Newer
Older
// Copyright 2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! The Statement Distribution Subsystem.
//!
//! This is responsible for distributing signed statements about candidate
//! validity amongst validators.
use polkadot_subsystem::{
Subsystem, SubsystemResult, SubsystemContext, SpawnedSubsystem,
ActiveLeavesUpdate, FromOverseer, OverseerSignal,
};
use polkadot_subsystem::messages::{
AllMessages, NetworkBridgeMessage, StatementDistributionMessage, CandidateBackingMessage,
RuntimeApiMessage, RuntimeApiRequest,
use node_primitives::SignedFullStatement;
use polkadot_primitives::v1::{
Hash, CompactStatement, ValidatorIndex, ValidatorId, SigningContext, ValidatorSignature,
use polkadot_node_network_protocol::{
v1 as protocol_v1, View, PeerId, ReputationChange as Rep, NetworkBridgeEvent,
};
use futures::prelude::*;
use futures::channel::oneshot;
use indexmap::IndexSet;
use std::collections::{HashMap, HashSet};
const COST_UNEXPECTED_STATEMENT: Rep = Rep::new(-100, "Unexpected Statement");
const COST_INVALID_SIGNATURE: Rep = Rep::new(-500, "Invalid Statement Signature");
const COST_DUPLICATE_STATEMENT: Rep = Rep::new(-250, "Statement sent more than once by peer");
const COST_APPARENT_FLOOD: Rep = Rep::new(-1000, "Peer appears to be flooding us with statements");
const BENEFIT_VALID_STATEMENT: Rep = Rep::new(5, "Peer provided a valid statement");
const BENEFIT_VALID_STATEMENT_FIRST: Rep = Rep::new(
25,
"Peer was the first to provide a valid statement",
);
/// The maximum amount of candidates each validator is allowed to second at any relay-parent.
/// Short for "Validator Candidate Threshold".
///
/// This is the amount of candidates we keep per validator at any relay-parent.
/// Typically we will only keep 1, but when a validator equivocates we will need to track 2.
const VC_THRESHOLD: usize = 2;
/// The statement distribution subsystem.
pub struct StatementDistribution;
impl<C> Subsystem<C> for StatementDistribution
where C: SubsystemContext<Message=StatementDistributionMessage>
{
fn start(self, ctx: C) -> SpawnedSubsystem {
// Swallow error because failure is fatal to the node and we log with more precision
// within `run`.
SpawnedSubsystem {
name: "statement-distribution-subsystem",
future: run(ctx).map(|_| ()).boxed(),
}
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
}
}
/// Tracks our impression of a single peer's view of the candidates a validator has seconded
/// for a given relay-parent.
///
/// It is expected to receive at most `VC_THRESHOLD` from us and be aware of at most `VC_THRESHOLD`
/// via other means.
#[derive(Default)]
struct VcPerPeerTracker {
local_observed: arrayvec::ArrayVec<[Hash; VC_THRESHOLD]>,
remote_observed: arrayvec::ArrayVec<[Hash; VC_THRESHOLD]>,
}
impl VcPerPeerTracker {
// Note that the remote should now be aware that a validator has seconded a given candidate (by hash)
// based on a message that we have sent it from our local pool.
fn note_local(&mut self, h: Hash) {
if !note_hash(&mut self.local_observed, h) {
log::warn!("Statement distribution is erroneously attempting to distribute more \
than {} candidate(s) per validator index. Ignoring", VC_THRESHOLD);
}
}
// Note that the remote should now be aware that a validator has seconded a given candidate (by hash)
// based on a message that it has sent us.
//
// Returns `true` if the peer was allowed to send us such a message, `false` otherwise.
fn note_remote(&mut self, h: Hash) -> bool {
note_hash(&mut self.remote_observed, h)
}
}
fn note_hash(
observed: &mut arrayvec::ArrayVec<[Hash; VC_THRESHOLD]>,
h: Hash,
) -> bool {
if observed.contains(&h) { return true; }
if observed.is_full() {
false
} else {
observed.try_push(h).expect("length of storage guarded above; \
only panics if length exceeds capacity; qed");
true
}
}
/// knowledge that a peer has about goings-on in a relay parent.
