Newer
Older
use transaction::{Transaction, SEQUENCE_LOCKTIME_DISABLE_FLAG};
use crypto::{sha1, sha256, dhash160, dhash256, ripemd160};
use script::{script, Script, Num, VerificationFlags, Opcode, Error, Instruction};
#[derive(Debug, PartialEq, Clone, Copy)]
#[repr(u8)]
pub enum SignatureHash {
All = 1,
None = 2,
Single = 3,
AnyoneCanPay = 0x80,
}
#[derive(Debug, PartialEq, Clone, Copy)]
pub enum SignatureVersion {
fn check_signature(
&self,
script_signature: &[u8],
public: &Public,
script: &Script,
version: SignatureVersion
) -> bool;
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
fn check_lock_time(&self, lock_time: Num) -> bool;
fn check_sequence(&self, sequence: Num) -> bool;
}
pub struct NoopSignatureChecker;
impl SignatureChecker for NoopSignatureChecker {
fn check_signature(&self, _: &[u8], _: &Public, _: &Script, _: SignatureVersion) -> bool {
false
}
fn check_lock_time(&self, _: Num) -> bool {
false
}
fn check_sequence(&self, _: Num) -> bool {
false
}
}
pub struct TransactionSignatureChecker {
transaction: Transaction,
i: u32,
amount: i64,
}
impl TransactionSignatureChecker {
fn verify_signature(&self, _signature: &[u8], _public: &Public, _hash: &H256) -> bool {
unimplemented!();
}
}
impl SignatureChecker for TransactionSignatureChecker {
fn check_signature(
&self,
_script_signature: &[u8],
_public: &Public,
_script: &Script,
_version: SignatureVersion
) -> bool {
unimplemented!();
}
fn check_lock_time(&self, _lock_time: Num) -> bool {
unimplemented!();
}
fn check_sequence(&self, _sequence: Num) -> bool {
unimplemented!();
}
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
fn is_public_key(v: &[u8]) -> bool {
match v.len() {
33 if v[0] == 2 || v[0] == 3 => true,
65 if v[0] == 4 => true,
_ => false,
}
}
/// A canonical signature exists of: <30> <total len> <02> <len R> <R> <02> <len S> <S> <hashtype>
/// Where R and S are not negative (their first byte has its highest bit not set), and not
/// excessively padded (do not start with a 0 byte, unless an otherwise negative number follows,
/// in which case a single 0 byte is necessary and even required).
///
/// See https://bitcointalk.org/index.php?topic=8392.msg127623#msg127623
///
/// This function is consensus-critical since BIP66.
fn is_valid_signature_encoding(sig: &[u8]) -> bool {
// Format: 0x30 [total-length] 0x02 [R-length] [R] 0x02 [S-length] [S] [sighash]
// * total-length: 1-byte length descriptor of everything that follows,
// excluding the sighash byte.
// * R-length: 1-byte length descriptor of the R value that follows.
// * R: arbitrary-length big-endian encoded R value. It must use the shortest
// possible encoding for a positive integers (which means no null bytes at
// the start, except a single one when the next byte has its highest bit set).
// * S-length: 1-byte length descriptor of the S value that follows.
// * S: arbitrary-length big-endian encoded S value. The same rules apply.
// * sighash: 1-byte value indicating what data is hashed (not part of the DER
// signature)
// Minimum and maximum size constraints
if sig.len() < 9 || sig.len() > 73 {
return false;
}
// A signature is of type 0x30 (compound)
if sig[0] != 0x30 {
return false;
}
// Make sure the length covers the entire signature.
if sig[1] as usize != sig.len() - 3 {
return false;
}
// Extract the length of the R element.
let len_r = sig[3] as usize;
// Make sure the length of the S element is still inside the signature.
if len_r + 5 >= sig.len() {
return false;
}
// Extract the length of the S element.
let len_s = sig[len_r + 5] as usize;
// Verify that the length of the signature matches the sum of the length
if len_r + len_s + 7 != sig.len() {
return false;
}
// Check whether the R element is an integer.
if sig[2] != 2 {
return false;
}
// Zero-length integers are not allowed for R.
