lib.rs 36.7 KiB
Newer Older
// Copyright 2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! PoV Distribution Subsystem of Polkadot.
//!
//! This is a gossip implementation of code that is responsible for distributing PoVs
//! among validators.

use polkadot_primitives::v1::{Hash, PoV, CandidateDescriptor};
use polkadot_subsystem::{
	ActiveLeavesUpdate, OverseerSignal, SubsystemContext, Subsystem, SubsystemResult, FromOverseer, SpawnedSubsystem,
};
use polkadot_subsystem::messages::{
	PoVDistributionMessage, NetworkBridgeEvent, ReputationChange as Rep, PeerId,
	RuntimeApiMessage, RuntimeApiRequest, AllMessages, NetworkBridgeMessage,
};
use node_primitives::{View, ProtocolId};

use futures::prelude::*;
use futures::channel::oneshot;
use parity_scale_codec::{Encode, Decode};

use std::collections::{hash_map::{Entry, HashMap}, HashSet};
use std::sync::Arc;

const COST_APPARENT_FLOOD: Rep = Rep::new(-500, "Peer appears to be flooding us with PoV requests");
const COST_UNEXPECTED_POV: Rep = Rep::new(-500, "Peer sent us an unexpected PoV");
const COST_MALFORMED_MESSAGE: Rep = Rep::new(-500, "Peer sent us a malformed message");
const COST_AWAITED_NOT_IN_VIEW: Rep
	= Rep::new(-100, "Peer claims to be awaiting something outside of its view");

const BENEFIT_FRESH_POV: Rep = Rep::new(25, "Peer supplied us with an awaited PoV");
const BENEFIT_LATE_POV: Rep = Rep::new(10, "Peer supplied us with an awaited PoV, \
	but was not the first to do so");

const PROTOCOL_V1: ProtocolId = *b"pvd1";

#[derive(Encode, Decode)]
enum WireMessage {
    /// Notification that we are awaiting the given PoVs (by hash) against a
	/// specific relay-parent hash.
	#[codec(index = "0")]
    Awaiting(Hash, Vec<Hash>),
    /// Notification of an awaited PoV, in a given relay-parent context.
    /// (relay_parent, pov_hash, pov)
	#[codec(index = "1")]
    SendPoV(Hash, Hash, PoV),
}

/// The PoV Distribution Subsystem.
pub struct PoVDistribution;

impl<C> Subsystem<C> for PoVDistribution
	where C: SubsystemContext<Message = PoVDistributionMessage>
{
	fn start(self, ctx: C) -> SpawnedSubsystem {
		// Swallow error because failure is fatal to the node and we log with more precision
		// within `run`.
		SpawnedSubsystem {
			name: "pov-distribution-subsystem",
			future: run(ctx).map(|_| ()).boxed(),
		}
	}
}

struct State {
	relay_parent_state: HashMap<Hash, BlockBasedState>,
	peer_state: HashMap<PeerId, PeerState>,
	our_view: View,
}

struct BlockBasedState {
	known: HashMap<Hash, Arc<PoV>>,
	/// All the PoVs we are or were fetching, coupled with channels expecting the data.
	///
	/// This may be an empty list, which indicates that we were once awaiting this PoV but have
	/// received it already.
	fetching: HashMap<Hash, Vec<oneshot::Sender<Arc<PoV>>>>,
	n_validators: usize,
}

#[derive(Default)]
struct PeerState {
	/// A set of awaited PoV-hashes for each relay-parent in the peer's view.
	awaited: HashMap<Hash, HashSet<Hash>>,
}

