Skip to content
lib.rs 42.2 KiB
Newer Older
// Copyright 2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! The Statement Distribution Subsystem.
//!
//! This is responsible for distributing signed statements about candidate
//! validity amongst validators.

use polkadot_subsystem::{
	Subsystem, SubsystemResult, SubsystemContext, SpawnedSubsystem,
	ActiveLeavesUpdate, FromOverseer, OverseerSignal,
};
use polkadot_subsystem::messages::{
	AllMessages, NetworkBridgeMessage, StatementDistributionMessage, CandidateBackingMessage,
	RuntimeApiMessage, RuntimeApiRequest,
use node_primitives::SignedFullStatement;
use polkadot_primitives::v1::{
	Hash, CompactStatement, ValidatorIndex, ValidatorId, SigningContext, ValidatorSignature,
use polkadot_node_network_protocol::{
	v1 as protocol_v1, View, PeerId, ReputationChange as Rep, NetworkBridgeEvent,
};

use futures::prelude::*;
use futures::channel::oneshot;
use indexmap::IndexSet;

use std::collections::{HashMap, HashSet};

const COST_UNEXPECTED_STATEMENT: Rep = Rep::new(-100, "Unexpected Statement");
const COST_INVALID_SIGNATURE: Rep = Rep::new(-500, "Invalid Statement Signature");
const COST_DUPLICATE_STATEMENT: Rep = Rep::new(-250, "Statement sent more than once by peer");
const COST_APPARENT_FLOOD: Rep = Rep::new(-1000, "Peer appears to be flooding us with statements");

const BENEFIT_VALID_STATEMENT: Rep = Rep::new(5, "Peer provided a valid statement");
const BENEFIT_VALID_STATEMENT_FIRST: Rep = Rep::new(
	25,
	"Peer was the first to provide a valid statement",
);

/// The maximum amount of candidates each validator is allowed to second at any relay-parent.
/// Short for "Validator Candidate Threshold".
///
/// This is the amount of candidates we keep per validator at any relay-parent.
/// Typically we will only keep 1, but when a validator equivocates we will need to track 2.
const VC_THRESHOLD: usize = 2;

/// The statement distribution subsystem.
pub struct StatementDistribution;

impl<C> Subsystem<C> for StatementDistribution
	where C: SubsystemContext<Message=StatementDistributionMessage>
{
	type Metrics = ();

	fn start(self, ctx: C) -> SpawnedSubsystem {
		// Swallow error because failure is fatal to the node and we log with more precision
		// within `run`.
		SpawnedSubsystem {
			name: "statement-distribution-subsystem",
			future: run(ctx).map(|_| ()).boxed(),
		}
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	}
}

/// Tracks our impression of a single peer's view of the candidates a validator has seconded
/// for a given relay-parent.
///
/// It is expected to receive at most `VC_THRESHOLD` from us and be aware of at most `VC_THRESHOLD`
/// via other means.
#[derive(Default)]
struct VcPerPeerTracker {
	local_observed: arrayvec::ArrayVec<[Hash; VC_THRESHOLD]>,
	remote_observed: arrayvec::ArrayVec<[Hash; VC_THRESHOLD]>,
}

impl VcPerPeerTracker {
	// Note that the remote should now be aware that a validator has seconded a given candidate (by hash)
	// based on a message that we have sent it from our local pool.
	fn note_local(&mut self, h: Hash) {
		if !note_hash(&mut self.local_observed, h) {
			log::warn!("Statement distribution is erroneously attempting to distribute more \
				than {} candidate(s) per validator index. Ignoring", VC_THRESHOLD);
		}
	}