if len_r == 0 {
return false;
}
// Negative numbers are not allowed for R.
if (sig[4] & 0x80) != 0 {
return false;
}
// Null bytes at the start of R are not allowed, unless R would
// otherwise be interpreted as a negative number.
if len_r > 1 && sig[4] == 0 && (!(sig[5] & 0x80)) != 0 {
return false;
}
// Check whether the S element is an integer.
if sig[len_r + 4] != 2 {
return false;
}
// Zero-length integers are not allowed for S.
if len_s == 0 {
return false;
}
// Negative numbers are not allowed for S.
if (sig[len_r + 6] & 0x80) != 0 {
return false;
}
// Null bytes at the start of S are not allowed, unless S would otherwise be
// interpreted as a negative number.
if len_s > 1 && (sig[len_r + 6] == 0) && (!(sig[len_r + 7] & 0x80)) != 0 {
return false;
}
true
}
fn is_low_der_signature(sig: &[u8]) -> Result<bool, Error> {
if !is_valid_signature_encoding(sig) {
return Err(Error::SignatureDer);
}
let signature: Signature = sig.into();
if !signature.check_low_s() {
return Err(Error::SignatureHighS);
}
Ok(true)
}
fn is_defined_hashtype_signature(sig: &[u8]) -> bool {
if sig.is_empty() {
return false;
}
let n_hashtype = sig[sig.len() -1] & !(SignatureHash::AnyoneCanPay as u8);
if n_hashtype < SignatureHash::All as u8 && n_hashtype > SignatureHash::Single as u8 {
return false
}
true
}
fn check_signature_encoding(sig: &[u8], flags: &VerificationFlags) -> Result<bool, Error> {
// Empty signature. Not strictly DER encoded, but allowed to provide a
// compact way to provide an invalid signature for use with CHECK(MULTI)SIG
if sig.is_empty() {
return Ok(true);
}
if (flags.verify_dersig || flags.verify_low_s || flags.verify_strictenc) && !is_valid_signature_encoding(sig) {
Err(Error::SignatureDer)
} else if flags.verify_low_s && !try!(is_low_der_signature(sig)) {
Ok(false)
} else if flags.verify_strictenc && !is_defined_hashtype_signature(sig) {
Err(Error::SignatureHashtype)
} else {
Ok(true)
}
}
fn check_pubkey_encoding(v: &[u8], flags: &VerificationFlags) -> Result<bool, Error> {
if flags.verify_strictenc && !is_public_key(v) {
return Err(Error::PubkeyType);
}
Ok(true)
}
fn check_minimal_push(data: &[u8], opcode: Opcode) -> bool {
if data.is_empty() {
// Could have used OP_0.
opcode == Opcode::OP_0
} else if data.len() == 1 && data[0] >= 1 && data[0] <= 16 {
// Could have used OP_1 .. OP_16.
opcode as u8 == Opcode::OP_1 as u8 + (data[0] - 1)
} else if data.len() == 1 && data[0] == 0x81 {
// Could have used OP_1NEGATE
opcode == Opcode::OP_1NEGATE
} else if data.len() <= 75 {
// Could have used a direct push (opcode indicating number of bytes pushed + those bytes).
opcode as usize == data.len()
} else if data.len() <= 255 {
// Could have used OP_PUSHDATA.
opcode == Opcode::OP_PUSHDATA1
} else if data.len() <= 65535 {
// Could have used OP_PUSHDATA2.
