pallet::<T>::active_validator_keys();
let parent_hash = <frame_system::Pallet<T>>::parent_hash();
// At the moment we assume (and in fact enforce, below) that the relay-parent is always one
// before of the block where we include a candidate (i.e. this code path).
let now = <frame_system::Pallet<T>>::block_number();
let relay_parent_number = now - One::one();
let check_ctx = CandidateCheckContext::<T>::new(now, relay_parent_number);
// Collect candidate receipts with backers.
let mut candidate_receipt_with_backing_validator_indices =
Vec::with_capacity(candidates.len());
// Do all checks before writing storage.
let core_indices_and_backers = {
let mut skip = 0;
let mut core_indices_and_backers = Vec::with_capacity(candidates.len());
let mut last_core = None;
let mut check_assignment_in_order = |assignment: &CoreAssignment| -> DispatchResult {
ensure!(
last_core.map_or(true, |core| assignment.core > core),
Error::<T>::ScheduledOutOfOrder,
);
last_core = Some(assignment.core);
Ok(())
};
let signing_context =
SigningContext { parent_hash, session_index: shared::Pallet::<T>::session_index() };
// We combine an outer loop over candidates with an inner loop over the scheduled,
// where each iteration of the outer loop picks up at the position
// in scheduled just after the past iteration left off.
//
// If the candidates appear in the same order as they appear in `scheduled`,
// then they should always be found. If the end of `scheduled` is reached,
// then the candidate was either not scheduled or out-of-order.
//
// In the meantime, we do certain sanity checks on the candidates and on the scheduled
// list.
'next_backed_candidate: for (candidate_idx, backed_candidate) in
candidates.iter().enumerate()
{
if let FullCheck::Yes = full_check {
check_ctx.verify_backed_candidate(
parent_hash,
candidate_idx,
backed_candidate,
)?;
}
let para_id = backed_candidate.descriptor().para_id;
let mut backers = bitvec::bitvec![BitOrderLsb0, u8; 0; validators.len()];
for (i, assignment) in scheduled[skip..].iter().enumerate() {
check_assignment_in_order(assignment)?;
if para_id == assignment.para_id {
if let Some(required_collator) = assignment.required_collator() {
ensure!(
required_collator == &backed_candidate.descriptor().collator,
Error::<T>::WrongCollator,
);
}
{
// this should never fail because the para is registered
let persisted_validation_data =
match crate::util::make_persisted_validation_data::<T>(
para_id,
relay_parent_number,
parent_storage_root,
) {
Some(l) => l,
None => {
// We don't want to error out here because it will
// brick the relay-chain. So we return early without
// doing anything.
return Ok(ProcessedCandidates::default())
},
};
let expected = persisted_validation_data.hash();
ensure!(
expected ==
backed_candidate.descriptor().persisted_validation_data_hash,
Error::<T>::ValidationDataHashMismatch,
);
}
ensure!(
<PendingAvailability<T>>::get(¶_id).is_none() &&
<PendingAvailabilityCommitments<T>>::get(¶_id).is_none(),
Error::<T>::CandidateScheduledBeforeParaFree,
);
// account for already skipped, and then skip this one.
skip = i + skip + 1;
let group_vals = group_validators(assignment.group_idx)
.ok_or_else(|| Error::<T>::InvalidGroupIndex)?;
// check the signatures in the backing and that it is a majority.
{
let maybe_amount_validated = primitives::v1::check_candidate_backing(
&backed_candidate,
&signing_context,
group_vals.len(),
|intra_group_vi| {
group_vals
.get(intra_group_vi)
.and_then(|vi| validators.get(vi.0 as usize))
.map(|v| v.clone())
},
);
match maybe_amount_validated {
Ok(amount_validated) => ensure!(
amount_validated >= minimum_backing_votes(group_vals.len()),
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
Error::<T>::InsufficientBacking,
),
Err(()) => {
Err(Error::<T>::InvalidBacking)?;
},
}
let mut backer_idx_and_attestation =
Vec::<(ValidatorIndex, ValidityAttestation)>::with_capacity(
backed_candidate.validator_indices.count_ones(),
);
let candidate_receipt = backed_candidate.receipt();
for ((bit_idx, _), attestation) in backed_candidate
.validator_indices
.iter()
.enumerate()
.filter(|(_, signed)| **signed)
.zip(backed_candidate.validity_votes.iter().cloned())
{
let val_idx = group_vals
.get(bit_idx)
.expect("this query succeeded above; qed");
backer_idx_and_attestation.push((*val_idx, attestation));
backers.set(val_idx.0 as _, true);
}
candidate_receipt_with_backing_validator_indices
.push((candidate_receipt, backer_idx_and_attestation));
}
core_indices_and_backers.push((
assignment.core,
backers,
assignment.group_idx,
));
continue 'next_backed_candidate
}
}
// end of loop reached means that the candidate didn't appear in the non-traversed
// section of the `scheduled` slice. either it was not scheduled or didn't appear in
// `candidates` in the correct order.
