Newer
Older
use transaction::{Transaction, SEQUENCE_LOCKTIME_DISABLE_FLAG};
use crypto::{sha1, sha256, dhash160, dhash256, ripemd160};
use script::{script, Script, Num, VerificationFlags, Opcode, Error, read_usize};
#[derive(Debug, PartialEq, Clone, Copy)]
#[repr(u8)]
impl From<SighashBase> for u32 {
fn from(s: SighashBase) -> Self {
s as u32
}
}
/// Documentation
/// https://en.bitcoin.it/wiki/OP_CHECKSIG#Procedure_for_Hashtype_SIGHASH_SINGLE
/// TODO: Possibly handle other integers when deserialing
#[derive(Debug, PartialEq, Clone, Copy)]
pub struct Sighash {
pub base: SighashBase,
pub anyone_can_pay: bool,
match s.anyone_can_pay {
true => base | 0x80,
false => base,
}
}
}
impl From<u32> for Sighash {
fn from(u: u32) -> Self {
// use 0x9f istead of 0x1f to catch 0x80
match u & 0x9f {
1 => Sighash::new(SighashBase::All, false),
2 => Sighash::new(SighashBase::None, false),
3 => Sighash::new(SighashBase::Single, false),
0x81 => Sighash::new(SighashBase::All, true),
0x82 => Sighash::new(SighashBase::None, true),
0x83 => Sighash::new(SighashBase::Single, true),
x if x & 0x80 == 0x80 => Sighash::new(SighashBase::All, true),
// 0 is handled like all...
_ => Sighash::new(SighashBase::All, false),
}
}
}
pub fn new(base: SighashBase, anyone_can_pay: bool) -> Self {
Sighash {
base: base,
anyone_can_pay: anyone_can_pay,
}
}
pub fn from_u32(u: u32) -> Option<Self> {
// use 0x9f istead of 0x1f to catch 0x80
let (base, anyone_can_pay) = match u & 0x9f {
1 => (SighashBase::All, false),
2 => (SighashBase::None, false),
3 => (SighashBase::Single, false),
0x81 => (SighashBase::All, true),
0x82 => (SighashBase::None, true),
0x83 => (SighashBase::Single, true),
x if x & 0x80 == 0x80 => (SighashBase::All, true),
Some(Sighash::new(base, anyone_can_pay))
#[derive(Debug, PartialEq, Clone, Copy)]
pub enum SignatureVersion {
fn check_signature(
&self,
script_signature: &[u8],
script: &Script,
version: SignatureVersion
) -> bool;
fn check_lock_time(&self, lock_time: Num) -> bool;
fn check_sequence(&self, sequence: Num) -> bool;
}
pub struct NoopSignatureChecker;
impl SignatureChecker for NoopSignatureChecker {
fn check_signature(&self, _: &[u8], _: &[u8], _: &Script, _: SignatureVersion) -> bool {
false
}
fn check_lock_time(&self, _: Num) -> bool {
false
}
fn check_sequence(&self, _: Num) -> bool {
false
}
}
pub struct TransactionSignatureChecker {
transaction: Transaction,
i: u32,
amount: i64,
}
impl TransactionSignatureChecker {
fn verify_signature(&self, _signature: &[u8], _public: &[u8], _hash: &H256) -> bool {
unimplemented!();
}
}
impl SignatureChecker for TransactionSignatureChecker {
fn check_signature(
&self,
_script: &Script,
_version: SignatureVersion
) -> bool {
let public = match Public::from_slice(public) {
Ok(public) => public,
_ => return false,
};
if script_signature.is_empty() {
return false;
}
let _hash_type = script_signature.last().unwrap();
unimplemented!();
}
fn check_lock_time(&self, _lock_time: Num) -> bool {
unimplemented!();
}
fn check_sequence(&self, _sequence: Num) -> bool {
unimplemented!();
}
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
fn is_public_key(v: &[u8]) -> bool {
match v.len() {
33 if v[0] == 2 || v[0] == 3 => true,
65 if v[0] == 4 => true,
_ => false,
}
}
/// A canonical signature exists of: <30> <total len> <02> <len R> <R> <02> <len S> <S> <hashtype>
/// Where R and S are not negative (their first byte has its highest bit not set), and not
/// excessively padded (do not start with a 0 byte, unless an otherwise negative number follows,
/// in which case a single 0 byte is necessary and even required).