opcode == Opcode::OP_PUSHDATA2
} else {
true
}
}
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
fn cast_to_bool(data: &[u8]) -> bool {
if data.is_empty() {
return false;
}
if data[..data.len() - 1].iter().any(|x| x != &0) {
return true;
}
let last = data[data.len() - 1];
if last == 0 || last == 0x80 {
false
} else {
true
}
}
#[inline]
fn require_not_empty(stack: &Vec<Vec<u8>>) -> Result<(), Error> {
match stack.is_empty() {
true => Err(Error::InvalidStackOperation),
false => Ok(()),
}
}
#[inline]
fn require_len(stack: &Vec<Vec<u8>>, len: usize) -> Result<(), Error> {
match stack.len() < len {
true => Err(Error::InvalidStackOperation),
false => Ok(()),
}
}
stack: &mut Vec<Vec<u8>>,
flags: &VerificationFlags,
if script.len() > script::MAX_SCRIPT_SIZE {
return Err(Error::ScriptSize);
}
let mut fvec = Vec::<bool>::new();
let mut altstack = Vec::<Vec<u8>>::new();
let fexec = fvec.iter().find(|&x| !x).is_some();
Instruction::PushValue(_opcode, num) => {
stack.push(num.to_vec());
Instruction::PushBytes(opcode, bytes) => {
// TODO: if fExec
if flags.verify_minimaldata && !check_minimal_push(bytes, opcode) {
return Err(Error::Minimaldata);
}
stack.push(bytes.to_vec());
Instruction::Normal(opcode) => match opcode {
Opcode::OP_NOP => break,
Opcode::OP_CHECKLOCKTIMEVERIFY => {
if !flags.verify_clocktimeverify {
if flags.verify_discourage_upgradable_nops {
return Err(Error::DiscourageUpgradableNops);
}
}
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
// Note that elsewhere numeric opcodes are limited to
// operands in the range -2**31+1 to 2**31-1, however it is
// legal for opcodes to produce results exceeding that
// range. This limitation is implemented by CScriptNum's
// default 4-byte limit.
//
// If we kept to that limit we'd have a year 2038 problem,
// even though the nLockTime field in transactions
// themselves is uint32 which only becomes meaningless
// after the year 2106.
//
// Thus as a special case we tell CScriptNum to accept up
// to 5-byte bignums, which are good until 2**39-1, well
// beyond the 2**32-1 limit of the nLockTime field itself.
let lock_time = try!(Num::from_slice(stack.last().unwrap(), flags.verify_minimaldata, 5));
// In the rare event that the argument may be < 0 due to
// some arithmetic being done first, you can always use
// 0 MAX CHECKLOCKTIMEVERIFY.
if lock_time.is_negative() {
return Err(Error::NegativeLocktime);
}
if !checker.check_lock_time(lock_time) {
return Err(Error::UnsatisfiedLocktime);
}
},
Opcode::OP_CHECKSEQUENCEVERIFY => {
if !flags.verify_chechsequenceverify {
if flags.verify_discourage_upgradable_nops {
return Err(Error::DiscourageUpgradableNops);
}
}
try!(require_not_empty(stack));
let sequence = try!(Num::from_slice(stack.last().unwrap(), flags.verify_minimaldata, 5));
if sequence.is_negative() {
return Err(Error::NegativeLocktime);
}
if !(sequence & (SEQUENCE_LOCKTIME_DISABLE_FLAG as i64).into()).is_zero() {
continue;
}
if !checker.check_sequence(sequence) {
return Err(Error::UnsatisfiedLocktime);
}
},
Opcode::OP_NOP1 | Opcode::OP_NOP4 | Opcode::OP_NOP5 | Opcode::OP_NOP6 |
Opcode::OP_NOP7 | Opcode::OP_NOP8 | Opcode::OP_NOP9 | Opcode::OP_NOP10 => {
if flags.verify_discourage_upgradable_nops {
return Err(Error::DiscourageUpgradableNops);
}
},
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
Opcode::OP_IF | Opcode::OP_NOTIF => {
let mut fvalue = false;
if fexec {
try!(require_not_empty(stack).map_err(|_| Error::UnbalancedConditional));
fvalue = cast_to_bool(&stack.pop().unwrap());
if opcode == Opcode::OP_NOTIF {
fvalue = !fvalue;
}
}
fvec.push(fvalue);
},
Opcode::OP_ELSE => {
if fvec.is_empty() {
return Err(Error::UnbalancedConditional);
}
let last = fvec[fvec.len() - 1];
fvec[fvec.len() - 1] == !last;
},
Opcode::OP_ENDIF => {
if fvec.is_empty() {
return Err(Error::UnbalancedConditional);
}
fvec.pop();
},
Opcode::OP_VERIFY => {
try!(require_not_empty(stack));
// should we return an error without popping the value?