	// Note that the remote should now be aware that a validator has seconded a given candidate (by hash)
	// based on a message that it has sent us.
	//
	// Returns `true` if the peer was allowed to send us such a message, `false` otherwise.
	fn note_remote(&mut self, h: Hash) -> bool {
		note_hash(&mut self.remote_observed, h)
	}
}

fn note_hash(
	observed: &mut arrayvec::ArrayVec<[Hash; VC_THRESHOLD]>,
	h: Hash,
) -> bool {
	if observed.contains(&h) { return true; }

	if observed.is_full() {
		false
	} else {
		observed.try_push(h).expect("length of storage guarded above; \
			only panics if length exceeds capacity; qed");

		true
	}
}

/// knowledge that a peer has about goings-on in a relay parent.
#[derive(Default)]
struct PeerRelayParentKnowledge {
	/// candidates that the peer is aware of. This indicates that we can
	/// send other statements pertaining to that candidate.
	known_candidates: HashSet<Hash>,
	/// fingerprints of all statements a peer should be aware of: those that
	/// were sent to the peer by us.
	sent_statements: HashSet<(CompactStatement, ValidatorIndex)>,
	/// fingerprints of all statements a peer should be aware of: those that
	/// were sent to us by the peer.
	received_statements: HashSet<(CompactStatement, ValidatorIndex)>,
	/// How many candidates this peer is aware of for each given validator index.
	seconded_counts: HashMap<ValidatorIndex, VcPerPeerTracker>,
	/// How many statements we've received for each candidate that we're aware of.
	received_message_count: HashMap<Hash, usize>,
}

impl PeerRelayParentKnowledge {
	/// Attempt to update our view of the peer's knowledge with this statement's fingerprint based
	/// on something that we would like to send to the peer.
	///
	/// This returns `None` if the peer cannot accept this statement, without altering internal
	/// state.
	///
	/// If the peer can accept the statement, this returns `Some` and updates the internal state.
	/// Once the knowledge has incorporated a statement, it cannot be incorporated again.
	///
	/// This returns `Some(true)` if this is the first time the peer has become aware of a
	/// candidate with the given hash.
	fn send(&mut self, fingerprint: &(CompactStatement, ValidatorIndex)) -> Option<bool> {
		let already_known = self.sent_statements.contains(fingerprint)
			|| self.received_statements.contains(fingerprint);

		if already_known {
			return None;
		}

		let new_known = match fingerprint.0 {
			CompactStatement::Candidate(ref h) => {
				self.seconded_counts.entry(fingerprint.1)
					.or_default()
					.note_local(h.clone());

				self.known_candidates.insert(h.clone())
			},
			CompactStatement::Valid(ref h) | CompactStatement::Invalid(ref h) => {
				// The peer can only accept Valid and Invalid statements for which it is aware
				// of the corresponding candidate.
				if !self.known_candidates.contains(h) {
					return None;
				}

				false
			}
		};

		self.sent_statements.insert(fingerprint.clone());

		Some(new_known)
	}

	/// Attempt to update our view of the peer's knowledge with this statement's fingerprint based on
	/// a message we are receiving from the peer.
	///
	/// Provide the maximum message count that we can receive per candidate. In practice we should
	/// not receive more statements for any one candidate than there are members in the group assigned
	/// to that para, but this maximum needs to be lenient to account for equivocations that may be
	/// cross-group. As such, a maximum of 2 * n_validators is recommended.
	///
	/// This returns an error if the peer should not have sent us this message according to protocol
	/// rules for flood protection.
	///
	/// If this returns `Ok`, the internal state has been altered. After `receive`ing a new
	/// candidate, we are then cleared to send the peer further statements about that candidate.
	///
	/// This returns `Ok(true)` if this is the first time the peer has become aware of a
	/// candidate with given hash.
	fn receive(
		&mut self,
		fingerprint: &(CompactStatement, ValidatorIndex),
		max_message_count: usize,
	) -> Result<bool, Rep> {
		// We don't check `sent_statements` because a statement could be in-flight from both
		// sides at the same time.
		if self.received_statements.contains(fingerprint) {
			return Err(COST_DUPLICATE_STATEMENT);
		}

		let candidate_hash = match fingerprint.0 {
			CompactStatement::Candidate(ref h) => {
				let allowed_remote = self.seconded_counts.entry(fingerprint.1)
					.or_insert_with(Default::default)
					.note_remote(h.clone());

				if !allowed_remote {
					return Err(COST_UNEXPECTED_STATEMENT);
				}

				h
			}
			CompactStatement::Valid(ref h)| CompactStatement::Invalid(ref h) => {
				if !self.known_candidates.contains(&h) {
					return Err(COST_UNEXPECTED_STATEMENT);
				}

				h
			}
		};