#[derive(Default)]
struct PeerRelayParentKnowledge {
/// candidates that the peer is aware of. This indicates that we can
/// send other statements pertaining to that candidate.
known_candidates: HashSet<Hash>,
/// fingerprints of all statements a peer should be aware of: those that
/// were sent to the peer by us.
sent_statements: HashSet<(CompactStatement, ValidatorIndex)>,
/// fingerprints of all statements a peer should be aware of: those that
/// were sent to us by the peer.
received_statements: HashSet<(CompactStatement, ValidatorIndex)>,
/// How many candidates this peer is aware of for each given validator index.
seconded_counts: HashMap<ValidatorIndex, VcPerPeerTracker>,
/// How many statements we've received for each candidate that we're aware of.
received_message_count: HashMap<Hash, usize>,
}
impl PeerRelayParentKnowledge {
/// Attempt to update our view of the peer's knowledge with this statement's fingerprint based
/// on something that we would like to send to the peer.
///
/// This returns `None` if the peer cannot accept this statement, without altering internal
/// state.
///
/// If the peer can accept the statement, this returns `Some` and updates the internal state.
/// Once the knowledge has incorporated a statement, it cannot be incorporated again.
///
/// This returns `Some(true)` if this is the first time the peer has become aware of a
/// candidate with the given hash.
fn send(&mut self, fingerprint: &(CompactStatement, ValidatorIndex)) -> Option<bool> {
let already_known = self.sent_statements.contains(fingerprint)
|| self.received_statements.contains(fingerprint);
if already_known {
return None;
}
let new_known = match fingerprint.0 {
CompactStatement::Candidate(ref h) => {
self.seconded_counts.entry(fingerprint.1)
.or_default()
.note_local(h.clone());
self.known_candidates.insert(h.clone())
},
CompactStatement::Valid(ref h) | CompactStatement::Invalid(ref h) => {
// The peer can only accept Valid and Invalid statements for which it is aware
// of the corresponding candidate.
if !self.known_candidates.contains(h) {
return None;
}
false
}
};
self.sent_statements.insert(fingerprint.clone());
Some(new_known)
}
/// Attempt to update our view of the peer's knowledge with this statement's fingerprint based on
/// a message we are receiving from the peer.
///
/// Provide the maximum message count that we can receive per candidate. In practice we should
/// not receive more statements for any one candidate than there are members in the group assigned
/// to that para, but this maximum needs to be lenient to account for equivocations that may be
/// cross-group. As such, a maximum of 2 * n_validators is recommended.
///
/// This returns an error if the peer should not have sent us this message according to protocol
/// rules for flood protection.
///
/// If this returns `Ok`, the internal state has been altered. After `receive`ing a new
/// candidate, we are then cleared to send the peer further statements about that candidate.
///
/// This returns `Ok(true)` if this is the first time the peer has become aware of a
/// candidate with given hash.
fn receive(
&mut self,
fingerprint: &(CompactStatement, ValidatorIndex),
max_message_count: usize,
) -> Result<bool, Rep> {
// We don't check `sent_statements` because a statement could be in-flight from both
// sides at the same time.