let fvalue = cast_to_bool(&stack.pop().unwrap());
if !fvalue {
return Err(Error::Verify);
}
},
Opcode::OP_RETURN => {
return Err(Error::ReturnOpcode);
},
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
Opcode::OP_TOALTSTACK => {
try!(require_not_empty(stack));
altstack.push(stack.pop().unwrap());
},
Opcode::OP_FROMALTSTACK => {
try!(require_not_empty(&altstack).map_err(|_| Error::InvalidAltstackOperation));
stack.push(altstack.pop().unwrap());
},
Opcode::OP_2DROP => {
try!(require_len(stack, 2));
stack.pop();
stack.pop();
},
Opcode::OP_2DUP => {
try!(require_len(stack, 2));
let v1 = stack[stack.len() - 2].clone();
let v2 = stack[stack.len() - 1].clone();
stack.push(v1);
stack.push(v2);
},
Opcode::OP_3DUP => {
try!(require_len(stack, 3));
let v1 = stack[stack.len() - 3].clone();
let v2 = stack[stack.len() - 2].clone();
let v3 = stack[stack.len() - 1].clone();
stack.push(v1);
stack.push(v2);
stack.push(v3);
},
Opcode::OP_2OVER => {
try!(require_len(stack, 4));
let v1 = stack[stack.len() - 4].clone();
let v2 = stack[stack.len() - 3].clone();
stack.push(v1);
stack.push(v2);
},
Opcode::OP_2ROT => {
try!(require_len(stack, 6));
let v1 = stack[stack.len() - 6].clone();
let v2 = stack[stack.len() - 5].clone();
let len = stack.len();
stack.remove(len - 6);
// -5 -just removed element
stack.remove(len - 6);
stack.push(v1);
stack.push(v2);
},
Opcode::OP_2SWAP => {
try!(require_len(stack, 4));
let len = stack.len();
stack.swap(len - 4, len - 2);
stack.swap(len - 3, len - 1);
},
Opcode::OP_IFDUP => {
try!(require_not_empty(stack));
if cast_to_bool(stack.last().unwrap()) {
let last = stack.last().unwrap().clone();
stack.push(last);
}
},
Opcode::OP_DEPTH => {
let depth = Num::from(stack.len());
stack.push(depth.to_vec());
},
Opcode::OP_DROP => {
try!(require_not_empty(stack));
stack.pop();
},
Opcode::OP_DUP => {
try!(require_not_empty(stack));
let v1 = stack[stack.len() - 1].clone();
stack.push(v1);
},
Opcode::OP_NIP => {
try!(require_len(stack, 2));
let len = stack.len();
stack.swap_remove(len - 2);
},
Opcode::OP_OVER => {
try!(require_len(stack, 2));
let v = stack[stack.len() - 2].clone();
stack.push(v);
},
Opcode::OP_PICK | Opcode::OP_ROLL => {
try!(require_len(stack, 2));
let n: i64 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4)).into();
if n < 0 || n >= stack.len() as i64 {
return Err(Error::InvalidStackOperation);
}
let v = stack[n as usize + 1].clone();
if opcode == Opcode::OP_ROLL {
stack.remove(n as usize + 1);
}
stack.push(v);
},
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
Opcode::OP_ROT => {
try!(require_len(stack, 3));
let len = stack.len();
stack.swap(len - 3, len - 2);
stack.swap(len - 2, len - 1);
},
Opcode::OP_SWAP => {
try!(require_len(stack, 2));
let len = stack.len();
stack.swap(len - 2, len - 1);
},
Opcode::OP_TUCK => {
try!(require_len(stack, 2));
let len = stack.len();
let v = stack[len - 1].clone();
stack.insert(len - 2, v);
},
Opcode::OP_SIZE => {
try!(require_not_empty(stack));
let n = Num::from(stack.last().unwrap().len());
stack.push(n.to_vec());
},
Opcode::OP_EQUAL => {
try!(require_len(stack, 2));
let v1 = stack.pop();
let v2 = stack.pop();
let to_push = match v1 == v2 {
true => vec![1],
false => vec![0],
};
stack.push(to_push);
},
Opcode::OP_EQUALVERIFY => {
try!(require_len(stack, 2));
let equal = stack.pop() == stack.pop();
if !equal {
return Err(Error::EqualVerify);
}
},
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
Opcode::OP_1ADD => {
try!(require_not_empty(stack));
