Newer
Older
// Copyright 2017-2019 Parity Technologies (UK) Ltd.
// This file is part of Substrate.
// Substrate is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Substrate is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Substrate. If not, see <http://www.gnu.org/licenses/>.
// tag::description[]
//! Cryptographic utilities.
// end::description[]
#[cfg(feature = "std")]
use rstd::convert::TryInto;
use rstd::convert::TryFrom;
#[cfg(feature = "std")]
use parking_lot::Mutex;
#[cfg(feature = "std")]
use rand::{RngCore, rngs::OsRng};
#[cfg(feature = "std")]
use regex::Regex;
#[cfg(feature = "std")]
use base58::{FromBase58, ToBase58};
use zeroize::Zeroize;
/// The root phrase for our publicly known keys.
pub const DEV_PHRASE: &str = "bottom drive obey lake curtain smoke basket hold race lonely fit walk";
/// The address of the associated root phrase for our publicly known keys.
pub const DEV_ADDRESS: &str = "5DfhGyQdFobKM8NsWvEeAKk5EQQgYe9AydgJ7rMB6E1EqRzV";
/// The infallible type.
pub enum Infallible {}
/// The length of the junction identifier. Note that this is also referred to as the
/// `CHAIN_CODE_LENGTH` in the context of Schnorrkel.
#[cfg(feature = "std")]
pub const JUNCTION_ID_LEN: usize = 32;
/// Similar to `From`, except that the onus is on the part of the caller to ensure
/// that data passed in makes sense. Basically, you're not guaranteed to get anything
/// sensible out.
pub trait UncheckedFrom<T> {
/// Convert from an instance of `T` to Self. This is not guaranteed to be
/// whatever counts as a valid instance of `T` and it's up to the caller to
/// ensure that it makes sense.
fn unchecked_from(t: T) -> Self;
}
/// The counterpart to `UncheckedFrom`.
pub trait UncheckedInto<T> {
/// The counterpart to `unchecked_from`.
fn unchecked_into(self) -> T;
}
impl<S, T: UncheckedFrom<S>> UncheckedInto<T> for S {
fn unchecked_into(self) -> T {
T::unchecked_from(self)
}
}
/// A store for sensitive data.
///
/// Calls `Zeroize::zeroize` upon `Drop`.
#[derive(Clone)]
pub struct Protected<T: Zeroize>(T);
impl<T: Zeroize> AsRef<T> for Protected<T> {
fn as_ref(&self) -> &T {
&self.0
}
}
impl<T: Zeroize> rstd::ops::Deref for Protected<T> {
type Target = T;
fn deref(&self) -> &T {
&self.0
}
}
#[cfg(feature = "std")]
impl<T: Zeroize> std::fmt::Debug for Protected<T> {
fn fmt(&self, fmt: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(fmt, "<protected>")
}
}
impl<T: Zeroize> From<T> for Protected<T> {
fn from(t: T) -> Self {
Protected(t)
}
}
impl<T: Zeroize> Zeroize for Protected<T> {
fn zeroize(&mut self) {
self.0.zeroize()
}
}
impl<T: Zeroize> Drop for Protected<T> {
fn drop(&mut self) {
self.zeroize()
}
}
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/// An error with the interpretation of a secret.
#[derive(Debug, Clone, PartialEq, Eq)]
#[cfg(feature = "std")]
pub enum SecretStringError {
/// The overall format was invalid (e.g. the seed phrase contained symbols).
InvalidFormat,
/// The seed phrase provided is not a valid BIP39 phrase.
InvalidPhrase,
/// The supplied password was invalid.
InvalidPassword,
/// The seed is invalid (bad content).
InvalidSeed,
/// The seed has an invalid length.
InvalidSeedLength,
/// The derivation path was invalid (e.g. contains soft junctions when they are not supported).
InvalidPath,
}
/// A since derivation junction description. It is the single parameter used when creating
/// a new secret key from an existing secret key and, in the case of `SoftRaw` and `SoftIndex`
/// a new public key from an existing public key.
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug, Encode, Decode)]
#[cfg(feature = "std")]
pub enum DeriveJunction {
/// Soft (vanilla) derivation. Public keys have a correspondent derivation.
Soft([u8; JUNCTION_ID_LEN]),
/// Hard ("hardened") derivation. Public keys do not have a correspondent derivation.