if self.received_statements.contains(fingerprint) {
return Err(COST_DUPLICATE_STATEMENT);
}
let candidate_hash = match fingerprint.0 {
CompactStatement::Candidate(ref h) => {
let allowed_remote = self.seconded_counts.entry(fingerprint.1)
.or_insert_with(Default::default)
.note_remote(h.clone());
if !allowed_remote {
return Err(COST_UNEXPECTED_STATEMENT);
}
h
}
CompactStatement::Valid(ref h)| CompactStatement::Invalid(ref h) => {
if !self.known_candidates.contains(&h) {
return Err(COST_UNEXPECTED_STATEMENT);
}
h
}
};
{
let received_per_candidate = self.received_message_count
.entry(candidate_hash.clone())
.or_insert(0);
if *received_per_candidate >= max_message_count {
return Err(COST_APPARENT_FLOOD);
}
*received_per_candidate += 1;
}
self.received_statements.insert(fingerprint.clone());
Ok(self.known_candidates.insert(candidate_hash.clone()))
}
}
struct PeerData {
view: View,
view_knowledge: HashMap<Hash, PeerRelayParentKnowledge>,
}
impl PeerData {
/// Attempt to update our view of the peer's knowledge with this statement's fingerprint based
/// on something that we would like to send to the peer.
///
/// This returns `None` if the peer cannot accept this statement, without altering internal
/// state.
///
/// If the peer can accept the statement, this returns `Some` and updates the internal state.
/// Once the knowledge has incorporated a statement, it cannot be incorporated again.
///
/// This returns `Some(true)` if this is the first time the peer has become aware of a
/// candidate with the given hash.
fn send(
&mut self,
relay_parent: &Hash,
fingerprint: &(CompactStatement, ValidatorIndex),
) -> Option<bool> {
self.view_knowledge.get_mut(relay_parent).map_or(None, |k| k.send(fingerprint))
}
/// Attempt to update our view of the peer's knowledge with this statement's fingerprint based on
/// a message we are receiving from the peer.
///
/// Provide the maximum message count that we can receive per candidate. In practice we should
/// not receive more statements for any one candidate than there are members in the group assigned
/// to that para, but this maximum needs to be lenient to account for equivocations that may be
/// cross-group. As such, a maximum of 2 * n_validators is recommended.
///
/// This returns an error if the peer should not have sent us this message according to protocol
/// rules for flood protection.
///
/// If this returns `Ok`, the internal state has been altered. After `receive`ing a new
/// candidate, we are then cleared to send the peer further statements about that candidate.
///
/// This returns `Ok(true)` if this is the first time the peer has become aware of a
/// candidate with given hash.
fn receive(
&mut self,
relay_parent: &Hash,
fingerprint: &(CompactStatement, ValidatorIndex),
max_message_count: usize,
) -> Result<bool, Rep> {
self.view_knowledge.get_mut(relay_parent).ok_or(COST_UNEXPECTED_STATEMENT)?
.receive(fingerprint, max_message_count)
}
}
// A statement stored while a relay chain head is active.
#[derive(Debug)]
struct StoredStatement {
comparator: StoredStatementComparator,
statement: SignedFullStatement,
}
// A value used for comparison of stored statements to each other.
//
// The compact version of the statement, the validator index, and the signature of the validator
// is enough to differentiate between all types of equivocations, as long as the signature is
// actually checked to be valid. The same statement with 2 signatures and 2 statements with
// different (or same) signatures wll all be correctly judged to be unequal with this comparator.
#[derive(PartialEq, Eq, Hash, Clone, Debug)]
struct StoredStatementComparator {
compact: CompactStatement,
validator_index: ValidatorIndex,
signature: ValidatorSignature,
}
impl StoredStatement {
fn compact(&self) -> &CompactStatement {
&self.comparator.compact
}
fn fingerprint(&self) -> (CompactStatement, ValidatorIndex) {
(self.comparator.compact.clone(), self.statement.validator_index())
}
}
impl std::borrow::Borrow<StoredStatementComparator> for StoredStatement {
fn borrow(&self) -> &StoredStatementComparator {
&self.comparator
}
}
impl std::hash::Hash for StoredStatement {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.comparator.hash(state)
}
}
impl std::cmp::PartialEq for StoredStatement {
fn eq(&self, other: &Self) -> bool {
&self.comparator == &other.comparator
}
}
impl std::cmp::Eq for StoredStatement {}
#[derive(Debug)]
enum NotedStatement<'a> {
NotUseful,
Fresh(&'a StoredStatement),
UsefulButKnown
}
struct ActiveHeadData {
/// All candidates we are aware of for this head, keyed by hash.
candidates: HashSet<Hash>,
/// Stored statements for circulation to peers.