/// Handles the signal. If successful, returns `true` if the subsystem should conclude,
/// `false` otherwise.
async fn handle_signal(
	state: &mut State,
	ctx: &mut impl SubsystemContext<Message = PoVDistributionMessage>,
	signal: OverseerSignal,
) -> SubsystemResult<bool> {
	match signal {
		OverseerSignal::Conclude => Ok(true),
		OverseerSignal::ActiveLeaves(ActiveLeavesUpdate { activated, deactivated }) => {
			for relay_parent in activated {
				let (vals_tx, vals_rx) = oneshot::channel();
				ctx.send_message(AllMessages::RuntimeApi(RuntimeApiMessage::Request(
					relay_parent,
					RuntimeApiRequest::Validators(vals_tx),
				))).await?;

				state.relay_parent_state.insert(relay_parent, BlockBasedState {
					known: HashMap::new(),
					fetching: HashMap::new(),
					n_validators: vals_rx.await?.len(),
				});
			}

			for relay_parent in deactivated {
				state.relay_parent_state.remove(&relay_parent);
			}
		OverseerSignal::BlockFinalized(_) => Ok(false),
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
	}
}

/// Notify peers that we are awaiting a given PoV hash.
///
/// This only notifies peers who have the relay parent in their view.
async fn notify_all_we_are_awaiting(
	peers: &mut HashMap<PeerId, PeerState>,
	ctx: &mut impl SubsystemContext<Message = PoVDistributionMessage>,
	relay_parent: Hash,
	pov_hash: Hash,
) -> SubsystemResult<()> {
	// We use `awaited` as a proxy for which heads are in the peer's view.
	let peers_to_send: Vec<_> = peers.iter()
		.filter_map(|(peer, state)| if state.awaited.contains_key(&relay_parent) {
			Some(peer.clone())
		} else {
			None
		})
		.collect();

	if peers_to_send.is_empty() { return Ok(()) }

	let payload = WireMessage::Awaiting(relay_parent, vec![pov_hash]).encode();

	ctx.send_message(AllMessages::NetworkBridge(NetworkBridgeMessage::SendMessage(
		peers_to_send,
		PROTOCOL_V1,
		payload,
	))).await
}

/// Notify one peer about everything we're awaiting at a given relay-parent.
async fn notify_one_we_are_awaiting_many(
	peer: &PeerId,
	ctx: &mut impl SubsystemContext<Message = PoVDistributionMessage>,
	relay_parent_state: &HashMap<Hash, BlockBasedState>,
	relay_parent: Hash,
) -> SubsystemResult<()> {
	let awaiting_hashes = relay_parent_state.get(&relay_parent).into_iter().flat_map(|s| {
		// Send the peer everything we are fetching at this relay-parent
		s.fetching.iter()
			.filter(|(_, senders)| !senders.is_empty()) // that has not been completed already.
			.map(|(pov_hash, _)| *pov_hash)
	}).collect::<Vec<_>>();

	if awaiting_hashes.is_empty() { return Ok(()) }

	let payload = WireMessage::Awaiting(relay_parent, awaiting_hashes).encode();

	ctx.send_message(AllMessages::NetworkBridge(NetworkBridgeMessage::SendMessage(
		vec![peer.clone()],
		PROTOCOL_V1,
		payload,
	))).await
}

/// Distribute a PoV to peers who are awaiting it.
async fn distribute_to_awaiting(
	peers: &mut HashMap<PeerId, PeerState>,
	ctx: &mut impl SubsystemContext<Message = PoVDistributionMessage>,
	relay_parent: Hash,
	pov_hash: Hash,
	pov: &PoV,
) -> SubsystemResult<()> {
	// Send to all peers who are awaiting the PoV and have that relay-parent in their view.
	//
	// Also removes it from their awaiting set.
	let peers_to_send: Vec<_> = peers.iter_mut()
		.filter_map(|(peer, state)| state.awaited.get_mut(&relay_parent).and_then(|awaited| {
			if awaited.remove(&pov_hash) {
				Some(peer.clone())
			} else {
				None
			}
		}))
		.collect();

	if peers_to_send.is_empty() { return Ok(()) }

	let payload = WireMessage::SendPoV(relay_parent, pov_hash, pov.clone()).encode();

	ctx.send_message(AllMessages::NetworkBridge(NetworkBridgeMessage::SendMessage(
		peers_to_send,
		PROTOCOL_V1,
		payload,
	))).await
}