		{
			let received_per_candidate = self.received_message_count
				.entry(candidate_hash.clone())
				.or_insert(0);

			if *received_per_candidate >= max_message_count {
				return Err(COST_APPARENT_FLOOD);
			}

			*received_per_candidate += 1;
		}

		self.received_statements.insert(fingerprint.clone());
		Ok(self.known_candidates.insert(candidate_hash.clone()))
	}
}

struct PeerData {
	view: View,
	view_knowledge: HashMap<Hash, PeerRelayParentKnowledge>,
}

impl PeerData {
	/// Attempt to update our view of the peer's knowledge with this statement's fingerprint based
	/// on something that we would like to send to the peer.
	///
	/// This returns `None` if the peer cannot accept this statement, without altering internal
	/// state.
	///
	/// If the peer can accept the statement, this returns `Some` and updates the internal state.
	/// Once the knowledge has incorporated a statement, it cannot be incorporated again.
	///
	/// This returns `Some(true)` if this is the first time the peer has become aware of a
	/// candidate with the given hash.
	fn send(
		&mut self,
		relay_parent: &Hash,
		fingerprint: &(CompactStatement, ValidatorIndex),
	) -> Option<bool> {
		self.view_knowledge.get_mut(relay_parent).map_or(None, |k| k.send(fingerprint))
	}

	/// Attempt to update our view of the peer's knowledge with this statement's fingerprint based on
	/// a message we are receiving from the peer.
	///
	/// Provide the maximum message count that we can receive per candidate. In practice we should
	/// not receive more statements for any one candidate than there are members in the group assigned
	/// to that para, but this maximum needs to be lenient to account for equivocations that may be
	/// cross-group. As such, a maximum of 2 * n_validators is recommended.
	///
	/// This returns an error if the peer should not have sent us this message according to protocol
	/// rules for flood protection.
	///
	/// If this returns `Ok`, the internal state has been altered. After `receive`ing a new
	/// candidate, we are then cleared to send the peer further statements about that candidate.
	///
	/// This returns `Ok(true)` if this is the first time the peer has become aware of a
	/// candidate with given hash.
	fn receive(
		&mut self,
		relay_parent: &Hash,
		fingerprint: &(CompactStatement, ValidatorIndex),
		max_message_count: usize,
	) -> Result<bool, Rep> {
		self.view_knowledge.get_mut(relay_parent).ok_or(COST_UNEXPECTED_STATEMENT)?
			.receive(fingerprint, max_message_count)
	}
}

// A statement stored while a relay chain head is active.
#[derive(Debug)]
struct StoredStatement {
	comparator: StoredStatementComparator,
	statement: SignedFullStatement,
}

// A value used for comparison of stored statements to each other.
//
// The compact version of the statement, the validator index, and the signature of the validator
// is enough to differentiate between all types of equivocations, as long as the signature is
// actually checked to be valid. The same statement with 2 signatures and 2 statements with
// different (or same) signatures wll all be correctly judged to be unequal with this comparator.
#[derive(PartialEq, Eq, Hash, Clone, Debug)]
struct StoredStatementComparator {
	compact: CompactStatement,
	validator_index: ValidatorIndex,
	signature: ValidatorSignature,
}

impl StoredStatement {
	fn compact(&self) -> &CompactStatement {
		&self.comparator.compact
	}

	fn fingerprint(&self) -> (CompactStatement, ValidatorIndex) {
		(self.comparator.compact.clone(), self.statement.validator_index())
	}
}

impl std::borrow::Borrow<StoredStatementComparator> for StoredStatement {
	fn borrow(&self) -> &StoredStatementComparator {
		&self.comparator
	}
}

impl std::hash::Hash for StoredStatement {
	fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
		self.comparator.hash(state)
	}
}

impl std::cmp::PartialEq for StoredStatement {
	fn eq(&self, other: &Self) -> bool {
		&self.comparator == &other.comparator
	}
}

impl std::cmp::Eq for StoredStatement {}

#[derive(Debug)]
enum NotedStatement<'a> {
	NotUseful,
	Fresh(&'a StoredStatement),
	UsefulButKnown
}