///
/// These are iterable in insertion order, and `Seconded` statements are always
/// accepted before dependent statements.
statements: IndexSet<StoredStatement>,
/// The validators at this head.
validators: Vec<ValidatorId>,
/// The session index this head is at.
session_index: sp_staking::SessionIndex,
/// How many `Seconded` statements we've seen per validator.
seconded_counts: HashMap<ValidatorIndex, usize>,
}
impl ActiveHeadData {
fn new(validators: Vec<ValidatorId>, session_index: sp_staking::SessionIndex) -> Self {
ActiveHeadData {
candidates: Default::default(),
statements: Default::default(),
validators,
session_index,
seconded_counts: Default::default(),
}
}
/// Note the given statement.
///
/// If it was not already known and can be accepted, returns `NotedStatement::Fresh`,
/// with a handle to the statement.
///
/// If it can be accepted, but we already know it, returns `NotedStatement::UsefulButKnown`.
///
/// We accept up to `VC_THRESHOLD` (2 at time of writing) `Seconded` statements
/// per validator. These will be the first ones we see. The statement is assumed
/// to have been checked, including that the validator index is not out-of-bounds and
/// the signature is valid.
///
/// Any other statements or those that reference a candidate we are not aware of cannot be accepted
/// and will return `NotedStatement::NotUseful`.
fn note_statement(&mut self, statement: SignedFullStatement) -> NotedStatement {
let validator_index = statement.validator_index();
let comparator = StoredStatementComparator {
compact: statement.payload().to_compact(),
validator_index,
signature: statement.signature().clone(),
};
let stored = StoredStatement {
comparator: comparator.clone(),
statement,
};
match comparator.compact {
CompactStatement::Candidate(h) => {
let seconded_so_far = self.seconded_counts.entry(validator_index).or_insert(0);
if *seconded_so_far >= VC_THRESHOLD {
return NotedStatement::NotUseful;
}
self.candidates.insert(h);
if self.statements.insert(stored) {
*seconded_so_far += 1;
// This will always return `Some` because it was just inserted.
NotedStatement::Fresh(self.statements.get(&comparator)
.expect("Statement was just inserted; qed"))
} else {
NotedStatement::UsefulButKnown
}
}
CompactStatement::Valid(h) | CompactStatement::Invalid(h) => {
if !self.candidates.contains(&h) {
return NotedStatement::NotUseful;
}
if self.statements.insert(stored) {
// This will always return `Some` because it was just inserted.
NotedStatement::Fresh(self.statements.get(&comparator)
.expect("Statement was just inserted; qed"))
} else {
NotedStatement::UsefulButKnown
}
}
}
}
/// Get an iterator over all statements for the active head. Seconded statements come first.
fn statements(&self) -> impl Iterator<Item = &'_ StoredStatement> + '_ {
self.statements.iter()
}
/// Get an iterator over all statements for the active head that are for a particular candidate.
fn statements_about(&self, candidate_hash: Hash)
-> impl Iterator<Item = &'_ StoredStatement> + '_
{
self.statements().filter(move |s| s.compact().candidate_hash() == &candidate_hash)
}
}
/// Check a statement signature under this parent hash.
fn check_statement_signature(
head: &ActiveHeadData,
relay_parent: Hash,
statement: &SignedFullStatement,
) -> Result<(), ()> {
let signing_context = SigningContext {
session_index: head.session_index,
parent_hash: relay_parent,
};
head.validators.get(statement.validator_index() as usize)
.ok_or(())
.and_then(|v| statement.check_signature(&signing_context, v))
}
/// Places the statement in storage if it is new, and then
/// circulates the statement to all peers who have not seen it yet, and
/// sends all statements dependent on that statement to peers who could previously not receive
/// them but now can.
async fn circulate_statement_and_dependents(
peers: &mut HashMap<PeerId, PeerData>,
active_heads: &mut HashMap<Hash, ActiveHeadData>,
ctx: &mut impl SubsystemContext<Message = StatementDistributionMessage>,
relay_parent: Hash,
statement: SignedFullStatement,
) -> SubsystemResult<()> {
if let Some(active_head)= active_heads.get_mut(&relay_parent) {
// First circulate the statement directly to all peers needing it.