///
/// See https://bitcointalk.org/index.php?topic=8392.msg127623#msg127623
///
/// This function is consensus-critical since BIP66.
fn is_valid_signature_encoding(sig: &[u8]) -> bool {
// Format: 0x30 [total-length] 0x02 [R-length] [R] 0x02 [S-length] [S] [sighash]
// * total-length: 1-byte length descriptor of everything that follows,
// excluding the sighash byte.
// * R-length: 1-byte length descriptor of the R value that follows.
// * R: arbitrary-length big-endian encoded R value. It must use the shortest
// possible encoding for a positive integers (which means no null bytes at
// the start, except a single one when the next byte has its highest bit set).
// * S-length: 1-byte length descriptor of the S value that follows.
// * S: arbitrary-length big-endian encoded S value. The same rules apply.
// * sighash: 1-byte value indicating what data is hashed (not part of the DER
// signature)
// Minimum and maximum size constraints
if sig.len() < 9 || sig.len() > 73 {
return false;
}
// A signature is of type 0x30 (compound)
if sig[0] != 0x30 {
return false;
}
// Make sure the length covers the entire signature.
if sig[1] as usize != sig.len() - 3 {
return false;
}
// Extract the length of the R element.
let len_r = sig[3] as usize;
// Make sure the length of the S element is still inside the signature.
if len_r + 5 >= sig.len() {
return false;
}
// Extract the length of the S element.
let len_s = sig[len_r + 5] as usize;
// Verify that the length of the signature matches the sum of the length
if len_r + len_s + 7 != sig.len() {
return false;
}
// Check whether the R element is an integer.
if sig[2] != 2 {
return false;
}
// Zero-length integers are not allowed for R.
if len_r == 0 {
return false;
}
// Negative numbers are not allowed for R.
if (sig[4] & 0x80) != 0 {
return false;
}
// Null bytes at the start of R are not allowed, unless R would
// otherwise be interpreted as a negative number.
if len_r > 1 && sig[4] == 0 && (!(sig[5] & 0x80)) != 0 {
return false;
}
// Check whether the S element is an integer.
if sig[len_r + 4] != 2 {
return false;
}
// Zero-length integers are not allowed for S.
if len_s == 0 {
return false;
}
// Negative numbers are not allowed for S.
if (sig[len_r + 6] & 0x80) != 0 {
return false;
}
// Null bytes at the start of S are not allowed, unless S would otherwise be
// interpreted as a negative number.
if len_s > 1 && (sig[len_r + 6] == 0) && (!(sig[len_r + 7] & 0x80)) != 0 {
return false;
}
true
}
fn is_low_der_signature(sig: &[u8]) -> Result<(), Error> {
if !is_valid_signature_encoding(sig) {
return Err(Error::SignatureDer);
}
let signature: Signature = sig.into();
if !signature.check_low_s() {
return Err(Error::SignatureHighS);
}
}
fn is_defined_hashtype_signature(sig: &[u8]) -> bool {
if sig.is_empty() {
return false;
}
Sighash::from_u32(sig[sig.len() -1] as u32).is_some()
fn check_signature_encoding(sig: &[u8], flags: &VerificationFlags) -> Result<(), Error> {
// Empty signature. Not strictly DER encoded, but allowed to provide a
// compact way to provide an invalid signature for use with CHECK(MULTI)SIG
if sig.is_empty() {
}
if (flags.verify_dersig || flags.verify_low_s || flags.verify_strictenc) && !is_valid_signature_encoding(sig) {
return Err(Error::SignatureDer);
}
if flags.verify_low_s {
try!(is_low_der_signature(sig));
}
if flags.verify_strictenc && !is_defined_hashtype_signature(sig) {
fn check_pubkey_encoding(v: &[u8], flags: &VerificationFlags) -> Result<(), Error> {
if flags.verify_strictenc && !is_public_key(v) {
return Err(Error::PubkeyType);
}
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
}
fn check_minimal_push(data: &[u8], opcode: Opcode) -> bool {
if data.is_empty() {
// Could have used OP_0.