Hard([u8; JUNCTION_ID_LEN]),
}
#[cfg(feature = "std")]
impl DeriveJunction {
/// Consume self to return a soft derive junction with the same chain code.
pub fn soften(self) -> Self { DeriveJunction::Soft(self.unwrap_inner()) }
/// Consume self to return a hard derive junction with the same chain code.
pub fn harden(self) -> Self { DeriveJunction::Hard(self.unwrap_inner()) }
/// Create a new soft (vanilla) DeriveJunction from a given, encodable, value.
///
/// If you need a hard junction, use `hard()`.
pub fn soft<T: Encode>(index: T) -> Self {
let mut cc: [u8; JUNCTION_ID_LEN] = Default::default();
index.using_encoded(|data| if data.len() > JUNCTION_ID_LEN {
let hash_result = blake2_rfc::blake2b::blake2b(JUNCTION_ID_LEN, &[], data);
let hash = hash_result.as_bytes();
cc.copy_from_slice(hash);
} else {
cc[0..data.len()].copy_from_slice(data);
});
DeriveJunction::Soft(cc)
}
/// Create a new hard (hardened) DeriveJunction from a given, encodable, value.
///
/// If you need a soft junction, use `soft()`.
pub fn hard<T: Encode>(index: T) -> Self {
Self::soft(index).harden()
}
/// Consume self to return the chain code.
pub fn unwrap_inner(self) -> [u8; JUNCTION_ID_LEN] {
match self {
DeriveJunction::Hard(c) | DeriveJunction::Soft(c) => c,
}
}
/// Get a reference to the inner junction id.
pub fn inner(&self) -> &[u8; JUNCTION_ID_LEN] {
match self {
DeriveJunction::Hard(ref c) | DeriveJunction::Soft(ref c) => c,
}
}
/// Return `true` if the junction is soft.
pub fn is_soft(&self) -> bool {
match *self {
DeriveJunction::Soft(_) => true,
_ => false,
}
}
/// Return `true` if the junction is hard.
pub fn is_hard(&self) -> bool {
match *self {
DeriveJunction::Hard(_) => true,
_ => false,
}
}
}
#[cfg(feature = "std")]
impl<T: AsRef<str>> From<T> for DeriveJunction {
fn from(j: T) -> DeriveJunction {
let j = j.as_ref();
let (code, hard) = if j.starts_with("/") {
(&j[1..], true)
} else {
(j, false)
};
let res = if let Ok(n) = str::parse::<u64>(code) {
// number
DeriveJunction::soft(n)
} else {
// something else
DeriveJunction::soft(code)
};
if hard {
res.harden()
} else {
res
}
}
}
/// An error type for SS58 decoding.
#[cfg(feature = "std")]
#[derive(Clone, Copy, Eq, PartialEq, Debug)]
pub enum PublicError {
/// Bad alphabet.
BadBase58,
/// Bad length.
BadLength,
/// Unknown version.
UnknownVersion,
/// Invalid checksum.
InvalidChecksum,
/// Invalid format.
InvalidFormat,
/// Invalid derivation path.
InvalidPath,
}
/// Key that can be encoded to/from SS58.
#[cfg(feature = "std")]
pub trait Ss58Codec: Sized + AsMut<[u8]> + AsRef<[u8]> + Default {
/// Some if the string is a properly encoded SS58Check address.
fn from_ss58check(s: &str) -> Result<Self, PublicError> {
Self::from_ss58check_with_version(s)
.and_then(|(r, v)| match v {
Ss58AddressFormat::SubstrateAccountDirect => Ok(r),
Talha Cross
committed
Ss58AddressFormat::PolkadotAccountDirect => Ok(r),
Ss58AddressFormat::KusamaAccountDirect => Ok(r),
Ss58AddressFormat::DothereumAccountDirect => Ok(r),
v if v == *DEFAULT_VERSION.lock() => Ok(r),
_ => Err(PublicError::UnknownVersion),
})
}
/// Some if the string is a properly encoded SS58Check address.
fn from_ss58check_with_version(s: &str) -> Result<(Self, Ss58AddressFormat), PublicError> {
let mut res = Self::default();
let len = res.as_mut().len();
let d = s.from_base58().map_err(|_| PublicError::BadBase58)?; // failure here would be invalid encoding.
if d.len() != len + 3 {
// Invalid length.
return Err(PublicError::BadLength);
}
let ver = d[0].try_into().map_err(|_: ()| PublicError::UnknownVersion)?;
if d[len + 1..len + 3] != ss58hash(&d[0..len + 1]).as_bytes()[0..2] {
// Invalid checksum.
return Err(PublicError::InvalidChecksum);
}
res.as_mut().copy_from_slice(&d[1..len + 1]);
Ok((res, ver))
}
/// Some if the string is a properly encoded SS58Check address, optionally with
/// a derivation path following.