// The borrow of `active_head` needs to encompass only this (Rust) statement.
let outputs: Option<(Hash, Vec<PeerId>)> = {
match active_head.note_statement(statement) {
NotedStatement::Fresh(stored) => Some((
stored.compact().candidate_hash().clone(),
circulate_statement(peers, ctx, relay_parent, stored).await?,
)),
_ => None,
}
};
// Now send dependent statements to all peers needing them, if any.
if let Some((candidate_hash, peers_needing_dependents)) = outputs {
for peer in peers_needing_dependents {
if let Some(peer_data) = peers.get_mut(&peer) {
// defensive: the peer data should always be some because the iterator
// of peers is derived from the set of peers.
send_statements_about(
peer,
peer_data,
ctx,
relay_parent,
candidate_hash,
&*active_head
).await?;
}
}
}
}
Ok(())
}
fn statement_message(relay_parent: Hash, statement: SignedFullStatement)
-> protocol_v1::ValidationProtocol
{
protocol_v1::ValidationProtocol::StatementDistribution(
protocol_v1::StatementDistributionMessage::Statement(relay_parent, statement)
)
}
/// Circulates a statement to all peers who have not seen it yet, and returns
/// an iterator over peers who need to have dependent statements sent.
async fn circulate_statement(
peers: &mut HashMap<PeerId, PeerData>,
ctx: &mut impl SubsystemContext<Message = StatementDistributionMessage>,
relay_parent: Hash,
stored: &StoredStatement,
) -> SubsystemResult<Vec<PeerId>> {
let fingerprint = stored.fingerprint();
let mut peers_to_send = HashMap::new();
for (peer, data) in peers.iter_mut() {
if let Some(new_known) = data.send(&relay_parent, &fingerprint) {
peers_to_send.insert(peer.clone(), new_known);
}
}
// Send all these peers the initial statement.
if !peers_to_send.is_empty() {
let payload = statement_message(relay_parent, stored.statement.clone());
ctx.send_message(AllMessages::NetworkBridge(NetworkBridgeMessage::SendValidationMessage(
peers_to_send.keys().cloned().collect(),
payload,
))).await?;
}
Ok(peers_to_send.into_iter().filter_map(|(peer, needs_dependent)| if needs_dependent {
Some(peer)
} else {
None
}).collect())
}
/// Send all statements about a given candidate hash to a peer.
async fn send_statements_about(
peer: PeerId,
peer_data: &mut PeerData,
ctx: &mut impl SubsystemContext<Message = StatementDistributionMessage>,
relay_parent: Hash,
candidate_hash: Hash,
active_head: &ActiveHeadData,
) -> SubsystemResult<()> {
for statement in active_head.statements_about(candidate_hash) {
if peer_data.send(&relay_parent, &statement.fingerprint()).is_some() {
let payload = statement_message(
relay_parent,
statement.statement.clone(),
ctx.send_message(AllMessages::NetworkBridge(
NetworkBridgeMessage::SendValidationMessage(vec![peer.clone()], payload)
)).await?;
}
}
Ok(())
}
/// Send all statements at a given relay-parent to a peer.