opcode == Opcode::OP_0
} else if data.len() == 1 && data[0] >= 1 && data[0] <= 16 {
// Could have used OP_1 .. OP_16.
opcode as u8 == Opcode::OP_1 as u8 + (data[0] - 1)
} else if data.len() == 1 && data[0] == 0x81 {
// Could have used OP_1NEGATE
opcode == Opcode::OP_1NEGATE
} else if data.len() <= 75 {
// Could have used a direct push (opcode indicating number of bytes pushed + those bytes).
opcode as usize == data.len()
} else if data.len() <= 255 {
// Could have used OP_PUSHDATA.
opcode == Opcode::OP_PUSHDATA1
} else if data.len() <= 65535 {
// Could have used OP_PUSHDATA2.
opcode == Opcode::OP_PUSHDATA2
} else {
true
}
}
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
fn cast_to_bool(data: &[u8]) -> bool {
if data.is_empty() {
return false;
}
if data[..data.len() - 1].iter().any(|x| x != &0) {
return true;
}
let last = data[data.len() - 1];
if last == 0 || last == 0x80 {
false
} else {
true
}
}
#[inline]
fn require_not_empty(stack: &Vec<Vec<u8>>) -> Result<(), Error> {
match stack.is_empty() {
true => Err(Error::InvalidStackOperation),
false => Ok(()),
}
}
#[inline]
fn require_len(stack: &Vec<Vec<u8>>, len: usize) -> Result<(), Error> {
match stack.len() < len {
true => Err(Error::InvalidStackOperation),
false => Ok(()),
}
}
stack: &mut Vec<Vec<u8>>,
flags: &VerificationFlags,
if script.len() > script::MAX_SCRIPT_SIZE {
return Err(Error::ScriptSize);
}
let mut pc = 0;
let mut begincode = 0;
let mut exec_stack = Vec::<bool>::new();
let mut altstack = Vec::<Vec<u8>>::new();
while pc < script.len() {
let fexec = exec_stack.iter().find(|&x| !x).is_some();
let opcode = try!(script.get_opcode(pc));
match opcode {
Opcode::OP_PUSHDATA1 |
Opcode::OP_PUSHDATA2 |
Opcode::OP_PUSHDATA4 => {
let len = match opcode {
Opcode::OP_PUSHDATA1 => 1,
Opcode::OP_PUSHDATA2 => 2,
_ => 4,
};
let slice = try!(script.take(pc + 1, len));
let n = try!(read_usize(slice, len));
let bytes = try!(script.take_checked(pc + 1 + len, n));
if flags.verify_minimaldata && !check_minimal_push(bytes, opcode) {
return Err(Error::Minimaldata);
}
stack.push(bytes.to_vec());
pc += len + n;
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
Opcode::OP_0 |
Opcode::OP_PUSHBYTES_1 |
Opcode::OP_PUSHBYTES_2 |
Opcode::OP_PUSHBYTES_3 |
Opcode::OP_PUSHBYTES_4 |
Opcode::OP_PUSHBYTES_5 |
Opcode::OP_PUSHBYTES_6 |
Opcode::OP_PUSHBYTES_7 |
Opcode::OP_PUSHBYTES_8 |
Opcode::OP_PUSHBYTES_9 |
Opcode::OP_PUSHBYTES_10 |
Opcode::OP_PUSHBYTES_11 |
Opcode::OP_PUSHBYTES_12 |
Opcode::OP_PUSHBYTES_13 |
Opcode::OP_PUSHBYTES_14 |
Opcode::OP_PUSHBYTES_15 |
Opcode::OP_PUSHBYTES_16 |
Opcode::OP_PUSHBYTES_17 |
Opcode::OP_PUSHBYTES_18 |
Opcode::OP_PUSHBYTES_19 |
Opcode::OP_PUSHBYTES_20 |
Opcode::OP_PUSHBYTES_21 |
Opcode::OP_PUSHBYTES_22 |