fn from_string(s: &str) -> Result<Self, PublicError> {
Self::from_string_with_version(s)
.and_then(|(r, v)| match v {
Ss58AddressFormat::SubstrateAccountDirect => Ok(r),
Talha Cross
committed
Ss58AddressFormat::PolkadotAccountDirect => Ok(r),
Ss58AddressFormat::KusamaAccountDirect => Ok(r),
Ss58AddressFormat::DothereumAccountDirect => Ok(r),
v if v == *DEFAULT_VERSION.lock() => Ok(r),
_ => Err(PublicError::UnknownVersion),
})
}
/// Return the ss58-check string for this key.
fn to_ss58check_with_version(&self, version: Ss58AddressFormat) -> String {
let mut v = vec![version.into()];
v.extend(self.as_ref());
let r = ss58hash(&v);
v.extend(&r.as_bytes()[0..2]);
v.to_base58()
}
/// Return the ss58-check string for this key.
fn to_ss58check(&self) -> String { self.to_ss58check_with_version(*DEFAULT_VERSION.lock()) }
/// Some if the string is a properly encoded SS58Check address, optionally with
/// a derivation path following.
fn from_string_with_version(s: &str) -> Result<(Self, Ss58AddressFormat), PublicError> {
Self::from_ss58check_with_version(s)
}
}
/// Derivable key trait.
pub trait Derive: Sized {
/// Derive a child key from a series of given junctions.
///
/// Will be `None` for public keys if there are any hard junctions in there.
fn derive<Iter: Iterator<Item=DeriveJunction>>(&self, _path: Iter) -> Option<Self> {
None
}
const PREFIX: &[u8] = b"SS58PRE";
#[cfg(feature = "std")]
fn ss58hash(data: &[u8]) -> blake2_rfc::blake2b::Blake2bResult {
let mut context = blake2_rfc::blake2b::Blake2b::new(64);
context.update(PREFIX);
context.update(data);
context.finalize()
}
#[cfg(feature = "std")]
lazy_static::lazy_static! {
static ref DEFAULT_VERSION: Mutex<Ss58AddressFormat>
= Mutex::new(Ss58AddressFormat::SubstrateAccountDirect);
}
/// A known address (sub)format/network ID for SS58.
#[cfg(feature = "std")]
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum Ss58AddressFormat {
/// Any Substrate network, direct checksum, standard account (*25519).
SubstrateAccountDirect,
/// Polkadot Relay-chain, direct checksum, standard account (*25519).
PolkadotAccountDirect,
/// Kusama Relay-chain, direct checksum, standard account (*25519).
KusamaAccountDirect,
Talha Cross
committed
/// Dothereum Para-chain, direct checksum, standard account (*25519).
DothereumAccountDirect,
/// Use a manually provided numeric value.
Custom(u8),
}
#[cfg(feature = "std")]
impl From<Ss58AddressFormat> for u8 {
fn from(x: Ss58AddressFormat) -> u8 {
match x {
Ss58AddressFormat::SubstrateAccountDirect => 42,
Ss58AddressFormat::PolkadotAccountDirect => 0,
Ss58AddressFormat::KusamaAccountDirect => 2,
Talha Cross
committed
Ss58AddressFormat::DothereumAccountDirect => 20,
Ss58AddressFormat::Custom(n) => n,
}
}
}
#[cfg(feature = "std")]
impl TryFrom<u8> for Ss58AddressFormat {
type Error = ();
fn try_from(x: u8) -> Result<Ss58AddressFormat, ()> {
match x {
42 => Ok(Ss58AddressFormat::SubstrateAccountDirect),
0 => Ok(Ss58AddressFormat::PolkadotAccountDirect),
2 => Ok(Ss58AddressFormat::KusamaAccountDirect),
Talha Cross
committed
20 => Ok(Ss58AddressFormat::DothereumAccountDirect),
_ => Err(()),
}
}
}
#[cfg(feature = "std")]
impl<'a> TryFrom<&'a str> for Ss58AddressFormat {
type Error = ();
fn try_from(x: &'a str) -> Result<Ss58AddressFormat, ()> {
match x {
"substrate" => Ok(Ss58AddressFormat::SubstrateAccountDirect),
"polkadot" => Ok(Ss58AddressFormat::PolkadotAccountDirect),
"kusama" => Ok(Ss58AddressFormat::KusamaAccountDirect),
Talha Cross
committed
"dothereum" => Ok(Ss58AddressFormat::DothereumAccountDirect),
a => a.parse::<u8>().map(Ss58AddressFormat::Custom).map_err(|_| ()),
}
}
}
#[cfg(feature = "std")]
impl From<Ss58AddressFormat> for String {
fn from(x: Ss58AddressFormat) -> String {
match x {
Ss58AddressFormat::SubstrateAccountDirect => "substrate".into(),
Ss58AddressFormat::PolkadotAccountDirect => "polkadot".into(),
Ss58AddressFormat::KusamaAccountDirect => "kusama".into(),
Talha Cross
committed
Ss58AddressFormat::DothereumAccountDirect => "dothereum".into(),
Ss58AddressFormat::Custom(x) => x.to_string(),
}
}
}
/// Set the default "version" (actually, this is a bit of a misnomer and the version byte is
/// typically used not just to encode format/version but also network identity) that is used for
/// encoding and decoding SS58 addresses. If an unknown version is provided then it fails.