struct ActiveHeadData {
	/// All candidates we are aware of for this head, keyed by hash.
	candidates: HashSet<Hash>,
	/// Stored statements for circulation to peers.
	///
	/// These are iterable in insertion order, and `Seconded` statements are always
	/// accepted before dependent statements.
	statements: IndexSet<StoredStatement>,
	/// The validators at this head.
	validators: Vec<ValidatorId>,
	/// The session index this head is at.
	session_index: sp_staking::SessionIndex,
	/// How many `Seconded` statements we've seen per validator.
	seconded_counts: HashMap<ValidatorIndex, usize>,
}

impl ActiveHeadData {
	fn new(validators: Vec<ValidatorId>, session_index: sp_staking::SessionIndex) -> Self {
		ActiveHeadData {
			candidates: Default::default(),
			statements: Default::default(),
			validators,
			session_index,
			seconded_counts: Default::default(),
		}
	}

	/// Note the given statement.
	///
	/// If it was not already known and can be accepted,  returns `NotedStatement::Fresh`,
	/// with a handle to the statement.
	///
	/// If it can be accepted, but we already know it, returns `NotedStatement::UsefulButKnown`.
	///
	/// We accept up to `VC_THRESHOLD` (2 at time of writing) `Seconded` statements
	/// per validator. These will be the first ones we see. The statement is assumed
	/// to have been checked, including that the validator index is not out-of-bounds and
	/// the signature is valid.
	///
	/// Any other statements or those that reference a candidate we are not aware of cannot be accepted
	/// and will return `NotedStatement::NotUseful`.
	fn note_statement(&mut self, statement: SignedFullStatement) -> NotedStatement {
		let validator_index = statement.validator_index();
		let comparator = StoredStatementComparator {
			compact: statement.payload().to_compact(),
			validator_index,
			signature: statement.signature().clone(),
		};

		let stored = StoredStatement {
			comparator: comparator.clone(),
			statement,
		};

		match comparator.compact {
			CompactStatement::Candidate(h) => {
				let seconded_so_far = self.seconded_counts.entry(validator_index).or_insert(0);
				if *seconded_so_far >= VC_THRESHOLD {
					return NotedStatement::NotUseful;
				}

				self.candidates.insert(h);
				if self.statements.insert(stored) {
					*seconded_so_far += 1;

					// This will always return `Some` because it was just inserted.
					NotedStatement::Fresh(self.statements.get(&comparator)
						.expect("Statement was just inserted; qed"))
				} else {
					NotedStatement::UsefulButKnown
				}
			}
			CompactStatement::Valid(h) | CompactStatement::Invalid(h) => {
				if !self.candidates.contains(&h) {
					return NotedStatement::NotUseful;
				}

				if self.statements.insert(stored) {
					// This will always return `Some` because it was just inserted.
					NotedStatement::Fresh(self.statements.get(&comparator)
						.expect("Statement was just inserted; qed"))
				} else {
					NotedStatement::UsefulButKnown
				}
			}
		}
	}

	/// Get an iterator over all statements for the active head. Seconded statements come first.
	fn statements(&self) -> impl Iterator<Item = &'_ StoredStatement> + '_ {
		self.statements.iter()
	}

	/// Get an iterator over all statements for the active head that are for a particular candidate.
	fn statements_about(&self, candidate_hash: Hash)
		-> impl Iterator<Item = &'_ StoredStatement> + '_
	{
		self.statements().filter(move |s| s.compact().candidate_hash() == &candidate_hash)
	}
}

/// Check a statement signature under this parent hash.
fn check_statement_signature(
	head: &ActiveHeadData,
	relay_parent: Hash,
	statement: &SignedFullStatement,
) -> Result<(), ()> {
	let signing_context = SigningContext {
		session_index: head.session_index,
		parent_hash: relay_parent,
	};

	head.validators.get(statement.validator_index() as usize)
		.ok_or(())
		.and_then(|v| statement.check_signature(&signing_context, v))
}