/// Handles a `FetchPoV` message.
async fn handle_fetch(
	state: &mut State,
	ctx: &mut impl SubsystemContext<Message = PoVDistributionMessage>,
	relay_parent: Hash,
	descriptor: CandidateDescriptor,
	response_sender: oneshot::Sender<Arc<PoV>>,
) -> SubsystemResult<()> {
	let relay_parent_state = match state.relay_parent_state.get_mut(&relay_parent) {
		Some(s) => s,
		None => return Ok(()),
	};

	if let Some(pov) = relay_parent_state.known.get(&descriptor.pov_hash) {
		let _  = response_sender.send(pov.clone());
		return Ok(());
	}

	{
		match relay_parent_state.fetching.entry(descriptor.pov_hash) {
			Entry::Occupied(mut e) => {
				// we are already awaiting this PoV if there is an entry.
				e.get_mut().push(response_sender);
				return Ok(());
			}
			Entry::Vacant(e) => {
				e.insert(vec![response_sender]);
			}
		}
	}

	if relay_parent_state.fetching.len() > 2 * relay_parent_state.n_validators {
		log::warn!("Other subsystems have requested PoV distribution to \
			fetch more PoVs than reasonably expected: {}", relay_parent_state.fetching.len());
		return Ok(());
	}

	// Issue an `Awaiting` message to all peers with this in their view.
	notify_all_we_are_awaiting(
		&mut state.peer_state,
		ctx,
		relay_parent,
		descriptor.pov_hash
	).await
}

/// Handles a `DistributePoV` message.
async fn handle_distribute(
	state: &mut State,
	ctx: &mut impl SubsystemContext<Message = PoVDistributionMessage>,
	relay_parent: Hash,
	descriptor: CandidateDescriptor,
	pov: Arc<PoV>,
) -> SubsystemResult<()> {
	let relay_parent_state = match state.relay_parent_state.get_mut(&relay_parent) {
		None => return Ok(()),
		Some(s) => s,
	};

	if let Some(our_awaited) = relay_parent_state.fetching.get_mut(&descriptor.pov_hash) {
		// Drain all the senders, but keep the entry in the map around intentionally.
		//
		// It signals that we were at one point awaiting this, so we will be able to tell
		// why peers are sending it to us.
		for response_sender in our_awaited.drain(..) {
			let _ = response_sender.send(pov.clone());
		}
	}

	relay_parent_state.known.insert(descriptor.pov_hash, pov.clone());

	distribute_to_awaiting(
		&mut state.peer_state,
		ctx,
		relay_parent,
		descriptor.pov_hash,
		&*pov,
	).await
}

/// Report a reputation change for a peer.
async fn report_peer(
	ctx: &mut impl SubsystemContext<Message = PoVDistributionMessage>,
	peer: PeerId,
	rep: Rep,
) -> SubsystemResult<()> {
	ctx.send_message(AllMessages::NetworkBridge(NetworkBridgeMessage::ReportPeer(peer, rep))).await
}

/// Handle a notification from a peer that they are awaiting some PoVs.
async fn handle_awaiting(
	state: &mut State,
	ctx: &mut impl SubsystemContext<Message = PoVDistributionMessage>,
	peer: PeerId,
	relay_parent: Hash,
	pov_hashes: Vec<Hash>,
) -> SubsystemResult<()> {
	if !state.our_view.0.contains(&relay_parent) {
		report_peer(ctx, peer, COST_AWAITED_NOT_IN_VIEW).await?;
		return Ok(());
	}

	let relay_parent_state = match state.relay_parent_state.get_mut(&relay_parent) {
		None => {
			log::warn!("PoV Distribution relay parent state out-of-sync with our view");
			return Ok(());
		}
		Some(s) => s,
	};