ensure!(false, Error::<T>::UnscheduledCandidate);
}
// check remainder of scheduled cores, if any.
for assignment in scheduled[skip..].iter() {
check_assignment_in_order(assignment)?;
}
core_indices_and_backers
};
// one more sweep for actually writing to storage.
let core_indices =
core_indices_and_backers.iter().map(|&(ref c, _, _)| c.clone()).collect();
for (candidate, (core, backers, group)) in
candidates.into_iter().zip(core_indices_and_backers)
{
let para_id = candidate.descriptor().para_id;
// initialize all availability votes to 0.
let availability_votes: BitVec<BitOrderLsb0, u8> =
bitvec::bitvec![BitOrderLsb0, u8; 0; validators.len()];
Self::deposit_event(Event::<T>::CandidateBacked(
candidate.candidate.to_plain(),
candidate.candidate.commitments.head_data.clone(),
core,
group,
));
let candidate_hash = candidate.candidate.hash();
let (descriptor, commitments) =
(candidate.candidate.descriptor, candidate.candidate.commitments);
<PendingAvailability<T>>::insert(
¶_id,
CandidatePendingAvailability {
core,
hash: candidate_hash,
descriptor,
availability_votes,
relay_parent_number,
backers: backers.to_bitvec(),
backed_in_number: check_ctx.now,
backing_group: group,
},
);
<PendingAvailabilityCommitments<T>>::insert(¶_id, commitments);
}
Ok(ProcessedCandidates::<T::Hash> {
core_indices,
candidate_receipt_with_backing_validator_indices,
})
}
/// Run the acceptance criteria checks on the given candidate commitments.
pub(crate) fn check_validation_outputs_for_runtime_api(
para_id: ParaId,
validation_outputs: primitives::v1::CandidateCommitments,
) -> bool {
// This function is meant to be called from the runtime APIs against the relay-parent, hence
// `relay_parent_number` is equal to `now`.
let now = <frame_system::Pallet<T>>::block_number();
let relay_parent_number = now;
let check_ctx = CandidateCheckContext::<T>::new(now, relay_parent_number);
if let Err(err) = check_ctx.check_validation_outputs(
para_id,
&validation_outputs.head_data,
&validation_outputs.new_validation_code,
validation_outputs.processed_downward_messages,
&validation_outputs.upward_messages,
T::BlockNumber::from(validation_outputs.hrmp_watermark),
&validation_outputs.horizontal_messages,
) {
log::debug!(
target: LOG_TARGET,
"Validation outputs checking for parachain `{}` failed: {:?}",
u32::from(para_id),
err,
);
false
} else {
true
}
}
fn enact_candidate(
relay_parent_number: T::BlockNumber,
receipt: CommittedCandidateReceipt<T::Hash>,
backers: BitVec<BitOrderLsb0, u8>,
availability_votes: BitVec<BitOrderLsb0, u8>,
core_index: CoreIndex,
backing_group: GroupIndex,
) -> Weight {
let plain = receipt.to_plain();
let commitments = receipt.commitments;
let config = <configuration::Pallet<T>>::config();
T::RewardValidators::reward_backing(
backers
.iter()
.enumerate()
.filter(|(_, backed)| **backed)
.map(|(i, _)| ValidatorIndex(i as _)),
);
T::RewardValidators::reward_bitfields(
availability_votes
.iter()
.enumerate()
.filter(|(_, voted)| **voted)
.map(|(i, _)| ValidatorIndex(i as _)),
);
// initial weight is config read.