/// Places the statement in storage if it is new, and then
/// circulates the statement to all peers who have not seen it yet, and
/// sends all statements dependent on that statement to peers who could previously not receive
/// them but now can.
async fn circulate_statement_and_dependents(
	peers: &mut HashMap<PeerId, PeerData>,
	active_heads: &mut HashMap<Hash, ActiveHeadData>,
	ctx: &mut impl SubsystemContext<Message = StatementDistributionMessage>,
	relay_parent: Hash,
	statement: SignedFullStatement,
) -> SubsystemResult<()> {
	if let Some(active_head)= active_heads.get_mut(&relay_parent) {

		// First circulate the statement directly to all peers needing it.
		// The borrow of `active_head` needs to encompass only this (Rust) statement.
		let outputs: Option<(Hash, Vec<PeerId>)> = {
			match active_head.note_statement(statement) {
				NotedStatement::Fresh(stored) => Some((
					stored.compact().candidate_hash().clone(),
					circulate_statement(peers, ctx, relay_parent, stored).await?,
				)),
				_ => None,
			}
		};

		// Now send dependent statements to all peers needing them, if any.
		if let Some((candidate_hash, peers_needing_dependents)) = outputs {
			for peer in peers_needing_dependents {
				if let Some(peer_data) = peers.get_mut(&peer) {
					// defensive: the peer data should always be some because the iterator
					// of peers is derived from the set of peers.
					send_statements_about(
						peer,
						peer_data,
						ctx,
						relay_parent,
						candidate_hash,
						&*active_head
					).await?;
				}
			}
		}
	}

	Ok(())
}

fn statement_message(relay_parent: Hash, statement: SignedFullStatement)
	-> protocol_v1::ValidationProtocol
{
	protocol_v1::ValidationProtocol::StatementDistribution(
		protocol_v1::StatementDistributionMessage::Statement(relay_parent, statement)
	)
}

/// Circulates a statement to all peers who have not seen it yet, and returns
/// an iterator over peers who need to have dependent statements sent.
async fn circulate_statement(
	peers: &mut HashMap<PeerId, PeerData>,
	ctx: &mut impl SubsystemContext<Message = StatementDistributionMessage>,
	relay_parent: Hash,
	stored: &StoredStatement,
) -> SubsystemResult<Vec<PeerId>> {
	let fingerprint = stored.fingerprint();

	let mut peers_to_send = HashMap::new();

	for (peer, data) in peers.iter_mut() {
		if let Some(new_known) = data.send(&relay_parent, &fingerprint) {
			peers_to_send.insert(peer.clone(), new_known);
		}
	}

	// Send all these peers the initial statement.
	if !peers_to_send.is_empty() {
		let payload = statement_message(relay_parent, stored.statement.clone());
		ctx.send_message(AllMessages::NetworkBridge(NetworkBridgeMessage::SendValidationMessage(
			peers_to_send.keys().cloned().collect(),
			payload,
		))).await?;
	}

	Ok(peers_to_send.into_iter().filter_map(|(peer, needs_dependent)| if needs_dependent {
		Some(peer)
	} else {
		None
	}).collect())
}

/// Send all statements about a given candidate hash to a peer.
async fn send_statements_about(
	peer: PeerId,
	peer_data: &mut PeerData,
	ctx: &mut impl SubsystemContext<Message = StatementDistributionMessage>,
	relay_parent: Hash,
	candidate_hash: Hash,
	active_head: &ActiveHeadData,
) -> SubsystemResult<()> {
	for statement in active_head.statements_about(candidate_hash) {
		if peer_data.send(&relay_parent, &statement.fingerprint()).is_some() {
			let payload = statement_message(
				relay_parent,
				statement.statement.clone(),
			ctx.send_message(AllMessages::NetworkBridge(
				NetworkBridgeMessage::SendValidationMessage(vec![peer.clone()], payload)
			)).await?;
		}
	}

	Ok(())
}

/// Send all statements at a given relay-parent to a peer.
async fn send_statements(
	peer: PeerId,
	peer_data: &mut PeerData,
	ctx: &mut impl SubsystemContext<Message = StatementDistributionMessage>,
	relay_parent: Hash,
	active_head: &ActiveHeadData
) -> SubsystemResult<()> {
	for statement in active_head.statements() {
		if peer_data.send(&relay_parent, &statement.fingerprint()).is_some() {
			let payload = statement_message(
				relay_parent,
				statement.statement.clone(),
			ctx.send_message(AllMessages::NetworkBridge(
				NetworkBridgeMessage::SendValidationMessage(vec![peer.clone()], payload)
			)).await?;
		}
	}

