Newer
Older
use keys::{Signature, Public};
use crypto::{sha1, sha256, dhash160, dhash256, ripemd160};
script, Script, Num, VerificationFlags, Opcode, Error,
Sighash, SignatureChecker, SignatureVersion
};
/// Helper function.
fn check_signature(
checker: &SignatureChecker,
public: Vec<u8>,
script_code: &Script,
version: SignatureVersion
) -> bool {
let public = match Public::from_slice(&public) {
Ok(public) => public,
_ => return false,
};
if script_sig.is_empty() {
return false;
let hash_type = script_sig.pop().unwrap() as u32;
let signature = script_sig.into();
checker.check_signature(&signature, &public, script_code, hash_type, version)
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
fn is_public_key(v: &[u8]) -> bool {
match v.len() {
33 if v[0] == 2 || v[0] == 3 => true,
65 if v[0] == 4 => true,
_ => false,
}
}
/// A canonical signature exists of: <30> <total len> <02> <len R> <R> <02> <len S> <S> <hashtype>
/// Where R and S are not negative (their first byte has its highest bit not set), and not
/// excessively padded (do not start with a 0 byte, unless an otherwise negative number follows,
/// in which case a single 0 byte is necessary and even required).
///
/// See https://bitcointalk.org/index.php?topic=8392.msg127623#msg127623
///
/// This function is consensus-critical since BIP66.
fn is_valid_signature_encoding(sig: &[u8]) -> bool {
// Format: 0x30 [total-length] 0x02 [R-length] [R] 0x02 [S-length] [S] [sighash]
// * total-length: 1-byte length descriptor of everything that follows,
// excluding the sighash byte.
// * R-length: 1-byte length descriptor of the R value that follows.
// * R: arbitrary-length big-endian encoded R value. It must use the shortest
// possible encoding for a positive integers (which means no null bytes at
// the start, except a single one when the next byte has its highest bit set).
// * S-length: 1-byte length descriptor of the S value that follows.
// * S: arbitrary-length big-endian encoded S value. The same rules apply.
// * sighash: 1-byte value indicating what data is hashed (not part of the DER
// signature)
// Minimum and maximum size constraints
if sig.len() < 9 || sig.len() > 73 {
return false;
}
// A signature is of type 0x30 (compound)
if sig[0] != 0x30 {
return false;
}
// Make sure the length covers the entire signature.
if sig[1] as usize != sig.len() - 3 {
return false;
}
// Extract the length of the R element.
let len_r = sig[3] as usize;
// Make sure the length of the S element is still inside the signature.
if len_r + 5 >= sig.len() {
return false;
}
// Extract the length of the S element.
let len_s = sig[len_r + 5] as usize;
// Verify that the length of the signature matches the sum of the length
if len_r + len_s + 7 != sig.len() {
return false;
}
// Check whether the R element is an integer.
if sig[2] != 2 {
return false;
}
// Zero-length integers are not allowed for R.
if len_r == 0 {
return false;
}
// Negative numbers are not allowed for R.
if (sig[4] & 0x80) != 0 {
return false;
}
// Null bytes at the start of R are not allowed, unless R would
// otherwise be interpreted as a negative number.
if len_r > 1 && sig[4] == 0 && (!(sig[5] & 0x80)) != 0 {
return false;
}
// Check whether the S element is an integer.
if sig[len_r + 4] != 2 {
return false;
}
// Zero-length integers are not allowed for S.
if len_s == 0 {
return false;
}
// Negative numbers are not allowed for S.
if (sig[len_r + 6] & 0x80) != 0 {
return false;
}
// Null bytes at the start of S are not allowed, unless S would otherwise be
// interpreted as a negative number.