let n = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4)) + 1.into();
stack.push(n.to_vec());
},
Opcode::OP_1SUB => {
try!(require_not_empty(stack));
let n = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4)) - 1.into();
stack.push(n.to_vec());
},
Opcode::OP_NEGATE => {
try!(require_not_empty(stack));
let n = -try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
stack.push(n.to_vec());
},
Opcode::OP_ABS => {
try!(require_not_empty(stack));
let n = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4)).abs();
stack.push(n.to_vec());
},
Opcode::OP_NOT => {
try!(require_not_empty(stack));
let n = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4)).is_zero();
let n = Num::from(n);
stack.push(n.to_vec());
},
Opcode::OP_0NOTEQUAL => {
try!(require_not_empty(stack));
let n = !try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4)).is_zero();
let n = Num::from(n);
stack.push(n.to_vec());
},
Opcode::OP_ADD => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
stack.push((v1 + v2).to_vec());
},
Opcode::OP_SUB => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
stack.push((v2 - v1).to_vec());
},
Opcode::OP_BOOLAND => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(!v1.is_zero() && !v2.is_zero());
},
Opcode::OP_BOOLOR => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(!v1.is_zero() || !v2.is_zero());
},
Opcode::OP_NUMEQUAL => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(v1 == v2);
},
Opcode::OP_NUMEQUALVERIFY => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
if v1 != v2 {
return Err(Error::NumEqualVerify);
}
},
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
Opcode::OP_NUMNOTEQUAL => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(v1 != v2);
stack.push(v.to_vec());
},
Opcode::OP_LESSTHAN => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(v1 > v2);
stack.push(v.to_vec());
},
Opcode::OP_GREATERTHAN => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(v1 < v2);
stack.push(v.to_vec());
},
Opcode::OP_LESSTHANOREQUAL => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(v1 >= v2);
stack.push(v.to_vec());
},
Opcode::OP_GREATERTHANOREQUAL => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(v1 <= v2);
stack.push(v.to_vec());
},
Opcode::OP_MIN => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
stack.push(cmp::min(v1, v2).to_vec());
},
Opcode::OP_MAX => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
stack.push(cmp::max(v1, v2).to_vec());
},
Opcode::OP_WITHIN => {
try!(require_len(stack, 3));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v3 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let to_push = match v2 <= v3 && v3 <= v1 {
true => vec![1],
false => vec![0],
};
stack.push(to_push);
},
Opcode::OP_RIPEMD160 => {
try!(require_not_empty(stack));
let v = ripemd160(&stack.pop().unwrap());
stack.push(v.to_vec());
},
Opcode::OP_SHA1 => {
try!(require_not_empty(stack));
let v = sha1(&stack.pop().unwrap());
stack.push(v.to_vec());
},
Opcode::OP_SHA256 => {
try!(require_not_empty(stack));
let v = sha256(&stack.pop().unwrap());
stack.push(v.to_vec());
},
Opcode::OP_HASH160 => {
try!(require_not_empty(stack));
let v = dhash160(&stack.pop().unwrap());
stack.push(v.to_vec());
},
Opcode::OP_HASH256 => {
try!(require_not_empty(stack));
let v = dhash256(&stack.pop().unwrap());
stack.push(v.to_vec());
},
let success = !stack.is_empty() && {
let last = stack.last().unwrap();
last != &vec![0; last.len()]
};
#[cfg(test)]
mod tests {
use hex::FromHex;
use script::{Opcode, Script, VerificationFlags, Builder, Error, Num};