	Ok(())
}

async fn report_peer(
	ctx: &mut impl SubsystemContext,
	peer: PeerId,
	rep: Rep,
) -> SubsystemResult<()> {
	ctx.send_message(AllMessages::NetworkBridge(
		NetworkBridgeMessage::ReportPeer(peer, rep)
	)).await
}

// Handle an incoming wire message. Returns a reference to a newly-stored statement
// if we were not already aware of it, along with the corresponding relay-parent.
//
// This function checks the signature and ensures the statement is compatible with our
// view.
async fn handle_incoming_message<'a>(
	peer: PeerId,
	peer_data: &mut PeerData,
	our_view: &View,
	active_heads: &'a mut HashMap<Hash, ActiveHeadData>,
	ctx: &mut impl SubsystemContext<Message = StatementDistributionMessage>,
	message: protocol_v1::StatementDistributionMessage,
) -> SubsystemResult<Option<(Hash, &'a StoredStatement)>> {
	let (relay_parent, statement) = match message {
		protocol_v1::StatementDistributionMessage::Statement(r, s) => (r, s),
	};

	if !our_view.contains(&relay_parent) {
		return report_peer(ctx, peer, COST_UNEXPECTED_STATEMENT).await.map(|_| None);
	}

	let active_head = match active_heads.get_mut(&relay_parent) {
		Some(h) => h,
		None => {
			// This should never be out-of-sync with our view if the view updates
			// correspond to actual `StartWork` messages. So we just log and ignore.
			log::warn!("Our view out-of-sync with active heads. Head {} not found", relay_parent);
			return Ok(None);
		}
	};

	// check the signature on the statement.
	if let Err(()) = check_statement_signature(&active_head, relay_parent, &statement) {
		return report_peer(ctx, peer, COST_INVALID_SIGNATURE).await.map(|_| None);
	}

	// Ensure the statement is stored in the peer data.
	//
	// Note that if the peer is sending us something that is not within their view,
	// it will not be kept within their log.
	let fingerprint = (statement.payload().to_compact(), statement.validator_index());
	let max_message_count = active_head.validators.len() * 2;
	match peer_data.receive(&relay_parent, &fingerprint, max_message_count) {
		Err(rep) => {
			report_peer(ctx, peer, rep).await?;
			return Ok(None)
		}
		Ok(true) => {
			// Send the peer all statements concerning the candidate that we have,
			// since it appears to have just learned about the candidate.
			send_statements_about(
				peer.clone(),
				peer_data,
				ctx,
				relay_parent,
				fingerprint.0.candidate_hash().clone(),
				&*active_head,
			).await?
		}
		Ok(false) => {}
	}

	// Note: `peer_data.receive` already ensures that the statement is not an unbounded equivocation
	// or unpinned to a seconded candidate. So it is safe to place it into the storage.
	match active_head.note_statement(statement) {
		NotedStatement::NotUseful => Ok(None),
		NotedStatement::UsefulButKnown => {
			report_peer(ctx, peer, BENEFIT_VALID_STATEMENT).await?;
			Ok(None)
		}
		NotedStatement::Fresh(statement) => {
			report_peer(ctx, peer, BENEFIT_VALID_STATEMENT_FIRST).await?;
			Ok(Some((relay_parent, statement)))
		}
	}
}

/// Update a peer's view. Sends all newly unlocked statements based on the previous
async fn update_peer_view_and_send_unlocked(
	peer: PeerId,
	peer_data: &mut PeerData,
	ctx: &mut impl SubsystemContext<Message = StatementDistributionMessage>,
	active_heads: &HashMap<Hash, ActiveHeadData>,
	new_view: View,
) -> SubsystemResult<()> {
	let old_view = std::mem::replace(&mut peer_data.view, new_view);

	// Remove entries for all relay-parents in the old view but not the new.
	for removed in old_view.difference(&peer_data.view) {
		let _ = peer_data.view_knowledge.remove(removed);
	}