///
/// Current known "versions" are:
/// - 0 direct (payload) checksum for 32-byte *25519 Polkadot addresses.
Talha Cross
committed
/// - 2 direct (payload) checksum for 32-byte *25519 Kusama addresses.
/// - 20 direct (payload) checksum for 32-byte *25519 Dothereum addresses.
/// - 42 direct (payload) checksum for 32-byte *25519 addresses on any Substrate-based network.
#[cfg(feature = "std")]
pub fn set_default_ss58_version(version: Ss58AddressFormat) {
*DEFAULT_VERSION.lock() = version
}
#[cfg(feature = "std")]
impl<T: Sized + AsMut<[u8]> + AsRef<[u8]> + Default + Derive> Ss58Codec for T {
fn from_string(s: &str) -> Result<Self, PublicError> {
let re = Regex::new(r"^(?P<ss58>[\w\d ]+)?(?P<path>(//?[^/]+)*)$")
.expect("constructed from known-good static value; qed");
let cap = re.captures(s).ok_or(PublicError::InvalidFormat)?;
let re_junction = Regex::new(r"/(/?[^/]+)")
.expect("constructed from known-good static value; qed");
let s = cap.name("ss58")
.map(|r| r.as_str())
.unwrap_or(DEV_ADDRESS);
let addr = if s.starts_with("0x") {
let d = hex::decode(&s[2..]).map_err(|_| PublicError::InvalidFormat)?;
let mut r = Self::default();
if d.len() == r.as_ref().len() {
r.as_mut().copy_from_slice(&d);
r
} else {
Err(PublicError::BadLength)?
}
} else {
Self::from_ss58check(s)?
};
if cap["path"].is_empty() {
Ok(addr)
} else {
let path = re_junction.captures_iter(&cap["path"])
.map(|f| DeriveJunction::from(&f[1]));
addr.derive(path)
.ok_or(PublicError::InvalidPath)
}
fn from_string_with_version(s: &str) -> Result<(Self, Ss58AddressFormat), PublicError> {
let re = Regex::new(r"^(?P<ss58>[\w\d ]+)?(?P<path>(//?[^/]+)*)$")
.expect("constructed from known-good static value; qed");
let cap = re.captures(s).ok_or(PublicError::InvalidFormat)?;
let re_junction = Regex::new(r"/(/?[^/]+)")
.expect("constructed from known-good static value; qed");
let (addr, v) = Self::from_ss58check_with_version(
cap.name("ss58")
.map(|r| r.as_str())
.unwrap_or(DEV_ADDRESS)
)?;
if cap["path"].is_empty() {
Ok((addr, v))
} else {
let path = re_junction.captures_iter(&cap["path"])
.map(|f| DeriveJunction::from(&f[1]));
addr.derive(path)
.ok_or(PublicError::InvalidPath)
.map(|a| (a, v))
}
}
/// Trait suitable for typical cryptographic PKI key public type.
pub trait Public: AsRef<[u8]> + AsMut<[u8]> + Default + Derive + CryptoType + PartialEq + Eq + Clone + Send + Sync {
/// A new instance from the given slice.
///
/// NOTE: No checking goes on to ensure this is a real public key. Only use it if
/// you are certain that the array actually is a pubkey. GIGO!
fn from_slice(data: &[u8]) -> Self;
/// Return a `Vec<u8>` filled with raw data.
#[cfg(feature = "std")]
fn to_raw_vec(&self) -> Vec<u8> { self.as_slice().to_owned() }
fn as_slice(&self) -> &[u8] { self.as_ref() }
}
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
/// An opaque 32-byte cryptographic identifier.