async fn send_statements(
peer: PeerId,
peer_data: &mut PeerData,
ctx: &mut impl SubsystemContext<Message = StatementDistributionMessage>,
relay_parent: Hash,
active_head: &ActiveHeadData
) -> SubsystemResult<()> {
for statement in active_head.statements() {
if peer_data.send(&relay_parent, &statement.fingerprint()).is_some() {
let payload = statement_message(
relay_parent,
statement.statement.clone(),
ctx.send_message(AllMessages::NetworkBridge(
NetworkBridgeMessage::SendValidationMessage(vec![peer.clone()], payload)
)).await?;
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
}
}
Ok(())
}
async fn report_peer(
ctx: &mut impl SubsystemContext,
peer: PeerId,
rep: Rep,
) -> SubsystemResult<()> {
ctx.send_message(AllMessages::NetworkBridge(
NetworkBridgeMessage::ReportPeer(peer, rep)
)).await
}
// Handle an incoming wire message. Returns a reference to a newly-stored statement
// if we were not already aware of it, along with the corresponding relay-parent.
//
// This function checks the signature and ensures the statement is compatible with our
// view.
async fn handle_incoming_message<'a>(
peer: PeerId,
peer_data: &mut PeerData,
our_view: &View,
active_heads: &'a mut HashMap<Hash, ActiveHeadData>,
ctx: &mut impl SubsystemContext<Message = StatementDistributionMessage>,
message: protocol_v1::StatementDistributionMessage,
) -> SubsystemResult<Option<(Hash, &'a StoredStatement)>> {
let (relay_parent, statement) = match message {
protocol_v1::StatementDistributionMessage::Statement(r, s) => (r, s),
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
};
if !our_view.contains(&relay_parent) {
return report_peer(ctx, peer, COST_UNEXPECTED_STATEMENT).await.map(|_| None);
}
let active_head = match active_heads.get_mut(&relay_parent) {
Some(h) => h,
None => {
// This should never be out-of-sync with our view if the view updates
// correspond to actual `StartWork` messages. So we just log and ignore.
log::warn!("Our view out-of-sync with active heads. Head {} not found", relay_parent);
return Ok(None);
}
};
// check the signature on the statement.
if let Err(()) = check_statement_signature(&active_head, relay_parent, &statement) {
return report_peer(ctx, peer, COST_INVALID_SIGNATURE).await.map(|_| None);
}
// Ensure the statement is stored in the peer data.
//
// Note that if the peer is sending us something that is not within their view,
// it will not be kept within their log.
let fingerprint = (statement.payload().to_compact(), statement.validator_index());
let max_message_count = active_head.validators.len() * 2;
match peer_data.receive(&relay_parent, &fingerprint, max_message_count) {
Err(rep) => {
report_peer(ctx, peer, rep).await?;
return Ok(None)
}
Ok(true) => {
// Send the peer all statements concerning the candidate that we have,
// since it appears to have just learned about the candidate.
send_statements_about(
peer.clone(),
peer_data,
ctx,
relay_parent,
fingerprint.0.candidate_hash().clone(),
&*active_head,
).await?
}
Ok(false) => {}
}
// Note: `peer_data.receive` already ensures that the statement is not an unbounded equivocation
// or unpinned to a seconded candidate. So it is safe to place it into the storage.
match active_head.note_statement(statement) {
NotedStatement::NotUseful => Ok(None),
NotedStatement::UsefulButKnown => {
report_peer(ctx, peer, BENEFIT_VALID_STATEMENT).await?;
Ok(None)
}
NotedStatement::Fresh(statement) => {
report_peer(ctx, peer, BENEFIT_VALID_STATEMENT_FIRST).await?;
Ok(Some((relay_parent, statement)))
}
}
}
/// Update a peer's view. Sends all newly unlocked statements based on the previous
async fn update_peer_view_and_send_unlocked(
peer: PeerId,
peer_data: &mut PeerData,
ctx: &mut impl SubsystemContext<Message = StatementDistributionMessage>,
active_heads: &HashMap<Hash, ActiveHeadData>,
new_view: View,
) -> SubsystemResult<()> {
let old_view = std::mem::replace(&mut peer_data.view, new_view);
// Remove entries for all relay-parents in the old view but not the new.
for removed in old_view.difference(&peer_data.view) {
let _ = peer_data.view_knowledge.remove(removed);
}
// Add entries for all relay-parents in the new view but not the old.