Opcode::OP_PUSHBYTES_23 |
Opcode::OP_PUSHBYTES_24 |
Opcode::OP_PUSHBYTES_25 |
Opcode::OP_PUSHBYTES_26 |
Opcode::OP_PUSHBYTES_27 |
Opcode::OP_PUSHBYTES_28 |
Opcode::OP_PUSHBYTES_29 |
Opcode::OP_PUSHBYTES_30 |
Opcode::OP_PUSHBYTES_31 |
Opcode::OP_PUSHBYTES_32 |
Opcode::OP_PUSHBYTES_33 |
Opcode::OP_PUSHBYTES_34 |
Opcode::OP_PUSHBYTES_35 |
Opcode::OP_PUSHBYTES_36 |
Opcode::OP_PUSHBYTES_37 |
Opcode::OP_PUSHBYTES_38 |
Opcode::OP_PUSHBYTES_39 |
Opcode::OP_PUSHBYTES_40 |
Opcode::OP_PUSHBYTES_41 |
Opcode::OP_PUSHBYTES_42 |
Opcode::OP_PUSHBYTES_43 |
Opcode::OP_PUSHBYTES_44 |
Opcode::OP_PUSHBYTES_45 |
Opcode::OP_PUSHBYTES_46 |
Opcode::OP_PUSHBYTES_47 |
Opcode::OP_PUSHBYTES_48 |
Opcode::OP_PUSHBYTES_49 |
Opcode::OP_PUSHBYTES_50 |
Opcode::OP_PUSHBYTES_51 |
Opcode::OP_PUSHBYTES_52 |
Opcode::OP_PUSHBYTES_53 |
Opcode::OP_PUSHBYTES_54 |
Opcode::OP_PUSHBYTES_55 |
Opcode::OP_PUSHBYTES_56 |
Opcode::OP_PUSHBYTES_57 |
Opcode::OP_PUSHBYTES_58 |
Opcode::OP_PUSHBYTES_59 |
Opcode::OP_PUSHBYTES_60 |
Opcode::OP_PUSHBYTES_61 |
Opcode::OP_PUSHBYTES_62 |
Opcode::OP_PUSHBYTES_63 |
Opcode::OP_PUSHBYTES_64 |
Opcode::OP_PUSHBYTES_65 |
Opcode::OP_PUSHBYTES_66 |
Opcode::OP_PUSHBYTES_67 |
Opcode::OP_PUSHBYTES_68 |
Opcode::OP_PUSHBYTES_69 |
Opcode::OP_PUSHBYTES_70 |
Opcode::OP_PUSHBYTES_71 |
Opcode::OP_PUSHBYTES_72 |
Opcode::OP_PUSHBYTES_73 |
Opcode::OP_PUSHBYTES_74 |
Opcode::OP_PUSHBYTES_75 => {
let bytes = try!(script.take_checked(pc + 1, opcode as usize));
if flags.verify_minimaldata && !check_minimal_push(bytes, opcode) {
return Err(Error::Minimaldata);
}
stack.push(bytes.to_vec());
pc += opcode as usize;
},
Opcode::OP_1 |
Opcode::OP_2 |
Opcode::OP_3 |
Opcode::OP_4 |
Opcode::OP_5 |
Opcode::OP_6 |
Opcode::OP_7 |
Opcode::OP_8 |
Opcode::OP_9 |
Opcode::OP_10 |
Opcode::OP_11 |
Opcode::OP_12 |
Opcode::OP_13 |
Opcode::OP_14 |
Opcode::OP_15 |
Opcode::OP_16 => {
let value = opcode as u8 - (Opcode::OP_1 as u8 - 1);
stack.push(Num::from(value).to_vec());
Opcode::OP_CAT | Opcode::OP_SUBSTR | Opcode::OP_LEFT | Opcode::OP_RIGHT |
Opcode::OP_INVERT | Opcode::OP_AND | Opcode::OP_OR | Opcode::OP_XOR |
Opcode::OP_2MUL | Opcode::OP_2DIV | Opcode::OP_MUL | Opcode::OP_DIV |
Opcode::OP_MOD | Opcode::OP_LSHIFT | Opcode::OP_RSHIFT => {
return Err(Error::DisabledOpcode(opcode));
},
Opcode::OP_NOP => break,
Opcode::OP_CHECKLOCKTIMEVERIFY => {
if !flags.verify_clocktimeverify {
if flags.verify_discourage_upgradable_nops {
return Err(Error::DiscourageUpgradableNops);
try!(require_not_empty(stack));
// Note that elsewhere numeric opcodes are limited to
// operands in the range -2**31+1 to 2**31-1, however it is
// legal for opcodes to produce results exceeding that
// range. This limitation is implemented by CScriptNum's
// default 4-byte limit.