#[derive(Clone, Eq, PartialEq, Ord, PartialOrd, Default, Encode, Decode)]
pub struct AccountId32([u8; 32]);
impl UncheckedFrom<crate::hash::H256> for AccountId32 {
fn unchecked_from(h: crate::hash::H256) -> Self {
AccountId32(h.into())
}
}
#[cfg(feature = "std")]
impl Ss58Codec for AccountId32 {}
impl AsRef<[u8]> for AccountId32 {
fn as_ref(&self) -> &[u8] {
&self.0[..]
}
}
impl AsMut<[u8]> for AccountId32 {
fn as_mut(&mut self) -> &mut [u8] {
&mut self.0[..]
}
}
impl AsRef<[u8; 32]> for AccountId32 {
fn as_ref(&self) -> &[u8; 32] {
&self.0
}
}
impl AsMut<[u8; 32]> for AccountId32 {
fn as_mut(&mut self) -> &mut [u8; 32] {
&mut self.0
}
}
impl From<[u8; 32]> for AccountId32 {
fn from(x: [u8; 32]) -> AccountId32 {
AccountId32(x)
}
}
impl<'a> rstd::convert::TryFrom<&'a [u8]> for AccountId32 {
type Error = ();
fn try_from(x: &'a [u8]) -> Result<AccountId32, ()> {
if x.len() == 32 {
let mut r = AccountId32::default();
r.0.copy_from_slice(x);
Ok(r)
} else {
Err(())
}
}
}
impl From<AccountId32> for [u8; 32] {
fn from(x: AccountId32) -> [u8; 32] {
x.0
}
}
#[cfg(feature = "std")]
impl std::fmt::Display for AccountId32 {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "{}", self.to_ss58check())
}
}
impl rstd::fmt::Debug for AccountId32 {
#[cfg(feature = "std")]
fn fmt(&self, f: &mut rstd::fmt::Formatter) -> rstd::fmt::Result {
let s = self.to_ss58check();
write!(f, "{} ({}...)", crate::hexdisplay::HexDisplay::from(&self.0), &s[0..8])
}
#[cfg(not(feature = "std"))]
fn fmt(&self, _: &mut rstd::fmt::Formatter) -> rstd::fmt::Result {
Ok(())
}
}
#[cfg(feature = "std")]
impl serde::Serialize for AccountId32 {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: serde::Serializer {
serializer.serialize_str(&self.to_ss58check())
}
}
#[cfg(feature = "std")]
impl<'de> serde::Deserialize<'de> for AccountId32 {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: serde::Deserializer<'de> {
Ss58Codec::from_ss58check(&String::deserialize(deserializer)?)
.map_err(|e| serde::de::Error::custom(format!("{:?}", e)))
}
}
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
#[cfg(feature = "std")]
pub use self::dummy::*;
#[cfg(feature = "std")]
mod dummy {
use super::*;
/// Dummy cryptography. Doesn't do anything.
#[derive(Clone, Hash, Default, Eq, PartialEq)]
pub struct Dummy;
impl AsRef<[u8]> for Dummy {
fn as_ref(&self) -> &[u8] { &b""[..] }
}
impl AsMut<[u8]> for Dummy {
fn as_mut(&mut self) -> &mut[u8] {
unsafe {
#[allow(mutable_transmutes)]
rstd::mem::transmute::<_, &'static mut [u8]>(&b""[..])
}
}
}
impl CryptoType for Dummy {
type Pair = Dummy;
}
impl Derive for Dummy {}
impl Public for Dummy {
fn from_slice(_: &[u8]) -> Self { Self }
#[cfg(feature = "std")]
fn to_raw_vec(&self) -> Vec<u8> { vec![] }
fn as_slice(&self) -> &[u8] { b"" }
}
impl Pair for Dummy {
type Public = Dummy;
type Seed = Dummy;
type Signature = Dummy;
type DeriveError = ();
fn generate_with_phrase(_: Option<&str>) -> (Self, String, Self::Seed) { Default::default() }
fn from_phrase(_: &str, _: Option<&str>)
-> Result<(Self, Self::Seed), SecretStringError>
{
Ok(Default::default())
}
fn derive<
Iter: Iterator<Item=DeriveJunction>,
>(&self, _: Iter, _: Option<Dummy>) -> Result<(Self, Option<Dummy>), Self::DeriveError> { Ok((Self, None)) }
fn from_seed(_: &Self::Seed) -> Self { Self }
fn from_seed_slice(_: &[u8]) -> Result<Self, SecretStringError> { Ok(Self) }
fn sign(&self, _: &[u8]) -> Self::Signature { Self }
fn verify<M: AsRef<[u8]>>(_: &Self::Signature, _: M, _: &Self::Public) -> bool { true }
fn verify_weak<P: AsRef<[u8]>, M: AsRef<[u8]>>(_: &[u8], _: M, _: P) -> bool { true }
fn public(&self) -> Self::Public { Self }
fn to_raw_vec(&self) -> Vec<u8> { vec![] }
}
/// Trait suitable for typical cryptographic PKI key pair type.