// Furthermore, send all statements we have for those relay parents.
let new_view = peer_data.view.difference(&old_view).copied().collect::<Vec<_>>();
for new in new_view.iter().copied() {
peer_data.view_knowledge.insert(new, Default::default());
if let Some(active_head) = active_heads.get(&new) {
send_statements(
peer.clone(),
peer_data,
ctx,
new,
active_head,
).await?;
}
}
Ok(())
}
async fn handle_network_update(
peers: &mut HashMap<PeerId, PeerData>,
active_heads: &mut HashMap<Hash, ActiveHeadData>,
ctx: &mut impl SubsystemContext<Message = StatementDistributionMessage>,
our_view: &mut View,
update: NetworkBridgeEvent<protocol_v1::StatementDistributionMessage>,
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
) -> SubsystemResult<()> {
match update {
NetworkBridgeEvent::PeerConnected(peer, _role) => {
peers.insert(peer, PeerData {
view: Default::default(),
view_knowledge: Default::default(),
});
Ok(())
}
NetworkBridgeEvent::PeerDisconnected(peer) => {
peers.remove(&peer);
Ok(())
}
NetworkBridgeEvent::PeerMessage(peer, message) => {
match peers.get_mut(&peer) {
Some(data) => {
let new_stored = handle_incoming_message(
peer,
data,
&*our_view,
active_heads,
ctx,
message,
).await?;
if let Some((relay_parent, new)) = new_stored {
// When we receive a new message from a peer, we forward it to the
// candidate backing subsystem.
let message = AllMessages::CandidateBacking(
CandidateBackingMessage::Statement(relay_parent, new.statement.clone())
);
ctx.send_message(message).await?;
}
Ok(())
}
None => Ok(()),
}
}
NetworkBridgeEvent::PeerViewChange(peer, view) => {
match peers.get_mut(&peer) {
Some(data) => {
update_peer_view_and_send_unlocked(
peer,
data,
ctx,
&*active_heads,
view,
).await
}
None => Ok(()),
}
}
NetworkBridgeEvent::OurViewChange(view) => {
let old_view = std::mem::replace(our_view, view);
active_heads.retain(|head, _| our_view.contains(head));
for new in our_view.difference(&old_view) {
if !active_heads.contains_key(&new) {
log::warn!(target: "statement_distribution", "Our network bridge view update \
inconsistent with `StartWork` messages we have received from overseer. \
Contains unknown hash {}", new);
}
}
Ok(())
}
}
}
async fn run(
mut ctx: impl SubsystemContext<Message = StatementDistributionMessage>,
) -> SubsystemResult<()> {
let mut peers: HashMap<PeerId, PeerData> = HashMap::new();
let mut our_view = View::default();
let mut active_heads: HashMap<Hash, ActiveHeadData> = HashMap::new();
loop {
let message = ctx.recv().await?;
match message {
FromOverseer::Signal(OverseerSignal::ActiveLeaves(ActiveLeavesUpdate { activated, .. })) => {
for relay_parent in activated {
let (validators, session_index) = {
let (val_tx, val_rx) = oneshot::channel();
let (session_tx, session_rx) = oneshot::channel();
let val_message = AllMessages::RuntimeApi(
asynchronous rob
committed
RuntimeApiMessage::Request(
relay_parent,
RuntimeApiRequest::Validators(val_tx),
),
);
let session_message = AllMessages::RuntimeApi(
asynchronous rob
committed
RuntimeApiMessage::Request(
relay_parent,
RuntimeApiRequest::SessionIndexForChild(session_tx),
),
ctx.send_messages(
std::iter::once(val_message).chain(std::iter::once(session_message))
).await?;
asynchronous rob
committed
match (val_rx.await?, session_rx.await?) {
(Ok(v), Ok(s)) => (v, s),
(Err(e), _) | (_, Err(e)) => {
log::warn!(
target: "statement_distribution",
"Failed to fetch runtime API data for active leaf: {:?}",
e,
);
// Lacking this bookkeeping might make us behave funny, although
// not in any slashable way. But we shouldn't take down the node
// on what are likely spurious runtime API errors.