if len_s > 1 && (sig[len_r + 6] == 0) && (!(sig[len_r + 7] & 0x80)) != 0 {
return false;
}
true
}
fn is_low_der_signature(sig: &[u8]) -> Result<(), Error> {
if !is_valid_signature_encoding(sig) {
return Err(Error::SignatureDer);
}
let signature: Signature = sig.into();
if !signature.check_low_s() {
return Err(Error::SignatureHighS);
}
}
fn is_defined_hashtype_signature(sig: &[u8]) -> bool {
if sig.is_empty() {
return false;
}
Sighash::is_defined(sig[sig.len() -1] as u32)
fn check_signature_encoding(sig: &[u8], flags: &VerificationFlags) -> Result<(), Error> {
// Empty signature. Not strictly DER encoded, but allowed to provide a
// compact way to provide an invalid signature for use with CHECK(MULTI)SIG
if sig.is_empty() {
}
if (flags.verify_dersig || flags.verify_low_s || flags.verify_strictenc) && !is_valid_signature_encoding(sig) {
return Err(Error::SignatureDer);
}
if flags.verify_low_s {
try!(is_low_der_signature(sig));
}
if flags.verify_strictenc && !is_defined_hashtype_signature(sig) {
fn check_pubkey_encoding(v: &[u8], flags: &VerificationFlags) -> Result<(), Error> {
if flags.verify_strictenc && !is_public_key(v) {
return Err(Error::PubkeyType);
}
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
}
fn check_minimal_push(data: &[u8], opcode: Opcode) -> bool {
if data.is_empty() {
// Could have used OP_0.
opcode == Opcode::OP_0
} else if data.len() == 1 && data[0] >= 1 && data[0] <= 16 {
// Could have used OP_1 .. OP_16.
opcode as u8 == Opcode::OP_1 as u8 + (data[0] - 1)
} else if data.len() == 1 && data[0] == 0x81 {
// Could have used OP_1NEGATE
opcode == Opcode::OP_1NEGATE
} else if data.len() <= 75 {
// Could have used a direct push (opcode indicating number of bytes pushed + those bytes).
opcode as usize == data.len()
} else if data.len() <= 255 {
// Could have used OP_PUSHDATA.
opcode == Opcode::OP_PUSHDATA1
} else if data.len() <= 65535 {
// Could have used OP_PUSHDATA2.
opcode == Opcode::OP_PUSHDATA2
} else {
true
}
}
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
fn cast_to_bool(data: &[u8]) -> bool {
if data.is_empty() {
return false;
}
if data[..data.len() - 1].iter().any(|x| x != &0) {
return true;
}
let last = data[data.len() - 1];
if last == 0 || last == 0x80 {
false
} else {
true
}
}
#[inline]
fn require_not_empty(stack: &Vec<Vec<u8>>) -> Result<(), Error> {
match stack.is_empty() {
true => Err(Error::InvalidStackOperation),
false => Ok(()),
}
}
#[inline]
fn require_len(stack: &Vec<Vec<u8>>, len: usize) -> Result<(), Error> {
match stack.len() < len {
true => Err(Error::InvalidStackOperation),
false => Ok(()),
}
}
pub fn verify_script(
script_sig: &Script,
script_pubkey: &Script,
flags: &VerificationFlags,
checker: &SignatureChecker
) -> Result<(), Error> {
if flags.verify_sigpushonly && !script_sig.is_push_only() {
return Err(Error::SignaturePushOnly);
}
let mut stack = Vec::new();
let mut stack_copy = Vec::new();
try!(eval_script(&mut stack, script_sig, flags, checker, SignatureVersion::Base));
if flags.verify_p2sh {
stack_copy = stack.clone();
}
let res = try!(eval_script(&mut stack, script_pubkey, flags, checker, SignatureVersion::Base));
if !res {
return Err(Error::EvalFalse);
}
// Additional validation for spend-to-script-hash transactions:
if flags.verify_p2sh && script_pubkey.is_pay_to_script_hash() {
if !script_sig.is_push_only() {
return Err(Error::SignaturePushOnly);
}
mem::swap(&mut stack, &mut stack_copy);
// stack cannot be empty here, because if it was the
// P2SH HASH <> EQUAL scriptPubKey would be evaluated with
// an empty stack and the EvalScript above would return false.
assert!(!stack.is_empty());
let pubkey2: Script = stack.pop().unwrap().into();
let res = try!(eval_script(&mut stack, &pubkey2, flags, checker, SignatureVersion::Base));
if !res {
return Err(Error::EvalFalse);
}
}
// The CLEANSTACK check is only performed after potential P2SH evaluation,
// as the non-P2SH evaluation of a P2SH script will obviously not result in
// a clean stack (the P2SH inputs remain). The same holds for witness evaluation.
if flags.verify_cleanstack {
// Disallow CLEANSTACK without P2SH, as otherwise a switch CLEANSTACK->P2SH+CLEANSTACK
// would be possible, which is not a softfork (and P2SH should be one).