	let peer_awaiting = match
		state.peer_state.get_mut(&peer).and_then(|s| s.awaited.get_mut(&relay_parent))
	{
		None => {
			report_peer(ctx, peer, COST_AWAITED_NOT_IN_VIEW).await?;
			return Ok(());
		}
		Some(a) => a,
	};

	let will_be_awaited = peer_awaiting.len() + pov_hashes.len();
	if will_be_awaited <= 2 * relay_parent_state.n_validators {
		for pov_hash in pov_hashes {
			// For all requested PoV hashes, if we have it, we complete the request immediately.
			// Otherwise, we note that the peer is awaiting the PoV.
			if let Some(pov) = relay_parent_state.known.get(&pov_hash) {
				ctx.send_message(AllMessages::NetworkBridge(NetworkBridgeMessage::SendMessage(
					vec![peer.clone()],
					PROTOCOL_V1,
					WireMessage::SendPoV(relay_parent, pov_hash, (&**pov).clone()).encode(),
				))).await?;
			} else {
				peer_awaiting.insert(pov_hash);
			}
		}
	} else {
		report_peer(ctx, peer, COST_APPARENT_FLOOD).await?;
	}

	Ok(())
}

/// Handle an incoming PoV from our peer. Reports them if unexpected, rewards them if not.
///
/// Completes any requests awaiting that PoV.
async fn handle_incoming_pov(
	state: &mut State,
	ctx: &mut impl SubsystemContext<Message = PoVDistributionMessage>,
	peer: PeerId,
	relay_parent: Hash,
	pov_hash: Hash,
	pov: PoV,
) -> SubsystemResult<()> {
	let relay_parent_state = match state.relay_parent_state.get_mut(&relay_parent) {
		None =>	{
			report_peer(ctx, peer, COST_UNEXPECTED_POV).await?;
			return Ok(());
		},
		Some(r) => r,
	};

	let pov = {
		// Do validity checks and complete all senders awaiting this PoV.
		let fetching = match relay_parent_state.fetching.get_mut(&pov_hash) {
			None => {
				report_peer(ctx, peer, COST_UNEXPECTED_POV).await?;
				return Ok(());
			}
			Some(f) => f,
		};

		let hash = pov.hash();
		if hash != pov_hash {
			report_peer(ctx, peer, COST_UNEXPECTED_POV).await?;
			return Ok(());
		}

		let pov = Arc::new(pov);

		if fetching.is_empty() {
			// fetching is empty whenever we were awaiting something and
			// it was completed afterwards.
			report_peer(ctx, peer.clone(), BENEFIT_LATE_POV).await?;
		} else {
			// fetching is non-empty when the peer just provided us with data we needed.
			report_peer(ctx, peer.clone(), BENEFIT_FRESH_POV).await?;
		}

		for response_sender in fetching.drain(..) {
			let _ = response_sender.send(pov.clone());
		}

		pov
	};

	// make sure we don't consider this peer as awaiting that PoV anymore.
	if let Some(peer_state) = state.peer_state.get_mut(&peer) {
		peer_state.awaited.remove(&pov_hash);
	}

	// distribute the PoV to all other peers who are awaiting it.
	distribute_to_awaiting(
		&mut state.peer_state,
		ctx,
		relay_parent,
		pov_hash,
		&*pov,
	).await
}

/// Handles a network bridge update.
async fn handle_network_update(
	state: &mut State,
	ctx: &mut impl SubsystemContext<Message = PoVDistributionMessage>,
	update: NetworkBridgeEvent,
) -> SubsystemResult<()> {
	match update {
		NetworkBridgeEvent::PeerConnected(peer, _observed_role) => {
			state.peer_state.insert(peer, PeerState { awaited: HashMap::new() });
			Ok(())
		}
		NetworkBridgeEvent::PeerDisconnected(peer) => {
			state.peer_state.remove(&peer);
			Ok(())
		}
		NetworkBridgeEvent::PeerViewChange(peer_id, view) => {
			if let Some(peer_state) = state.peer_state.get_mut(&peer_id) {
				// prune anything not in the new view.
				peer_state.awaited.retain(|relay_parent, _| view.0.contains(&relay_parent));