continue;
}
}
};
active_heads.entry(relay_parent)
.or_insert(ActiveHeadData::new(validators, session_index));
}
FromOverseer::Signal(OverseerSignal::BlockFinalized(_block_hash)) => {
// do nothing
}
FromOverseer::Signal(OverseerSignal::Conclude) => break,
FromOverseer::Communication { msg } => match msg {
StatementDistributionMessage::Share(relay_parent, statement) =>
circulate_statement_and_dependents(
&mut peers,
&mut active_heads,
&mut ctx,
relay_parent,
statement,
).await?,
StatementDistributionMessage::NetworkBridgeUpdateV1(event) =>
handle_network_update(
&mut peers,
&mut active_heads,
&mut ctx,
&mut our_view,
event,
).await?,
}
}
}
Ok(())
}
#[cfg(test)]
mod tests {
use super::*;
use sp_keyring::Sr25519Keyring;
use node_primitives::Statement;
use polkadot_primitives::v1::CommittedCandidateReceipt;
use assert_matches::assert_matches;
use futures::executor;
#[test]
fn active_head_accepts_only_2_seconded_per_validator() {
let validators = vec![
Sr25519Keyring::Alice.public().into(),
Sr25519Keyring::Bob.public().into(),
Sr25519Keyring::Charlie.public().into(),
];
let parent_hash: Hash = [1; 32].into();
let session_index = 1;
let signing_context = SigningContext {
parent_hash,
session_index,
};
let candidate_a = {
let mut c = CommittedCandidateReceipt::default();
c.descriptor.relay_parent = parent_hash;
c.descriptor.para_id = 1.into();
c
};
let candidate_b = {
let mut c = CommittedCandidateReceipt::default();
c.descriptor.relay_parent = parent_hash;
c.descriptor.para_id = 2.into();
c
};
let candidate_c = {
let mut c = CommittedCandidateReceipt::default();
c.descriptor.relay_parent = parent_hash;
c.descriptor.para_id = 3.into();
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
c
};
let mut head_data = ActiveHeadData::new(validators, session_index);
// note A
let a_seconded_val_0 = SignedFullStatement::sign(
Statement::Seconded(candidate_a.clone()),
&signing_context,
0,
&Sr25519Keyring::Alice.pair().into(),
);
let noted = head_data.note_statement(a_seconded_val_0.clone());
assert_matches!(noted, NotedStatement::Fresh(_));
// note A (duplicate)
let noted = head_data.note_statement(a_seconded_val_0);
assert_matches!(noted, NotedStatement::UsefulButKnown);
// note B
let noted = head_data.note_statement(SignedFullStatement::sign(
Statement::Seconded(candidate_b.clone()),
&signing_context,
0,
&Sr25519Keyring::Alice.pair().into(),
));
assert_matches!(noted, NotedStatement::Fresh(_));
// note C (beyond 2 - ignored)
let noted = head_data.note_statement(SignedFullStatement::sign(
Statement::Seconded(candidate_c.clone()),
&signing_context,
0,
&Sr25519Keyring::Alice.pair().into(),
));
assert_matches!(noted, NotedStatement::NotUseful);
// note B (new validator)
let noted = head_data.note_statement(SignedFullStatement::sign(
Statement::Seconded(candidate_b.clone()),
&signing_context,
1,
&Sr25519Keyring::Bob.pair().into(),
));
assert_matches!(noted, NotedStatement::Fresh(_));
// note C (new validator)
let noted = head_data.note_statement(SignedFullStatement::sign(
Statement::Seconded(candidate_c.clone()),
&signing_context,
1,
&Sr25519Keyring::Bob.pair().into(),
));
assert_matches!(noted, NotedStatement::Fresh(_));