assert!(flags.verify_p2sh);
assert!(flags.verify_witness);
if stack.len() != 1 {
return Err(Error::Cleanstack);
}
}
stack: &mut Vec<Vec<u8>>,
flags: &VerificationFlags,
if script.len() > script::MAX_SCRIPT_SIZE {
return Err(Error::ScriptSize);
}
let mut begincode = 0;
let mut exec_stack = Vec::<bool>::new();
let mut altstack = Vec::<Vec<u8>>::new();
let instruction = try!(script.get_instruction(pc));
let opcode = instruction.opcode;
if let Some(data) = instruction.data {
if data.len() > script::MAX_SCRIPT_ELEMENT_SIZE {
return Err(Error::PushSize);
}
if executing && flags.verify_minimaldata && !check_minimal_push(data, opcode) {
return Err(Error::Minimaldata);
}
}
if opcode.is_countable() {
op_count += 1;
if op_count > script::MAX_OPS_PER_SCRIPT {
return Err(Error::OpCount);
}
}
if opcode.is_disabled() {
return Err(Error::DisabledOpcode(opcode));
}
if !(executing || (Opcode::OP_IF <= opcode && opcode <= Opcode::OP_ENDIF)) {
match opcode {
Opcode::OP_PUSHDATA1 |
Opcode::OP_PUSHDATA2 |
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
Opcode::OP_0 |
Opcode::OP_PUSHBYTES_1 |
Opcode::OP_PUSHBYTES_2 |
Opcode::OP_PUSHBYTES_3 |
Opcode::OP_PUSHBYTES_4 |
Opcode::OP_PUSHBYTES_5 |
Opcode::OP_PUSHBYTES_6 |
Opcode::OP_PUSHBYTES_7 |
Opcode::OP_PUSHBYTES_8 |
Opcode::OP_PUSHBYTES_9 |
Opcode::OP_PUSHBYTES_10 |
Opcode::OP_PUSHBYTES_11 |
Opcode::OP_PUSHBYTES_12 |
Opcode::OP_PUSHBYTES_13 |
Opcode::OP_PUSHBYTES_14 |
Opcode::OP_PUSHBYTES_15 |
Opcode::OP_PUSHBYTES_16 |
Opcode::OP_PUSHBYTES_17 |
Opcode::OP_PUSHBYTES_18 |
Opcode::OP_PUSHBYTES_19 |
Opcode::OP_PUSHBYTES_20 |
Opcode::OP_PUSHBYTES_21 |
Opcode::OP_PUSHBYTES_22 |
Opcode::OP_PUSHBYTES_23 |
Opcode::OP_PUSHBYTES_24 |
Opcode::OP_PUSHBYTES_25 |
Opcode::OP_PUSHBYTES_26 |
Opcode::OP_PUSHBYTES_27 |
Opcode::OP_PUSHBYTES_28 |
Opcode::OP_PUSHBYTES_29 |
Opcode::OP_PUSHBYTES_30 |
Opcode::OP_PUSHBYTES_31 |
Opcode::OP_PUSHBYTES_32 |
Opcode::OP_PUSHBYTES_33 |
Opcode::OP_PUSHBYTES_34 |
Opcode::OP_PUSHBYTES_35 |
Opcode::OP_PUSHBYTES_36 |
Opcode::OP_PUSHBYTES_37 |
Opcode::OP_PUSHBYTES_38 |
Opcode::OP_PUSHBYTES_39 |
Opcode::OP_PUSHBYTES_40 |
Opcode::OP_PUSHBYTES_41 |
Opcode::OP_PUSHBYTES_42 |
Opcode::OP_PUSHBYTES_43 |
Opcode::OP_PUSHBYTES_44 |
Opcode::OP_PUSHBYTES_45 |
Opcode::OP_PUSHBYTES_46 |
Opcode::OP_PUSHBYTES_47 |
Opcode::OP_PUSHBYTES_48 |
Opcode::OP_PUSHBYTES_49 |
Opcode::OP_PUSHBYTES_50 |
Opcode::OP_PUSHBYTES_51 |
Opcode::OP_PUSHBYTES_52 |