				// introduce things from the new view.
				for relay_parent in view.0.iter() {
					if let Entry::Vacant(entry) = peer_state.awaited.entry(*relay_parent) {
						entry.insert(HashSet::new());

						// Notify the peer about everything we're awaiting at the new relay-parent.
						notify_one_we_are_awaiting_many(
							&peer_id,
							ctx,
							&state.relay_parent_state,
							*relay_parent,
						).await?;
					}
				}
			}

			Ok(())
		}
		NetworkBridgeEvent::PeerMessage(peer, bytes) => {
			match WireMessage::decode(&mut &bytes[..]) {
				Ok(msg) => match msg {
					WireMessage::Awaiting(relay_parent, pov_hashes) => handle_awaiting(
						state,
						ctx,
						peer,
						relay_parent,
						pov_hashes,
					).await,
					WireMessage::SendPoV(relay_parent, pov_hash, pov) => handle_incoming_pov(
						state,
						ctx,
						peer,
						relay_parent,
						pov_hash,
						pov,
					).await,
				},
				Err(_) => {
					report_peer(ctx, peer, COST_MALFORMED_MESSAGE).await?;
					Ok(())
				}
			}
		}
		NetworkBridgeEvent::OurViewChange(view) => {
			state.our_view = view;
			Ok(())
		}
	}
}

fn network_update_message(update: NetworkBridgeEvent) -> AllMessages {
	AllMessages::PoVDistribution(PoVDistributionMessage::NetworkBridgeUpdate(update))
}

async fn run(
	mut ctx: impl SubsystemContext<Message = PoVDistributionMessage>,
) -> SubsystemResult<()> {
	// startup: register the network protocol with the bridge.
	ctx.send_message(AllMessages::NetworkBridge(NetworkBridgeMessage::RegisterEventProducer(
		PROTOCOL_V1,
		network_update_message,
	))).await?;

	let mut state = State {
		relay_parent_state: HashMap::new(),
		peer_state: HashMap::new(),
		our_view: View(Vec::new()),
	};

	loop {
		match ctx.recv().await? {
			FromOverseer::Signal(signal) => if handle_signal(&mut state, &mut ctx, signal).await? {
				return Ok(());
			},
			FromOverseer::Communication { msg } => match msg {
				PoVDistributionMessage::FetchPoV(relay_parent, descriptor, response_sender) =>
					handle_fetch(
						&mut state,
						&mut ctx,
						relay_parent,
						descriptor,
						response_sender,
					).await?,
				PoVDistributionMessage::DistributePoV(relay_parent, descriptor, pov) =>
					handle_distribute(
						&mut state,
						&mut ctx,
						relay_parent,
						descriptor,
						pov,
					).await?,
				PoVDistributionMessage::NetworkBridgeUpdate(event) =>
					handle_network_update(
						&mut state,
						&mut ctx,
						event,
					).await?,
			},
		}
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use futures::executor;
	use polkadot_primitives::v1::BlockData;
	use assert_matches::assert_matches;

	fn make_pov(data: Vec<u8>) -> PoV {
		PoV { block_data: BlockData(data) }
	}

	fn make_peer_state(awaited: Vec<(Hash, Vec<Hash>)>)
		-> PeerState
	{
		PeerState {
			awaited: awaited.into_iter().map(|(rp, h)| (rp, h.into_iter().collect())).collect()
		}
	}