let mut weight = T::DbWeight::get().reads_writes(1, 0);
if let Some(new_code) = commitments.new_validation_code {
weight += <paras::Pallet<T>>::schedule_code_upgrade(
receipt.descriptor.para_id,
new_code,
relay_parent_number,
&config,
);
}
// enact the messaging facet of the candidate.
weight += <dmp::Pallet<T>>::prune_dmq(
receipt.descriptor.para_id,
commitments.processed_downward_messages,
);
weight += <ump::Pallet<T>>::receive_upward_messages(
receipt.descriptor.para_id,
commitments.upward_messages,
);
weight += <hrmp::Pallet<T>>::prune_hrmp(
receipt.descriptor.para_id,
T::BlockNumber::from(commitments.hrmp_watermark),
);
weight += <hrmp::Pallet<T>>::queue_outbound_hrmp(
receipt.descriptor.para_id,
commitments.horizontal_messages,
);
Self::deposit_event(Event::<T>::CandidateIncluded(
plain,
commitments.head_data.clone(),
core_index,
backing_group,
));
weight +
<paras::Pallet<T>>::note_new_head(
receipt.descriptor.para_id,
commitments.head_data,
relay_parent_number,
)
}
/// Cleans up all paras pending availability that the predicate returns true for.
///
/// The predicate accepts the index of the core and the block number the core has been occupied
/// since (i.e. the block number the candidate was backed at in this fork of the relay chain).
///
/// Returns a vector of cleaned-up core IDs.
pub(crate) fn collect_pending(
pred: impl Fn(CoreIndex, T::BlockNumber) -> bool,
) -> Vec<CoreIndex> {
let mut cleaned_up_ids = Vec::new();
let mut cleaned_up_cores = Vec::new();
for (para_id, pending_record) in <PendingAvailability<T>>::iter() {
if pred(pending_record.core, pending_record.backed_in_number) {
cleaned_up_ids.push(para_id);
cleaned_up_cores.push(pending_record.core);
}
}
for para_id in cleaned_up_ids {
let pending = <PendingAvailability<T>>::take(¶_id);
let commitments = <PendingAvailabilityCommitments<T>>::take(¶_id);
if let (Some(pending), Some(commitments)) = (pending, commitments) {
// defensive: this should always be true.
let candidate = CandidateReceipt {
descriptor: pending.descriptor,
commitments_hash: commitments.hash(),
};
Self::deposit_event(Event::<T>::CandidateTimedOut(
candidate,
commitments.head_data,
pending.core,
));
}
}
cleaned_up_cores
}
/// Cleans up all paras pending availability that are in the given list of disputed candidates.
///
/// Returns a vector of cleaned-up core IDs.
pub(crate) fn collect_disputed(disputed: &BTreeSet<CandidateHash>) -> Vec<CoreIndex> {
let mut cleaned_up_ids = Vec::new();
let mut cleaned_up_cores = Vec::new();
for (para_id, pending_record) in <PendingAvailability<T>>::iter() {
if disputed.contains(&pending_record.hash) {
cleaned_up_ids.push(para_id);
cleaned_up_cores.push(pending_record.core);
}
}
for para_id in cleaned_up_ids {
let _ = <PendingAvailability<T>>::take(¶_id);
let _ = <PendingAvailabilityCommitments<T>>::take(¶_id);
}
cleaned_up_cores
}
/// Forcibly enact the candidate with the given ID as though it had been deemed available
/// by bitfields.
///
/// Is a no-op if there is no candidate pending availability for this para-id.
/// This should generally not be used but it is useful during execution of Runtime APIs,
/// where the changes to the state are expected to be discarded directly after.
pub(crate) fn force_enact(para: ParaId) {
let pending = <PendingAvailability<T>>::take(¶);
let commitments = <PendingAvailabilityCommitments<T>>::take(¶);
if let (Some(pending), Some(commitments)) = (pending, commitments) {
let candidate =
CommittedCandidateReceipt { descriptor: pending.descriptor, commitments };
Self::enact_candidate(
pending.relay_parent_number,
candidate,
pending.backers,
pending.availability_votes,
pending.core,
pending.backing_group,
);
}
}
/// Returns the `CommittedCandidateReceipt` pending availability for the para provided, if any.