Opcode::OP_PUSHBYTES_53 |
Opcode::OP_PUSHBYTES_54 |
Opcode::OP_PUSHBYTES_55 |
Opcode::OP_PUSHBYTES_56 |
Opcode::OP_PUSHBYTES_57 |
Opcode::OP_PUSHBYTES_58 |
Opcode::OP_PUSHBYTES_59 |
Opcode::OP_PUSHBYTES_60 |
Opcode::OP_PUSHBYTES_61 |
Opcode::OP_PUSHBYTES_62 |
Opcode::OP_PUSHBYTES_63 |
Opcode::OP_PUSHBYTES_64 |
Opcode::OP_PUSHBYTES_65 |
Opcode::OP_PUSHBYTES_66 |
Opcode::OP_PUSHBYTES_67 |
Opcode::OP_PUSHBYTES_68 |
Opcode::OP_PUSHBYTES_69 |
Opcode::OP_PUSHBYTES_70 |
Opcode::OP_PUSHBYTES_71 |
Opcode::OP_PUSHBYTES_72 |
Opcode::OP_PUSHBYTES_73 |
Opcode::OP_PUSHBYTES_74 |
Opcode::OP_PUSHBYTES_75 => {
if let Some(data) = instruction.data {
stack.push(data.to_vec());
Opcode::OP_1 |
Opcode::OP_2 |
Opcode::OP_3 |
Opcode::OP_4 |
Opcode::OP_5 |
Opcode::OP_6 |
Opcode::OP_7 |
Opcode::OP_8 |
Opcode::OP_9 |
Opcode::OP_10 |
Opcode::OP_11 |
Opcode::OP_12 |
Opcode::OP_13 |
Opcode::OP_14 |
Opcode::OP_15 |
Opcode::OP_16 => {
let value = opcode as u8 - (Opcode::OP_1 as u8 - 1);
stack.push(Num::from(value).to_vec());
Opcode::OP_CAT | Opcode::OP_SUBSTR | Opcode::OP_LEFT | Opcode::OP_RIGHT |
Opcode::OP_INVERT | Opcode::OP_AND | Opcode::OP_OR | Opcode::OP_XOR |
Opcode::OP_2MUL | Opcode::OP_2DIV | Opcode::OP_MUL | Opcode::OP_DIV |
Opcode::OP_MOD | Opcode::OP_LSHIFT | Opcode::OP_RSHIFT => {
return Err(Error::DisabledOpcode(opcode));
},
Opcode::OP_NOP => break,
Opcode::OP_CHECKLOCKTIMEVERIFY => {
if !flags.verify_clocktimeverify {
if flags.verify_discourage_upgradable_nops {
return Err(Error::DiscourageUpgradableNops);
try!(require_not_empty(stack));
// Note that elsewhere numeric opcodes are limited to
// operands in the range -2**31+1 to 2**31-1, however it is
// legal for opcodes to produce results exceeding that
// range. This limitation is implemented by CScriptNum's
// default 4-byte limit.
//
// If we kept to that limit we'd have a year 2038 problem,
// even though the nLockTime field in transactions
// themselves is uint32 which only becomes meaningless
// after the year 2106.
//
// Thus as a special case we tell CScriptNum to accept up
// to 5-byte bignums, which are good until 2**39-1, well
// beyond the 2**32-1 limit of the nLockTime field itself.
let lock_time = try!(Num::from_slice(stack.last().unwrap(), flags.verify_minimaldata, 5));
// In the rare event that the argument may be < 0 due to
// some arithmetic being done first, you can always use
// 0 MAX CHECKLOCKTIMEVERIFY.