	// Add entries for all relay-parents in the new view but not the old.
	// Furthermore, send all statements we have for those relay parents.
	let new_view = peer_data.view.difference(&old_view).copied().collect::<Vec<_>>();
	for new in new_view.iter().copied() {
		peer_data.view_knowledge.insert(new, Default::default());

		if let Some(active_head) = active_heads.get(&new) {
			send_statements(
				peer.clone(),
				peer_data,
				ctx,
				new,
				active_head,
			).await?;
		}
	}

	Ok(())
}

async fn handle_network_update(
	peers: &mut HashMap<PeerId, PeerData>,
	active_heads: &mut HashMap<Hash, ActiveHeadData>,
	ctx: &mut impl SubsystemContext<Message = StatementDistributionMessage>,
	our_view: &mut View,
	update: NetworkBridgeEvent<protocol_v1::StatementDistributionMessage>,
) -> SubsystemResult<()> {
	match update {
		NetworkBridgeEvent::PeerConnected(peer, _role) => {
			peers.insert(peer, PeerData {
				view: Default::default(),
				view_knowledge: Default::default(),
			});

			Ok(())
		}
		NetworkBridgeEvent::PeerDisconnected(peer) => {
			peers.remove(&peer);
			Ok(())
		}
		NetworkBridgeEvent::PeerMessage(peer, message) => {
			match peers.get_mut(&peer) {
				Some(data) => {
					let new_stored = handle_incoming_message(
						peer,
						data,
						&*our_view,
						active_heads,
						ctx,
						message,
					).await?;

					if let Some((relay_parent, new)) = new_stored {
						// When we receive a new message from a peer, we forward it to the
						// candidate backing subsystem.
						let message = AllMessages::CandidateBacking(
							CandidateBackingMessage::Statement(relay_parent, new.statement.clone())
						);
						ctx.send_message(message).await?;
					}

					Ok(())
				}
				None => Ok(()),
			}

		}
		NetworkBridgeEvent::PeerViewChange(peer, view) => {
			match peers.get_mut(&peer) {
				Some(data) => {
					update_peer_view_and_send_unlocked(
						peer,
						data,
						ctx,
						&*active_heads,
						view,
					).await
				}
				None => Ok(()),
			}
		}
		NetworkBridgeEvent::OurViewChange(view) => {
			let old_view = std::mem::replace(our_view, view);
			active_heads.retain(|head, _| our_view.contains(head));

			for new in our_view.difference(&old_view) {
				if !active_heads.contains_key(&new) {
					log::warn!(target: "statement_distribution", "Our network bridge view update \
						inconsistent with `StartWork` messages we have received from overseer. \
						Contains unknown hash {}", new);
				}
			}

			Ok(())
		}
	}

}

async fn run(
	mut ctx: impl SubsystemContext<Message = StatementDistributionMessage>,
) -> SubsystemResult<()> {
	let mut peers: HashMap<PeerId, PeerData> = HashMap::new();
	let mut our_view = View::default();
	let mut active_heads: HashMap<Hash, ActiveHeadData> = HashMap::new();

	loop {
		let message = ctx.recv().await?;
		match message {
			FromOverseer::Signal(OverseerSignal::ActiveLeaves(ActiveLeavesUpdate { activated, .. })) => {
				for relay_parent in activated {
					let (validators, session_index) = {
						let (val_tx, val_rx) = oneshot::channel();
						let (session_tx, session_rx) = oneshot::channel();

						let val_message = AllMessages::RuntimeApi(
							RuntimeApiMessage::Request(
								relay_parent,
								RuntimeApiRequest::Validators(val_tx),
							),
						);
						let session_message = AllMessages::RuntimeApi(
							RuntimeApiMessage::Request(
								relay_parent,
								RuntimeApiRequest::SessionIndexForChild(session_tx),
							),
						ctx.send_messages(
							std::iter::once(val_message).chain(std::iter::once(session_message))
						).await?;
						match (val_rx.await?, session_rx.await?) {
							(Ok(v), Ok(s)) => (v, s),
							(Err(e), _) | (_, Err(e)) => {
								log::warn!(
									target: "statement_distribution",
									"Failed to fetch runtime API data for active leaf: {:?}",
									e,
								);