///
/// For now it just specifies how to create a key from a phrase and derivation path.
#[cfg(feature = "std")]
pub trait Pair: CryptoType + Sized + Clone + Send + Sync + 'static {
/// The type which is used to encode a public key.
/// The type used to (minimally) encode the data required to securely create
/// a new key pair.
type Seed: Default + AsRef<[u8]> + AsMut<[u8]> + Clone;
/// The type used to represent a signature. Can be created from a key pair and a message
/// and verified with the message and a public key.
type Signature: AsRef<[u8]>;
/// Error returned from the `derive` function.
type DeriveError;
/// Generate new secure (random) key pair.
///
/// This is only for ephemeral keys really, since you won't have access to the secret key
/// for storage. If you want a persistent key pair, use `generate_with_phrase` instead.
fn generate() -> (Self, Self::Seed) {
let mut seed = Self::Seed::default();
OsRng.fill_bytes(seed.as_mut());
(Self::from_seed(&seed), seed)
}
/// Generate new secure (random) key pair and provide the recovery phrase.
///
/// You can recover the same key later with `from_phrase`.
///
/// This is generally slower than `generate()`, so prefer that unless you need to persist
/// the key from the current session.
fn generate_with_phrase(password: Option<&str>) -> (Self, String, Self::Seed);
/// Returns the KeyPair from the English BIP39 seed `phrase`, or `None` if it's invalid.
fn from_phrase(phrase: &str, password: Option<&str>) -> Result<(Self, Self::Seed), SecretStringError>;
/// Derive a child key from a series of given junctions.
fn derive<Iter: Iterator<Item=DeriveJunction>>(&self,
path: Iter,
seed: Option<Self::Seed>,
) -> Result<(Self, Option<Self::Seed>), Self::DeriveError>;
/// Generate new key pair from the provided `seed`.
///
/// @WARNING: THIS WILL ONLY BE SECURE IF THE `seed` IS SECURE. If it can be guessed
/// by an attacker then they can also derive your key.
fn from_seed(seed: &Self::Seed) -> Self;
/// Make a new key pair from secret seed material. The slice must be the correct size or
/// it will return `None`.
///
/// @WARNING: THIS WILL ONLY BE SECURE IF THE `seed` IS SECURE. If it can be guessed
/// by an attacker then they can also derive your key.
fn from_seed_slice(seed: &[u8]) -> Result<Self, SecretStringError>;
/// Sign a message.
fn sign(&self, message: &[u8]) -> Self::Signature;
/// Verify a signature on a message. Returns true if the signature is good.
fn verify<M: AsRef<[u8]>>(sig: &Self::Signature, message: M, pubkey: &Self::Public) -> bool;
/// Verify a signature on a message. Returns true if the signature is good.
fn verify_weak<P: AsRef<[u8]>, M: AsRef<[u8]>>(sig: &[u8], message: M, pubkey: P) -> bool;
/// Get the public key.
fn public(&self) -> Self::Public;
/// Interprets the string `s` in order to generate a key Pair. Returns both the pair and an optional seed, in the
/// case that the pair can be expressed as a direct derivation from a seed (some cases, such as Sr25519 derivations
/// with path components, cannot).
///
/// This takes a helper function to do the key generation from a phrase, password and
/// junction iterator.
///
/// - If `s` is a possibly `0x` prefixed 64-digit hex string, then it will be interpreted
/// directly as a `MiniSecretKey` (aka "seed" in `subkey`).
/// - If `s` is a valid BIP-39 key phrase of 12, 15, 18, 21 or 24 words, then the key will
/// be derived from it. In this case:
/// - the phrase may be followed by one or more items delimited by `/` characters.
/// - the path may be followed by `///`, in which case everything after the `///` is treated
/// as a password.
/// - If `s` begins with a `/` character it is prefixed with the Substrate public `DEV_PHRASE` and
/// interpreted as above.
///
/// In this case they are interpreted as HDKD junctions; purely numeric items are interpreted as
/// integers, non-numeric items as strings. Junctions prefixed with `/` are interpreted as soft
/// junctions, and with `//` as hard junctions.
///
/// There is no correspondence mapping between SURI strings and the keys they represent.