if lock_time.is_negative() {
return Err(Error::NegativeLocktime);
}
if !checker.check_lock_time(lock_time) {
return Err(Error::UnsatisfiedLocktime);
}
},
Opcode::OP_CHECKSEQUENCEVERIFY => {
if !flags.verify_chechsequenceverify {
if flags.verify_discourage_upgradable_nops {
return Err(Error::DiscourageUpgradableNops);
let sequence = try!(Num::from_slice(stack.last().unwrap(), flags.verify_minimaldata, 5));
if sequence.is_negative() {
return Err(Error::NegativeLocktime);
}
if (sequence & (SEQUENCE_LOCKTIME_DISABLE_FLAG as i64).into()).is_zero() {
if !checker.check_sequence(sequence) {
return Err(Error::UnsatisfiedLocktime);
}
Opcode::OP_NOP1 |
Opcode::OP_NOP4 |
Opcode::OP_NOP5 |
Opcode::OP_NOP6 |
Opcode::OP_NOP7 |
Opcode::OP_NOP8 |
Opcode::OP_NOP9 |
Opcode::OP_NOP10 => {
if flags.verify_discourage_upgradable_nops {
return Err(Error::DiscourageUpgradableNops);
}
},
Opcode::OP_IF | Opcode::OP_NOTIF => {
let mut exec_value = false;
try!(require_not_empty(stack).map_err(|_| Error::UnbalancedConditional));
exec_value = cast_to_bool(&stack.pop().unwrap());
if opcode == Opcode::OP_NOTIF {
exec_value = !exec_value;
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
}
exec_stack.push(exec_value);
},
Opcode::OP_ELSE => {
if exec_stack.is_empty() {
return Err(Error::UnbalancedConditional);
}
let last = exec_stack[exec_stack.len() - 1];
exec_stack[exec_stack.len() - 1] == !last;
},
Opcode::OP_ENDIF => {
if exec_stack.is_empty() {
return Err(Error::UnbalancedConditional);
}
exec_stack.pop();
},
Opcode::OP_VERIFY => {
try!(require_not_empty(stack));
// should we return an error without popping the value?
let exec_value = cast_to_bool(&stack.pop().unwrap());
if !exec_value {
return Err(Error::Verify);
}
},
Opcode::OP_RETURN => {
return Err(Error::ReturnOpcode);
},
Opcode::OP_TOALTSTACK => {
try!(require_not_empty(stack));
altstack.push(stack.pop().unwrap());
},
Opcode::OP_FROMALTSTACK => {
try!(require_not_empty(&altstack).map_err(|_| Error::InvalidAltstackOperation));
stack.push(altstack.pop().unwrap());
},
Opcode::OP_2DROP => {
try!(require_len(stack, 2));
stack.pop();
stack.pop();
},
Opcode::OP_2DUP => {
try!(require_len(stack, 2));
let v1 = stack[stack.len() - 2].clone();
let v2 = stack[stack.len() - 1].clone();
stack.push(v1);
stack.push(v2);
},
Opcode::OP_3DUP => {
try!(require_len(stack, 3));
let v1 = stack[stack.len() - 3].clone();
let v2 = stack[stack.len() - 2].clone();
let v3 = stack[stack.len() - 1].clone();
stack.push(v1);
stack.push(v2);
stack.push(v3);
},
Opcode::OP_2OVER => {
try!(require_len(stack, 4));
let v1 = stack[stack.len() - 4].clone();
let v2 = stack[stack.len() - 3].clone();
stack.push(v1);
stack.push(v2);
},
Opcode::OP_2ROT => {
try!(require_len(stack, 6));
let v1 = stack[stack.len() - 6].clone();
let v2 = stack[stack.len() - 5].clone();
let len = stack.len();
stack.remove(len - 6);
// -5 -just removed element
stack.remove(len - 6);
stack.push(v1);
stack.push(v2);
},
Opcode::OP_2SWAP => {
try!(require_len(stack, 4));
let len = stack.len();
stack.swap(len - 4, len - 2);
stack.swap(len - 3, len - 1);
},
Opcode::OP_IFDUP => {
try!(require_not_empty(stack));
if cast_to_bool(stack.last().unwrap()) {
let last = stack.last().unwrap().clone();
stack.push(last);
}
},
Opcode::OP_DEPTH => {
let depth = Num::from(stack.len());
stack.push(depth.to_vec());
},
Opcode::OP_DROP => {
try!(require_not_empty(stack));
stack.pop();
},
Opcode::OP_DUP => {
try!(require_not_empty(stack));
let v1 = stack[stack.len() - 1].clone();
stack.push(v1);
},
Opcode::OP_NIP => {
try!(require_len(stack, 2));
let len = stack.len();
stack.swap_remove(len - 2);
},
Opcode::OP_OVER => {
try!(require_len(stack, 2));
let v = stack[stack.len() - 2].clone();
stack.push(v);
},
Opcode::OP_PICK | Opcode::OP_ROLL => {
try!(require_len(stack, 2));
let n: i64 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4)).into();