pub(crate) fn candidate_pending_availability(
para: ParaId,
) -> Option<CommittedCandidateReceipt<T::Hash>> {
<PendingAvailability<T>>::get(¶)
.map(|p| p.descriptor)
.and_then(|d| <PendingAvailabilityCommitments<T>>::get(¶).map(move |c| (d, c)))
.map(|(d, c)| CommittedCandidateReceipt { descriptor: d, commitments: c })
}
/// Returns the metadata around the candidate pending availability for the
/// para provided, if any.
pub(crate) fn pending_availability(
para: ParaId,
) -> Option<CandidatePendingAvailability<T::Hash, T::BlockNumber>> {
<PendingAvailability<T>>::get(¶)
}
}
const fn availability_threshold(n_validators: usize) -> usize {
let mut threshold = (n_validators * 2) / 3;
threshold += (n_validators * 2) % 3;
threshold
}
#[derive(derive_more::From, Debug)]
enum AcceptanceCheckErr<BlockNumber> {
HeadDataTooLarge,
PrematureCodeUpgrade,
NewCodeTooLarge,
ProcessedDownwardMessages(dmp::ProcessedDownwardMessagesAcceptanceErr),
UpwardMessages(ump::AcceptanceCheckErr),
HrmpWatermark(hrmp::HrmpWatermarkAcceptanceErr<BlockNumber>),
OutboundHrmp(hrmp::OutboundHrmpAcceptanceErr),
}
impl<BlockNumber> AcceptanceCheckErr<BlockNumber> {
/// Returns the same error so that it can be threaded through a needle of `DispatchError` and
/// ultimately returned from a `Dispatchable`.
fn strip_into_dispatch_err<T: Config>(self) -> Error<T> {
use AcceptanceCheckErr::*;
match self {
HeadDataTooLarge => Error::<T>::HeadDataTooLarge,
PrematureCodeUpgrade => Error::<T>::PrematureCodeUpgrade,
NewCodeTooLarge => Error::<T>::NewCodeTooLarge,
ProcessedDownwardMessages(_) => Error::<T>::IncorrectDownwardMessageHandling,
UpwardMessages(_) => Error::<T>::InvalidUpwardMessages,
HrmpWatermark(_) => Error::<T>::HrmpWatermarkMishandling,
OutboundHrmp(_) => Error::<T>::InvalidOutboundHrmp,
}
}
}
/// A collection of data required for checking a candidate.
pub(crate) struct CandidateCheckContext<T: Config> {
config: configuration::HostConfiguration<T::BlockNumber>,
now: T::BlockNumber,
relay_parent_number: T::BlockNumber,
}
impl<T: Config> CandidateCheckContext<T> {
pub(crate) fn new(now: T::BlockNumber, relay_parent_number: T::BlockNumber) -> Self {
Self { config: <configuration::Pallet<T>>::config(), now, relay_parent_number }
}
/// Execute verification of the candidate.
///
/// Assures:
/// * correct expected relay parent reference
/// * collator signature check passes
/// * code hash of commitments matches current code hash
/// * para head in the descriptor and commitments match
pub(crate) fn verify_backed_candidate(
&self,
parent_hash: <T as frame_system::Config>::Hash,
candidate_idx: usize,
backed_candidate: &BackedCandidate<<T as frame_system::Config>::Hash>,
) -> Result<(), Error<T>> {
let para_id = backed_candidate.descriptor().para_id;
// we require that the candidate is in the context of the parent block.
ensure!(
backed_candidate.descriptor().relay_parent == parent_hash,
Error::<T>::CandidateNotInParentContext,
);
ensure!(
backed_candidate.descriptor().check_collator_signature().is_ok(),
Error::<T>::NotCollatorSigned,
);
let validation_code_hash = <paras::Pallet<T>>::current_code_hash(para_id)
// A candidate for a parachain without current validation code is not scheduled.
.ok_or_else(|| Error::<T>::UnscheduledCandidate)?;
ensure!(
backed_candidate.descriptor().validation_code_hash == validation_code_hash,
Error::<T>::InvalidValidationCodeHash,
);
ensure!(
backed_candidate.descriptor().para_head ==
backed_candidate.candidate.commitments.head_data.hash(),
Error::<T>::ParaHeadMismatch,
);
if let Err(err) = self.check_validation_outputs(
para_id,