/// Two different non-identical strings can actually lead to the same secret being derived.
/// Notably, integer junction indices may be legally prefixed with arbitrary number of zeros.
/// Similarly an empty password (ending the SURI with `///`) is perfectly valid and will generally
/// be equivalent to no password at all.
///
/// `None` is returned if no matches are found.
fn from_string_with_seed(s: &str, password_override: Option<&str>) -> Result<(Self, Option<Self::Seed>), SecretStringError> {
let re = Regex::new(r"^(?P<phrase>[\d\w ]+)?(?P<path>(//?[^/]+)*)(///(?P<password>.*))?$")
.expect("constructed from known-good static value; qed");
let cap = re.captures(s).ok_or(SecretStringError::InvalidFormat)?;
let re_junction = Regex::new(r"/(/?[^/]+)")
.expect("constructed from known-good static value; qed");
let path = re_junction.captures_iter(&cap["path"])
.map(|f| DeriveJunction::from(&f[1]));
let phrase = cap.name("phrase").map(|r| r.as_str()).unwrap_or(DEV_PHRASE);
let password = password_override.or_else(|| cap.name("password").map(|m| m.as_str()));
let (root, seed) = if phrase.starts_with("0x") {
hex::decode(&phrase[2..]).ok()
.and_then(|seed_vec| {
let mut seed = Self::Seed::default();
if seed.as_ref().len() == seed_vec.len() {
seed.as_mut().copy_from_slice(&seed_vec);
Some((Self::from_seed(&seed), seed))
} else {
None
}
})
.ok_or(SecretStringError::InvalidSeed)?
} else {
Self::from_phrase(phrase, password)
.map_err(|_| SecretStringError::InvalidPhrase)?
};
root.derive(path, Some(seed)).map_err(|_| SecretStringError::InvalidPath)
}
/// Interprets the string `s` in order to generate a key pair.
///
/// See [`from_string_with_seed`](Self::from_string_with_seed) for more extensive documentation.
fn from_string(s: &str, password_override: Option<&str>) -> Result<Self, SecretStringError> {
Self::from_string_with_seed(s, password_override).map(|x| x.0)
/// Return a vec filled with raw data.
fn to_raw_vec(&self) -> Vec<u8>;
}
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
/// One type is wrapped by another.
pub trait IsWrappedBy<Outer>: From<Outer> + Into<Outer> {
/// Get a reference to the inner from the outer.
fn from_ref(outer: &Outer) -> &Self;
/// Get a mutable reference to the inner from the outer.
fn from_mut(outer: &mut Outer) -> &mut Self;
}
/// Opposite of `IsWrappedBy` - denotes a type which is a simple wrapper around another type.
pub trait Wraps: Sized {
/// The inner type it is wrapping.
type Inner: IsWrappedBy<Self>;
}
impl<T, Outer> IsWrappedBy<Outer> for T where
Outer: AsRef<Self> + AsMut<Self> + From<Self>,
T: From<Outer>,
{
/// Get a reference to the inner from the outer.
fn from_ref(outer: &Outer) -> &Self { outer.as_ref() }
/// Get a mutable reference to the inner from the outer.
fn from_mut(outer: &mut Outer) -> &mut Self { outer.as_mut() }
}
impl<Inner, Outer, T> UncheckedFrom<T> for Outer where
Outer: Wraps<Inner=Inner>,
Inner: IsWrappedBy<Outer> + UncheckedFrom<T>,
{
fn unchecked_from(t: T) -> Self {
let inner: Inner = t.unchecked_into();
inner.into()
}
}
/// Type which has a particular kind of crypto associated with it.
pub trait CryptoType {
/// The pair key type of this crypto.
#[cfg(feature="std")]
type Pair: Pair;
}
/// An identifier for a type of cryptographic key.
///
/// To avoid clashes with other modules when distributing your module publically, register your
/// `KeyTypeId` on the list here by making a PR.
///
/// Values whose first character is `_` are reserved for private use and won't conflict with any
/// public modules.
#[derive(Copy, Clone, Default, PartialEq, Eq, PartialOrd, Ord, Hash, Encode, Decode)]
impl From<u32> for KeyTypeId {
fn from(x: u32) -> Self {
Self(x.to_le_bytes())
}
}
impl From<KeyTypeId> for u32 {
fn from(x: KeyTypeId) -> Self {
u32::from_le_bytes(x.0)
}
}
impl<'a> TryFrom<&'a str> for KeyTypeId {
type Error = ();
fn try_from(x: &'a str) -> Result<Self, ()> {
let b = x.as_bytes();
if b.len() != 4 {
return Err(());
}
let mut res = KeyTypeId::default();
res.0.copy_from_slice(&b[0..4]);
Ok(res)
}
/// Known key types; this also functions as a global registry of key types for projects wishing to
/// avoid collisions with each other.