//
// If we kept to that limit we'd have a year 2038 problem,
// even though the nLockTime field in transactions
// themselves is uint32 which only becomes meaningless
// after the year 2106.
//
// Thus as a special case we tell CScriptNum to accept up
// to 5-byte bignums, which are good until 2**39-1, well
// beyond the 2**32-1 limit of the nLockTime field itself.
let lock_time = try!(Num::from_slice(stack.last().unwrap(), flags.verify_minimaldata, 5));
// In the rare event that the argument may be < 0 due to
// some arithmetic being done first, you can always use
// 0 MAX CHECKLOCKTIMEVERIFY.
if lock_time.is_negative() {
return Err(Error::NegativeLocktime);
}
if !checker.check_lock_time(lock_time) {
return Err(Error::UnsatisfiedLocktime);
}
},
Opcode::OP_CHECKSEQUENCEVERIFY => {
if !flags.verify_chechsequenceverify {
if flags.verify_discourage_upgradable_nops {
return Err(Error::DiscourageUpgradableNops);
let sequence = try!(Num::from_slice(stack.last().unwrap(), flags.verify_minimaldata, 5));
if sequence.is_negative() {
return Err(Error::NegativeLocktime);
}
if (sequence & (SEQUENCE_LOCKTIME_DISABLE_FLAG as i64).into()).is_zero() {
if !checker.check_sequence(sequence) {
return Err(Error::UnsatisfiedLocktime);
}
}
},
Opcode::OP_NOP1 | Opcode::OP_NOP4 | Opcode::OP_NOP5 | Opcode::OP_NOP6 |
Opcode::OP_NOP7 | Opcode::OP_NOP8 | Opcode::OP_NOP9 | Opcode::OP_NOP10 => {
if flags.verify_discourage_upgradable_nops {
return Err(Error::DiscourageUpgradableNops);
}
},
Opcode::OP_IF | Opcode::OP_NOTIF => {
let mut exec_value = false;
if fexec {
try!(require_not_empty(stack).map_err(|_| Error::UnbalancedConditional));
exec_value = cast_to_bool(&stack.pop().unwrap());
if opcode == Opcode::OP_NOTIF {
exec_value = !exec_value;
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
}
exec_stack.push(exec_value);
},
Opcode::OP_ELSE => {
if exec_stack.is_empty() {
return Err(Error::UnbalancedConditional);
}
let last = exec_stack[exec_stack.len() - 1];
exec_stack[exec_stack.len() - 1] == !last;
},
Opcode::OP_ENDIF => {
if exec_stack.is_empty() {
return Err(Error::UnbalancedConditional);
}
exec_stack.pop();
},
Opcode::OP_VERIFY => {
try!(require_not_empty(stack));
// should we return an error without popping the value?