								// Lacking this bookkeeping might make us behave funny, although
								// not in any slashable way. But we shouldn't take down the node
								// on what are likely spurious runtime API errors.
								continue;
							}
						}
					};

					active_heads.entry(relay_parent)
						.or_insert(ActiveHeadData::new(validators, session_index));
				}
			FromOverseer::Signal(OverseerSignal::BlockFinalized(_block_hash)) => {
				// do nothing
			}
			FromOverseer::Signal(OverseerSignal::Conclude) => break,
			FromOverseer::Communication { msg } => match msg {
				StatementDistributionMessage::Share(relay_parent, statement) =>
					circulate_statement_and_dependents(
						&mut peers,
						&mut active_heads,
						&mut ctx,
						relay_parent,
						statement,
					).await?,
				StatementDistributionMessage::NetworkBridgeUpdateV1(event) =>
					handle_network_update(
						&mut peers,
						&mut active_heads,
						&mut ctx,
						&mut our_view,
						event,
					).await?,
			}
		}
	}
	Ok(())
}

#[cfg(test)]
mod tests {
	use super::*;
	use sp_keyring::Sr25519Keyring;
	use node_primitives::Statement;
	use polkadot_primitives::v1::CommittedCandidateReceipt;
	use assert_matches::assert_matches;
	use futures::executor;

	#[test]
	fn active_head_accepts_only_2_seconded_per_validator() {
		let validators = vec![
			Sr25519Keyring::Alice.public().into(),
			Sr25519Keyring::Bob.public().into(),
			Sr25519Keyring::Charlie.public().into(),
		];
		let parent_hash: Hash = [1; 32].into();

		let session_index = 1;
		let signing_context = SigningContext {
			parent_hash,
			session_index,
		};

		let candidate_a = {
			let mut c = CommittedCandidateReceipt::default();
			c.descriptor.relay_parent = parent_hash;
			c.descriptor.para_id = 1.into();
			let mut c = CommittedCandidateReceipt::default();
			c.descriptor.relay_parent = parent_hash;
			c.descriptor.para_id = 2.into();
			let mut c = CommittedCandidateReceipt::default();
			c.descriptor.relay_parent = parent_hash;
			c.descriptor.para_id = 3.into();
			c
		};

		let mut head_data = ActiveHeadData::new(validators, session_index);

		// note A
		let a_seconded_val_0 = SignedFullStatement::sign(
			Statement::Seconded(candidate_a.clone()),
			&signing_context,
			0,
			&Sr25519Keyring::Alice.pair().into(),
		);
		let noted = head_data.note_statement(a_seconded_val_0.clone());

		assert_matches!(noted, NotedStatement::Fresh(_));

		// note A (duplicate)
		let noted = head_data.note_statement(a_seconded_val_0);

		assert_matches!(noted, NotedStatement::UsefulButKnown);

		// note B
		let noted = head_data.note_statement(SignedFullStatement::sign(
			Statement::Seconded(candidate_b.clone()),
			&signing_context,
			0,
			&Sr25519Keyring::Alice.pair().into(),
		));

		assert_matches!(noted, NotedStatement::Fresh(_));

		// note C (beyond 2 - ignored)
		let noted = head_data.note_statement(SignedFullStatement::sign(
			Statement::Seconded(candidate_c.clone()),
			&signing_context,
			0,
			&Sr25519Keyring::Alice.pair().into(),
		));

		assert_matches!(noted, NotedStatement::NotUseful);

		// note B (new validator)
		let noted = head_data.note_statement(SignedFullStatement::sign(
			Statement::Seconded(candidate_b.clone()),
			&signing_context,
			1,
			&Sr25519Keyring::Bob.pair().into(),
		));

		assert_matches!(noted, NotedStatement::Fresh(_));

		// note C (new validator)
		let noted = head_data.note_statement(SignedFullStatement::sign(
			Statement::Seconded(candidate_c.clone()),
			&signing_context,
			1,
			&Sr25519Keyring::Bob.pair().into(),
		));

		assert_matches!(noted, NotedStatement::Fresh(_));