use super::{is_public_key, eval_script, NoopSignatureChecker, SignatureVersion};
#[test]
fn tests_is_public_key() {
assert!(!is_public_key(&[]));
assert!(!is_public_key(&[1]));
assert!(is_public_key(&"0495dfb90f202c7d016ef42c65bc010cd26bb8237b06253cc4d12175097bef767ed6b1fcb3caf1ed57c98d92e6cb70278721b952e29a335134857acd4c199b9d2f".from_hex().unwrap()));
assert!(is_public_key(&[2; 33]));
assert!(is_public_key(&[3; 33]));
assert!(!is_public_key(&[4; 33]));
}
// https://github.com/bitcoin/bitcoin/blob/d612837814020ae832499d18e6ee5eb919a87907/src/test/script_tests.cpp#L900
#[test]
fn test_push_data() {
let expected = vec![vec![0x5a]];
let flags = VerificationFlags::default()
.verify_p2sh(true);
let checker = NoopSignatureChecker;
let version = SignatureVersion::Base;
let direct = Script::new(vec![Opcode::OP_PUSHBYTES_1 as u8, 0x5a]);
let pushdata1 = Script::new(vec![Opcode::OP_PUSHDATA1 as u8, 0x1, 0x5a]);
let pushdata2 = Script::new(vec![Opcode::OP_PUSHDATA2 as u8, 0x1, 0, 0x5a]);
let pushdata4 = Script::new(vec![Opcode::OP_PUSHDATA4 as u8, 0x1, 0, 0, 0, 0x5a]);
let mut direct_stack = vec![];
let mut pushdata1_stack= vec![];
let mut pushdata2_stack= vec![];
let mut pushdata4_stack= vec![];
assert!(eval_script(&mut direct_stack, &direct, &flags, &checker, version).unwrap());
assert!(eval_script(&mut pushdata1_stack, &pushdata1, &flags, &checker, version).unwrap());
assert!(eval_script(&mut pushdata2_stack, &pushdata2, &flags, &checker, version).unwrap());
assert!(eval_script(&mut pushdata4_stack, &pushdata4, &flags, &checker, version).unwrap());
assert_eq!(expected, direct_stack);
assert_eq!(expected, pushdata1_stack);
assert_eq!(expected, pushdata2_stack);
assert_eq!(expected, pushdata4_stack);
}
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
fn basic_test(script: &Script, expected: Result<bool, Error>, expected_stack: Vec<Vec<u8>>) {
let flags = VerificationFlags::default()
.verify_p2sh(true);
let checker = NoopSignatureChecker;
let version = SignatureVersion::Base;
let mut stack = vec![];
assert_eq!(eval_script(&mut stack, script, &flags, &checker, version), expected);
if expected.is_ok() {
assert_eq!(stack, expected_stack);
}
}
#[test]
fn test_equal() {
let script = Builder::default()
.push_data(&[0x4])
.push_data(&[0x4])
.push_opcode(Opcode::OP_EQUAL)
.into_script();
let result = Ok(true);
let stack = vec![vec![1]];
basic_test(&script, result, stack);
}
#[test]
fn test_equal_false() {
let script = Builder::default()
.push_data(&[0x4])
.push_data(&[0x3])
.push_opcode(Opcode::OP_EQUAL)
.into_script();
let result = Ok(false);
let stack = vec![vec![0]];
basic_test(&script, result, stack);
}
#[test]
fn test_equal_invalid_stack() {
let script = Builder::default()
.push_data(&[0x4])
.push_opcode(Opcode::OP_EQUAL)
.into_script();
let result = Err(Error::InvalidStackOperation);
basic_test(&script, result, vec![]);
}
#[test]
fn test_equal_verify() {
let script = Builder::default()
.push_data(&[0x4])
.push_data(&[0x4])
.push_opcode(Opcode::OP_EQUALVERIFY)
.into_script();
let result = Ok(false);
let stack = vec![];
basic_test(&script, result, stack);
}
#[test]
fn test_equal_verify_failed() {
let script = Builder::default()
.push_data(&[0x4])
.push_data(&[0x3])
.push_opcode(Opcode::OP_EQUALVERIFY)
.into_script();
let result = Err(Error::EqualVerify);
basic_test(&script, result, vec![]);
}
#[test]
fn test_equal_verify_invalid_stack() {
let script = Builder::default()
.push_data(&[0x4])
.push_opcode(Opcode::OP_EQUALVERIFY)
.into_script();