let exec_value = cast_to_bool(&stack.pop().unwrap());
if !exec_value {
return Err(Error::Verify);
}
},
Opcode::OP_RETURN => {
return Err(Error::ReturnOpcode);
},
Opcode::OP_TOALTSTACK => {
try!(require_not_empty(stack));
altstack.push(stack.pop().unwrap());
},
Opcode::OP_FROMALTSTACK => {
try!(require_not_empty(&altstack).map_err(|_| Error::InvalidAltstackOperation));
stack.push(altstack.pop().unwrap());
},
Opcode::OP_2DROP => {
try!(require_len(stack, 2));
stack.pop();
stack.pop();
},
Opcode::OP_2DUP => {
try!(require_len(stack, 2));
let v1 = stack[stack.len() - 2].clone();
let v2 = stack[stack.len() - 1].clone();
stack.push(v1);
stack.push(v2);
},
Opcode::OP_3DUP => {
try!(require_len(stack, 3));
let v1 = stack[stack.len() - 3].clone();
let v2 = stack[stack.len() - 2].clone();
let v3 = stack[stack.len() - 1].clone();
stack.push(v1);
stack.push(v2);
stack.push(v3);
},
Opcode::OP_2OVER => {
try!(require_len(stack, 4));
let v1 = stack[stack.len() - 4].clone();
let v2 = stack[stack.len() - 3].clone();
stack.push(v1);
stack.push(v2);
},
Opcode::OP_2ROT => {
try!(require_len(stack, 6));
let v1 = stack[stack.len() - 6].clone();
let v2 = stack[stack.len() - 5].clone();
let len = stack.len();
stack.remove(len - 6);
// -5 -just removed element
stack.remove(len - 6);
stack.push(v1);
stack.push(v2);
},
Opcode::OP_2SWAP => {
try!(require_len(stack, 4));
let len = stack.len();
stack.swap(len - 4, len - 2);
stack.swap(len - 3, len - 1);
},
Opcode::OP_IFDUP => {
try!(require_not_empty(stack));
if cast_to_bool(stack.last().unwrap()) {
let last = stack.last().unwrap().clone();
stack.push(last);
}
},
Opcode::OP_DEPTH => {
let depth = Num::from(stack.len());
stack.push(depth.to_vec());
},
Opcode::OP_DROP => {
try!(require_not_empty(stack));
stack.pop();
},
Opcode::OP_DUP => {
try!(require_not_empty(stack));
let v1 = stack[stack.len() - 1].clone();
stack.push(v1);
},
Opcode::OP_NIP => {
try!(require_len(stack, 2));
let len = stack.len();
stack.swap_remove(len - 2);
},
Opcode::OP_OVER => {
try!(require_len(stack, 2));
let v = stack[stack.len() - 2].clone();
stack.push(v);
},
Opcode::OP_PICK | Opcode::OP_ROLL => {
try!(require_len(stack, 2));
let n: i64 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4)).into();
if n < 0 || n >= stack.len() as i64 {
return Err(Error::InvalidStackOperation);
}
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
let v = stack[n as usize + 1].clone();
if opcode == Opcode::OP_ROLL {
stack.remove(n as usize + 1);
}
stack.push(v);
},
Opcode::OP_ROT => {
try!(require_len(stack, 3));
let len = stack.len();
stack.swap(len - 3, len - 2);
stack.swap(len - 2, len - 1);
},
Opcode::OP_SWAP => {
try!(require_len(stack, 2));
let len = stack.len();
stack.swap(len - 2, len - 1);
},
Opcode::OP_TUCK => {
try!(require_len(stack, 2));
let len = stack.len();
let v = stack[len - 1].clone();
stack.insert(len - 2, v);
},
Opcode::OP_SIZE => {
try!(require_not_empty(stack));
let n = Num::from(stack.last().unwrap().len());
stack.push(n.to_vec());
},
Opcode::OP_EQUAL => {
try!(require_len(stack, 2));
let v1 = stack.pop();
let v2 = stack.pop();
let to_push = match v1 == v2 {
true => vec![1],
false => vec![0],
};
stack.push(to_push);
},
Opcode::OP_EQUALVERIFY => {
try!(require_len(stack, 2));
let equal = stack.pop() == stack.pop();
if !equal {
return Err(Error::EqualVerify);
}
},
Opcode::OP_1ADD => {
try!(require_not_empty(stack));
let n = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4)) + 1.into();
stack.push(n.to_vec());
},
Opcode::OP_1SUB => {
try!(require_not_empty(stack));
let n = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4)) - 1.into();
stack.push(n.to_vec());
},
Opcode::OP_NEGATE => {
try!(require_not_empty(stack));
let n = -try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
stack.push(n.to_vec());
},
Opcode::OP_ABS => {
try!(require_not_empty(stack));
let n = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4)).abs();
stack.push(n.to_vec());
},
Opcode::OP_NOT => {
try!(require_not_empty(stack));
let n = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4)).is_zero();
let n = Num::from(n);
stack.push(n.to_vec());
},