///
/// It's not universal in the sense that *all* key types need to be mentioned here, it's just a
/// handy place to put common key types.
pub mod key_types {
use super::KeyTypeId;
/// Key type for Babe module, build-in.
pub const BABE: KeyTypeId = KeyTypeId(*b"babe");
/// Key type for Grandpa module, build-in.
pub const GRANDPA: KeyTypeId = KeyTypeId(*b"gran");
/// Key type for controlling an account in a Substrate runtime, built-in.
pub const ACCOUNT: KeyTypeId = KeyTypeId(*b"acco");
/// Key type for Aura module, built-in.
pub const AURA: KeyTypeId = KeyTypeId(*b"aura");
/// Key type for ImOnline module, built-in.
pub const IM_ONLINE: KeyTypeId = KeyTypeId(*b"imon");
/// A key type ID useful for tests.
#[cfg(feature = "std")]
pub const DUMMY: KeyTypeId = KeyTypeId(*b"dumy");
}
#[cfg(test)]
mod tests {
use crate::DeriveJunction;
Stanislav Tkach
committed
use hex_literal::hex;
#[derive(Clone, Eq, PartialEq, Debug)]
enum TestPair {
Generated,
GeneratedWithPhrase,
GeneratedFromPhrase{phrase: String, password: Option<String>},
Standard{phrase: String, password: Option<String>, path: Vec<DeriveJunction>},
Seed(Vec<u8>),
}
impl Default for TestPair {
fn default() -> Self {
TestPair::Generated
}
}
impl CryptoType for TestPair {
type Pair = Self;
}
#[derive(Clone, PartialEq, Eq, Hash, Default)]
impl AsRef<[u8]> for TestPublic {
fn as_ref(&self) -> &[u8] {
&[]
}
}
impl AsMut<[u8]> for TestPublic {
fn as_mut(&mut self) -> &mut [u8] {
&mut []
}
}
impl CryptoType for TestPublic {
type Pair = TestPair;
}
impl Derive for TestPublic {}
fn from_slice(_bytes: &[u8]) -> Self {
Self
}
fn as_slice(&self) -> &[u8] {
&[]
}
fn to_raw_vec(&self) -> Vec<u8> {
vec![]
}
}
impl Pair for TestPair {
type Seed = [u8; 8];
type Signature = [u8; 0];
type DeriveError = ();
fn generate() -> (Self, <Self as Pair>::Seed) { (TestPair::Generated, [0u8; 8]) }
fn generate_with_phrase(_password: Option<&str>) -> (Self, String, <Self as Pair>::Seed) {
(TestPair::GeneratedWithPhrase, "".into(), [0u8; 8])
}
fn from_phrase(phrase: &str, password: Option<&str>)
-> Result<(Self, <Self as Pair>::Seed), SecretStringError>
{
Ok((TestPair::GeneratedFromPhrase {
phrase: phrase.to_owned(),
password: password.map(Into::into)
fn derive<Iter: Iterator<Item=DeriveJunction>>(&self, path_iter: Iter, _: Option<[u8; 8]>)
-> Result<(Self, Option<[u8; 8]>), Self::DeriveError>
Ok((match self.clone() {
TestPair::Standard {phrase, password, path} =>
TestPair::Standard { phrase, password, path: path.into_iter().chain(path_iter).collect() },
TestPair::GeneratedFromPhrase {phrase, password} =>
TestPair::Standard { phrase, password, path: path_iter.collect() },
x => if path_iter.count() == 0 { x } else { return Err(()) },
}, None))
fn from_seed(_seed: &<TestPair as Pair>::Seed) -> Self { TestPair::Seed(_seed.as_ref().to_owned()) }
fn sign(&self, _message: &[u8]) -> Self::Signature { [] }
fn verify<M: AsRef<[u8]>>(_: &Self::Signature, _: M, _: &Self::Public) -> bool { true }
fn verify_weak<P: AsRef<[u8]>, M: AsRef<[u8]>>(
_sig: &[u8],
_message: M,
_pubkey: P
) -> bool { true }
fn from_seed_slice(seed: &[u8])
-> Result<Self, SecretStringError>
{
Ok(TestPair::Seed(seed.to_owned()))
}
fn to_raw_vec(&self) -> Vec<u8> {
vec![]
}