	#[test]
	fn distributes_to_those_awaiting_and_completes_local() {
		let hash_a: Hash = [0; 32].into();
		let hash_b: Hash = [1; 32].into();

		let peer_a = PeerId::random();
		let peer_b = PeerId::random();
		let peer_c = PeerId::random();

		let (pov_send, pov_recv) = oneshot::channel();
		let pov = make_pov(vec![1, 2, 3]);
		let pov_hash = pov.hash();

		let mut state = State {
			relay_parent_state: {
				let mut s = HashMap::new();
				let mut b = BlockBasedState {
					known: HashMap::new(),
					fetching: HashMap::new(),
					n_validators: 10,
				};

				b.fetching.insert(pov_hash, vec![pov_send]);
				s.insert(hash_a, b);
				s
			},
			peer_state: {
				let mut s = HashMap::new();

				// peer A has hash_a in its view and is awaiting the PoV.
				s.insert(
					peer_a.clone(),
					make_peer_state(vec![(hash_a, vec![pov_hash])]),
				);

				// peer B has hash_a in its view but is not awaiting.
				s.insert(
					peer_b.clone(),
					make_peer_state(vec![(hash_a, vec![])]),
				);

				// peer C doesn't have hash_a in its view but is awaiting the PoV under hash_b.
				s.insert(
					peer_c.clone(),
					make_peer_state(vec![(hash_b, vec![pov_hash])]),
				);

				s
			},
			our_view: View(vec![hash_a, hash_b]),
		};

		let pool = sp_core::testing::TaskExecutor::new();
		let (mut ctx, mut handle) = polkadot_subsystem::test_helpers::make_subsystem_context(pool);
		let mut descriptor = CandidateDescriptor::default();
		descriptor.pov_hash = pov_hash;

		executor::block_on(async move {
			handle_distribute(
				&mut state,
				&mut ctx,
				hash_a,
				descriptor,
				Arc::new(pov.clone()),
			).await.unwrap();

			assert!(!state.peer_state[&peer_a].awaited[&hash_a].contains(&pov_hash));
			assert!(state.peer_state[&peer_c].awaited[&hash_b].contains(&pov_hash));

			// our local sender also completed
			assert_eq!(&*pov_recv.await.unwrap(), &pov);

			assert_matches!(
				handle.recv().await,
				AllMessages::NetworkBridge(
					NetworkBridgeMessage::SendMessage(peers, protocol, message)
				) => {
					assert_eq!(peers, vec![peer_a.clone()]);
					assert_eq!(protocol, PROTOCOL_V1);
					assert_eq!(
						message,
						WireMessage::SendPoV(hash_a, pov_hash, pov.clone()).encode(),
					);
				}
			)
		});
	}

	#[test]
	fn we_inform_peers_with_same_view_we_are_awaiting() {
		let hash_a: Hash = [0; 32].into();
		let hash_b: Hash = [1; 32].into();

		let peer_a = PeerId::random();
		let peer_b = PeerId::random();

		let (pov_send, _) = oneshot::channel();
		let pov = make_pov(vec![1, 2, 3]);
		let pov_hash = pov.hash();

		let mut state = State {
			relay_parent_state: {
				let mut s = HashMap::new();
				let b = BlockBasedState {
					known: HashMap::new(),
					fetching: HashMap::new(),
					n_validators: 10,
				};

				s.insert(hash_a, b);
				s
			},
			peer_state: {
				let mut s = HashMap::new();

				// peer A has hash_a in its view.
				s.insert(
					peer_a.clone(),
					make_peer_state(vec![(hash_a, vec![])]),
				);

				// peer B doesn't have hash_a in its view.
				s.insert(
					peer_b.clone(),
					make_peer_state(vec![(hash_b, vec![])]),
				);

				s
			},
			our_view: View(vec![hash_a]),
		};

		let pool = sp_core::testing::TaskExecutor::new();
		let (mut ctx, mut handle) = polkadot_subsystem::test_helpers::make_subsystem_context(pool);
		let mut descriptor = CandidateDescriptor::default();
		descriptor.pov_hash = pov_hash;

		executor::block_on(async move {
			handle_fetch(
				&mut state,
				&mut ctx,
				hash_a,
				descriptor,
				pov_send,
			).await.unwrap();

			assert_eq!(state.relay_parent_state[&hash_a].fetching[&pov_hash].len(), 1);

			assert_matches!(
				handle.recv().await,
				AllMessages::NetworkBridge(
					NetworkBridgeMessage::SendMessage(peers, protocol, message)
				) => {
					assert_eq!(peers, vec![peer_a.clone()]);
					assert_eq!(protocol, PROTOCOL_V1);
					assert_eq!(
						message,
						WireMessage::Awaiting(hash_a, vec![pov_hash]).encode(),
					);
				}
			)
		});
	}