let result = Err(Error::InvalidStackOperation);
basic_test(&script, result, vec![]);
}
#[test]
fn test_size() {
let script = Builder::default()
.push_data(&[0x12, 0x34])
.push_opcode(Opcode::OP_SIZE)
.into_script();
let result = Ok(true);
let stack = vec![vec![0x12, 0x34], vec![0x2]];
basic_test(&script, result, stack);
}
#[test]
fn test_size_false() {
let script = Builder::default()
.push_data(&[])
.push_opcode(Opcode::OP_SIZE)
.into_script();
let result = Ok(false);
let stack = vec![vec![], vec![]];
basic_test(&script, result, stack);
}
#[test]
fn test_size_invalid_stack() {
let script = Builder::default()
.push_opcode(Opcode::OP_SIZE)
.into_script();
let result = Err(Error::InvalidStackOperation);
basic_test(&script, result, vec![]);
}
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
#[test]
fn test_hash256() {
let script = Builder::default()
.push_data(b"hello")
.push_opcode(Opcode::OP_HASH256)
.into_script();
let result = Ok(true);
let stack = vec!["9595c9df90075148eb06860365df33584b75bff782a510c6cd4883a419833d50".from_hex().unwrap()];
basic_test(&script, result, stack);
}
#[test]
fn test_hash256_invalid_stack() {
let script = Builder::default()
.push_opcode(Opcode::OP_HASH256)
.into_script();
let result = Err(Error::InvalidStackOperation);
basic_test(&script, result, vec![]);
}
#[test]
fn test_ripemd160() {
let script = Builder::default()
.push_data(b"hello")
.push_opcode(Opcode::OP_RIPEMD160)
.into_script();
let result = Ok(true);
let stack = vec!["108f07b8382412612c048d07d13f814118445acd".from_hex().unwrap()];
basic_test(&script, result, stack);
}
#[test]
fn test_ripemd160_invalid_stack() {
let script = Builder::default()
.push_opcode(Opcode::OP_RIPEMD160)
.into_script();
let result = Err(Error::InvalidStackOperation);
basic_test(&script, result, vec![]);
}
#[test]
fn test_sha1() {
let script = Builder::default()
.push_data(b"hello")
.push_opcode(Opcode::OP_SHA1)
.into_script();
let result = Ok(true);
let stack = vec!["aaf4c61ddcc5e8a2dabede0f3b482cd9aea9434d".from_hex().unwrap()];
basic_test(&script, result, stack);
}
#[test]
fn test_sha1_invalid_stack() {
let script = Builder::default()
.push_opcode(Opcode::OP_SHA1)
.into_script();
let result = Err(Error::InvalidStackOperation);
basic_test(&script, result, vec![]);
}
#[test]
fn test_sha256() {
let script = Builder::default()
.push_data(b"hello")
.push_opcode(Opcode::OP_SHA256)
.into_script();
let result = Ok(true);
let stack = vec!["2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824".from_hex().unwrap()];
basic_test(&script, result, stack);
}
#[test]
fn test_sha256_invalid_stack() {
let script = Builder::default()
.push_opcode(Opcode::OP_SHA256)
.into_script();
let result = Err(Error::InvalidStackOperation);
basic_test(&script, result, vec![]);
}
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#[test]
fn test_1add() {
let script = Builder::default()
.push_num(5.into())
.push_opcode(Opcode::OP_1ADD)
.into_script();
let result = Ok(true);
let stack = vec![Num::from(6).to_vec()];
basic_test(&script, result, stack);
}
#[test]
fn test_1add_invalid_stack() {
let script = Builder::default()
.push_opcode(Opcode::OP_1ADD)
.into_script();
let result = Err(Error::InvalidStackOperation);
basic_test(&script, result, vec![]);
}
#[test]
fn test_1sub() {
let script = Builder::default()
.push_num(5.into())
.push_opcode(Opcode::OP_1SUB)
.into_script();
let result = Ok(true);
let stack = vec![Num::from(4).to_vec()];
basic_test(&script, result, stack);
}
#[test]
fn test_1sub_invalid_stack() {