if n < 0 || n >= stack.len() as i64 {
return Err(Error::InvalidStackOperation);
}
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
let v = stack[n as usize + 1].clone();
if opcode == Opcode::OP_ROLL {
stack.remove(n as usize + 1);
}
stack.push(v);
},
Opcode::OP_ROT => {
try!(require_len(stack, 3));
let len = stack.len();
stack.swap(len - 3, len - 2);
stack.swap(len - 2, len - 1);
},
Opcode::OP_SWAP => {
try!(require_len(stack, 2));
let len = stack.len();
stack.swap(len - 2, len - 1);
},
Opcode::OP_TUCK => {
try!(require_len(stack, 2));
let len = stack.len();
let v = stack[len - 1].clone();
stack.insert(len - 2, v);
},
Opcode::OP_SIZE => {
try!(require_not_empty(stack));
let n = Num::from(stack.last().unwrap().len());
stack.push(n.to_vec());
},
Opcode::OP_EQUAL => {
try!(require_len(stack, 2));
let v1 = stack.pop();
let v2 = stack.pop();
let to_push = match v1 == v2 {
true => vec![1],
false => vec![0],
};
stack.push(to_push);
},
Opcode::OP_EQUALVERIFY => {
try!(require_len(stack, 2));
let equal = stack.pop() == stack.pop();
if !equal {
return Err(Error::EqualVerify);
}
},
Opcode::OP_1ADD => {
try!(require_not_empty(stack));
let n = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4)) + 1.into();
stack.push(n.to_vec());
},
Opcode::OP_1SUB => {
try!(require_not_empty(stack));
let n = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4)) - 1.into();
stack.push(n.to_vec());
},
Opcode::OP_NEGATE => {
try!(require_not_empty(stack));
let n = -try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
stack.push(n.to_vec());
},
Opcode::OP_ABS => {
try!(require_not_empty(stack));
let n = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4)).abs();
stack.push(n.to_vec());
},
Opcode::OP_NOT => {
try!(require_not_empty(stack));
let n = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4)).is_zero();
let n = Num::from(n);
stack.push(n.to_vec());
},
Opcode::OP_0NOTEQUAL => {
try!(require_not_empty(stack));
let n = !try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4)).is_zero();
let n = Num::from(n);
stack.push(n.to_vec());
},
Opcode::OP_ADD => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
stack.push((v1 + v2).to_vec());
},
Opcode::OP_SUB => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
stack.push((v2 - v1).to_vec());
},
Opcode::OP_BOOLAND => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(!v1.is_zero() && !v2.is_zero());
stack.push(v.to_vec());
},
Opcode::OP_BOOLOR => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(!v1.is_zero() || !v2.is_zero());
stack.push(v.to_vec());
},
Opcode::OP_NUMEQUAL => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(v1 == v2);
stack.push(v.to_vec());
},
Opcode::OP_NUMEQUALVERIFY => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
if v1 != v2 {
return Err(Error::NumEqualVerify);
}
},
Opcode::OP_NUMNOTEQUAL => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(v1 != v2);
stack.push(v.to_vec());
},
Opcode::OP_LESSTHAN => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(v1 > v2);
stack.push(v.to_vec());
},
Opcode::OP_GREATERTHAN => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(v1 < v2);
stack.push(v.to_vec());
},
Opcode::OP_LESSTHANOREQUAL => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(v1 >= v2);
stack.push(v.to_vec());
},
Opcode::OP_GREATERTHANOREQUAL => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(v1 <= v2);
stack.push(v.to_vec());
},
Opcode::OP_MIN => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
stack.push(cmp::min(v1, v2).to_vec());
},
Opcode::OP_MAX => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
stack.push(cmp::max(v1, v2).to_vec());
},
Opcode::OP_WITHIN => {
try!(require_len(stack, 3));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v3 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let to_push = match v2 <= v3 && v3 <= v1 {
true => vec![1],
false => vec![0],