	#[test]
	fn peer_view_change_leads_to_us_informing() {
		let hash_a: Hash = [0; 32].into();
		let hash_b: Hash = [1; 32].into();

		let peer_a = PeerId::random();

		let (pov_a_send, _) = oneshot::channel();

		let pov_a = make_pov(vec![1, 2, 3]);
		let pov_a_hash = pov_a.hash();

		let pov_b = make_pov(vec![4, 5, 6]);
		let pov_b_hash = pov_b.hash();

		let mut state = State {
			relay_parent_state: {
				let mut s = HashMap::new();
				let mut b = BlockBasedState {
					known: HashMap::new(),
					fetching: HashMap::new(),
					n_validators: 10,
				};

				// pov_a is still being fetched, whereas the fetch of pov_b has already
				// completed, as implied by the empty vector.
				b.fetching.insert(pov_a_hash, vec![pov_a_send]);
				b.fetching.insert(pov_b_hash, vec![]);

				s.insert(hash_a, b);
				s
			},
			peer_state: {
				let mut s = HashMap::new();

				// peer A doesn't yet have hash_a in its view.
				s.insert(
					peer_a.clone(),
					make_peer_state(vec![(hash_b, vec![])]),
				);

				s
			},
			our_view: View(vec![hash_a]),
		};

		let pool = sp_core::testing::TaskExecutor::new();
		let (mut ctx, mut handle) = polkadot_subsystem::test_helpers::make_subsystem_context(pool);

		executor::block_on(async move {
			handle_network_update(
				&mut state,
				&mut ctx,
				NetworkBridgeEvent::PeerViewChange(peer_a.clone(), View(vec![hash_a, hash_b])),
			).await.unwrap();

			assert_matches!(
				handle.recv().await,
				AllMessages::NetworkBridge(
					NetworkBridgeMessage::SendMessage(peers, protocol, message)
				) => {
					assert_eq!(peers, vec![peer_a.clone()]);
					assert_eq!(protocol, PROTOCOL_V1);
					assert_eq!(
						message,
						WireMessage::Awaiting(hash_a, vec![pov_a_hash]).encode(),
					);
				}
			)
		});
	}

	#[test]
	fn peer_complete_fetch_and_is_rewarded() {
		let hash_a: Hash = [0; 32].into();

		let peer_a = PeerId::random();
		let peer_b = PeerId::random();

		let (pov_send, pov_recv) = oneshot::channel();

		let pov = make_pov(vec![1, 2, 3]);
		let pov_hash = pov.hash();

		let mut state = State {
			relay_parent_state: {
				let mut s = HashMap::new();
				let mut b = BlockBasedState {
					known: HashMap::new(),
					fetching: HashMap::new(),
					n_validators: 10,
				};

				// pov is being fetched.
				b.fetching.insert(pov_hash, vec![pov_send]);

				s.insert(hash_a, b);
				s
			},
			peer_state: {
				let mut s = HashMap::new();

				// peers A and B are functionally the same.
				s.insert(
					peer_a.clone(),
					make_peer_state(vec![(hash_a, vec![])]),
				);

				s.insert(
					peer_b.clone(),
					make_peer_state(vec![(hash_a, vec![])]),
				);

				s
			},
			our_view: View(vec![hash_a]),
		};

		let pool = sp_core::testing::TaskExecutor::new();
		let (mut ctx, mut handle) = polkadot_subsystem::test_helpers::make_subsystem_context(pool);

		executor::block_on(async move {
			// Peer A answers our request before peer B.
			handle_network_update(
				&mut state,
				&mut ctx,
				NetworkBridgeEvent::PeerMessage(
					peer_a.clone(),
					WireMessage::SendPoV(hash_a, pov_hash, pov.clone()).encode(),
				),
			).await.unwrap();

			handle_network_update(
				&mut state,
				&mut ctx,
				NetworkBridgeEvent::PeerMessage(
					peer_b.clone(),
					WireMessage::SendPoV(hash_a, pov_hash, pov.clone()).encode(),
				),
			).await.unwrap();

			assert_eq!(&*pov_recv.await.unwrap(), &pov);

			assert_matches!(
				handle.recv().await,
				AllMessages::NetworkBridge(
					NetworkBridgeMessage::ReportPeer(peer, rep)
				) => {
					assert_eq!(peer, peer_a);
					assert_eq!(rep, BENEFIT_FRESH_POV);
				}
			);

			assert_matches!(
				handle.recv().await,
				AllMessages::NetworkBridge(
					NetworkBridgeMessage::ReportPeer(peer, rep)
				) => {
					assert_eq!(peer, peer_b);
					assert_eq!(rep, BENEFIT_LATE_POV);
				}
			);
		});
	}

	#[test]
	fn peer_punished_for_sending_bad_pov() {
		let hash_a: Hash = [0; 32].into();

		let peer_a = PeerId::random();

		let (pov_send, _) = oneshot::channel();

		let pov = make_pov(vec![1, 2, 3]);
		let pov_hash = pov.hash();

		let bad_pov = make_pov(vec![6, 6, 6]);

		let mut state = State {
			relay_parent_state: {
				let mut s = HashMap::new();
				let mut b = BlockBasedState {
					known: HashMap::new(),
					fetching: HashMap::new(),
					n_validators: 10,
				};

				// pov is being fetched.
				b.fetching.insert(pov_hash, vec![pov_send]);

				s.insert(hash_a, b);
				s
			},
			peer_state: {
				let mut s = HashMap::new();

				s.insert(
					peer_a.clone(),
					make_peer_state(vec![(hash_a, vec![])]),
				);

				s
			},
			our_view: View(vec![hash_a]),
		};

		let pool = sp_core::testing::TaskExecutor::new();
		let (mut ctx, mut handle) = polkadot_subsystem::test_helpers::make_subsystem_context(pool);

		executor::block_on(async move {
			// Peer A answers our request: right relay parent, awaited hash, wrong PoV.
			handle_network_update(
				&mut state,
				&mut ctx,
				NetworkBridgeEvent::PeerMessage(
					peer_a.clone(),
					WireMessage::SendPoV(hash_a, pov_hash, bad_pov.clone()).encode(),
				),
			).await.unwrap();

			// didn't complete our sender.
			assert_eq!(state.relay_parent_state[&hash_a].fetching[&pov_hash].len(), 1);

			assert_matches!(
				handle.recv().await,
				AllMessages::NetworkBridge(
					NetworkBridgeMessage::ReportPeer(peer, rep)
				) => {
					assert_eq!(peer, peer_a);
					assert_eq!(rep, COST_UNEXPECTED_POV);
				}
			);
		});
	}

	#[test]
	fn peer_punished_for_sending_unexpected_pov() {
		let hash_a: Hash = [0; 32].into();

		let peer_a = PeerId::random();

		let pov = make_pov(vec![1, 2, 3]);
		let pov_hash = pov.hash();

		let mut state = State {
			relay_parent_state: {
				let mut s = HashMap::new();
				let b = BlockBasedState {
					known: HashMap::new(),
					fetching: HashMap::new(),
					n_validators: 10,
				};

				s.insert(hash_a, b);
				s
			},
			peer_state: {
				let mut s = HashMap::new();

				s.insert(
					peer_a.clone(),
					make_peer_state(vec![(hash_a, vec![])]),
				);

				s