};
stack.push(to_push);
},
Opcode::OP_RIPEMD160 => {
try!(require_not_empty(stack));
let v = ripemd160(&stack.pop().unwrap());
stack.push(v.to_vec());
},
Opcode::OP_SHA1 => {
try!(require_not_empty(stack));
let v = sha1(&stack.pop().unwrap());
stack.push(v.to_vec());
},
Opcode::OP_SHA256 => {
try!(require_not_empty(stack));
let v = sha256(&stack.pop().unwrap());
stack.push(v.to_vec());
},
Opcode::OP_HASH160 => {
try!(require_not_empty(stack));
let v = dhash160(&stack.pop().unwrap());
stack.push(v.to_vec());
},
Opcode::OP_HASH256 => {
try!(require_not_empty(stack));
let v = dhash256(&stack.pop().unwrap());
stack.push(v.to_vec());
},
Opcode::OP_CODESEPARATOR => {
begincode = pc;
},
Opcode::OP_CHECKSIG | Opcode::OP_CHECKSIGVERIFY => {
try!(require_len(stack, 2));
let pubkey = stack.pop().unwrap();
let signature = stack.pop().unwrap();
let mut subscript = script.subscript(begincode);
if version == SignatureVersion::Base {
subscript = script.find_and_delete(&signature);
}
try!(check_signature_encoding(&signature, flags));
try!(check_pubkey_encoding(&pubkey, flags));
let success = check_signature(checker, signature, pubkey, &subscript, version);
match opcode {
Opcode::OP_CHECKSIG => {
let to_push = match success {
true => vec![1],
false => vec![0],
};
stack.push(to_push);
},
Opcode::OP_CHECKSIGVERIFY if !success => {
return Err(Error::CheckSigVerify);
},
_ => {},
}
Opcode::OP_CHECKMULTISIG | Opcode::OP_CHECKMULTISIGVERIFY => {
try!(require_not_empty(stack));
let keys_count = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
if keys_count < 0.into() || keys_count > script::MAX_PUBKEYS_PER_MULTISIG.into() {
return Err(Error::PubkeyCount);
}
let keys_count: usize = keys_count.into();
try!(require_len(stack, keys_count));
let keys: Vec<_> = (0..keys_count).into_iter().map(|_| stack.pop().unwrap()).rev().collect();
try!(require_not_empty(stack));
let sigs_count = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
if sigs_count < 0.into() || sigs_count > keys_count.into() {
return Err(Error::SigCount);
}
let sigs_count: usize = sigs_count.into();
try!(require_len(stack, sigs_count));
let sigs: Vec<_> = (0..sigs_count).into_iter().map(|_| stack.pop().unwrap()).rev().collect();
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
let mut subscript = script.subscript(begincode);
if version == SignatureVersion::Base {
for signature in &sigs {
subscript = subscript.find_and_delete(signature);
}
}
let mut success = true;
let mut k = 0;
let mut s = 0;
while s < sigs.len() && success {
// TODO: remove redundant copying
let key = keys[k].clone();
let sig = sigs[s].clone();
try!(check_signature_encoding(&sig, flags));
try!(check_pubkey_encoding(&key, flags));
let ok = check_signature(checker, sig, key, &subscript, version);
if ok {
s += 1;
}
k += 1;
success = sigs.len() - s <= keys.len() - k;
}
try!(require_not_empty(stack));
if !stack.pop().unwrap().is_empty() && flags.verify_nulldummy {
return Err(Error::SignatureNullDummy);
}
match opcode {
Opcode::OP_CHECKMULTISIG => {
let to_push = match success {
true => vec![1],
false => vec![0],
};
stack.push(to_push);
},
Opcode::OP_CHECKMULTISIGVERIFY if !success => {
return Err(Error::CheckSigVerify);
},
_ => {},
}
},
Opcode::OP_RESERVED |
Opcode::OP_VER |
Opcode::OP_RESERVED1 |
Opcode::OP_RESERVED2 => {
if executing {
return Err(Error::DisabledOpcode(opcode));
}
},
Opcode::OP_VERNOTIF => {
return Err(Error::DisabledOpcode(opcode));
},
if stack.len() + altstack.len() > 1000 {
return Err(Error::StackSize);
}
if !exec_stack.is_empty() {
return Err(Error::UnbalancedConditional);
}
let success = !stack.is_empty() && {
let last = stack.last().unwrap();
#[cfg(test)]
mod tests {
use hex::FromHex;
use script::{
Opcode, Script, VerificationFlags, Builder, Error, Num, TransactionInputSigner,
NoopSignatureChecker, SignatureVersion, TransactionSignatureChecker
};