Opcode::OP_0NOTEQUAL => {
try!(require_not_empty(stack));
let n = !try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4)).is_zero();
let n = Num::from(n);
stack.push(n.to_vec());
},
Opcode::OP_ADD => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
stack.push((v1 + v2).to_vec());
},
Opcode::OP_SUB => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
stack.push((v2 - v1).to_vec());
},
Opcode::OP_BOOLAND => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(!v1.is_zero() && !v2.is_zero());
stack.push(v.to_vec());
},
Opcode::OP_BOOLOR => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(!v1.is_zero() || !v2.is_zero());
stack.push(v.to_vec());
},
Opcode::OP_NUMEQUAL => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(v1 == v2);
stack.push(v.to_vec());
},
Opcode::OP_NUMEQUALVERIFY => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
if v1 != v2 {
return Err(Error::NumEqualVerify);
}
},
Opcode::OP_NUMNOTEQUAL => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(v1 != v2);
stack.push(v.to_vec());
},
Opcode::OP_LESSTHAN => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(v1 > v2);
stack.push(v.to_vec());
},
Opcode::OP_GREATERTHAN => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(v1 < v2);
stack.push(v.to_vec());
},
Opcode::OP_LESSTHANOREQUAL => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(v1 >= v2);
stack.push(v.to_vec());
},
Opcode::OP_GREATERTHANOREQUAL => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v = Num::from(v1 <= v2);
stack.push(v.to_vec());
},
Opcode::OP_MIN => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
stack.push(cmp::min(v1, v2).to_vec());
},
Opcode::OP_MAX => {
try!(require_len(stack, 2));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
stack.push(cmp::max(v1, v2).to_vec());
},
Opcode::OP_WITHIN => {
try!(require_len(stack, 3));
let v1 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v2 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let v3 = try!(Num::from_slice(&stack.pop().unwrap(), flags.verify_minimaldata, 4));
let to_push = match v2 <= v3 && v3 <= v1 {
true => vec![1],
false => vec![0],
};
stack.push(to_push);
},
Opcode::OP_RIPEMD160 => {
try!(require_not_empty(stack));
let v = ripemd160(&stack.pop().unwrap());
stack.push(v.to_vec());
},
Opcode::OP_SHA1 => {
try!(require_not_empty(stack));
let v = sha1(&stack.pop().unwrap());
stack.push(v.to_vec());
},
Opcode::OP_SHA256 => {
try!(require_not_empty(stack));
let v = sha256(&stack.pop().unwrap());
stack.push(v.to_vec());
},
Opcode::OP_HASH160 => {
try!(require_not_empty(stack));
let v = dhash160(&stack.pop().unwrap());
stack.push(v.to_vec());
},
Opcode::OP_HASH256 => {
try!(require_not_empty(stack));
let v = dhash256(&stack.pop().unwrap());
stack.push(v.to_vec());
},
Opcode::OP_CODESEPARATOR => {
begincode = pc;
},
Opcode::OP_CHECKSIG | Opcode::OP_CHECKSIGVERIFY => {
try!(require_len(stack, 2));
let pubkey = stack.pop().unwrap();
let signature = stack.pop().unwrap();
let mut subscript = script.subscript(begincode);
if version == SignatureVersion::Base {
subscript = script.find_and_delete(&signature);
}
try!(check_signature_encoding(&signature, flags));
try!(check_pubkey_encoding(&pubkey, flags));
let success = checker.check_signature(&signature, &pubkey, &subscript, version);
match opcode {
Opcode::OP_CHECKSIG => {
let to_push = match success {
true => vec![1],
false => vec![0],
};
stack.push(to_push);
},
Opcode::OP_CHECKSIGVERIFY if !success => {
return Err(Error::CheckSigVerify);
},
_ => {},
}
let success = !stack.is_empty() && {
let last = stack.last().unwrap();
last != &vec![0; last.len()]
};
#[cfg(test)]
mod tests {
use hex::FromHex;
use script::{Opcode, Script, VerificationFlags, Builder, Error, Num};
use super::{is_public_key, eval_script, NoopSignatureChecker, SignatureVersion};
#[test]
fn tests_is_public_key() {
assert!(!is_public_key(&[]));
assert!(!is_public_key(&[1]));
assert!(is_public_key(&"0495dfb90f202c7d016ef42c65bc010cd26bb8237b06253cc4d12175097bef767ed6b1fcb3caf1ed57c98d92e6cb70278721b952e29a335134857acd4c199b9d2f".from_hex().unwrap()));
assert!(is_public_key(&[2; 33]));
assert!(is_public_key(&[3; 33]));
assert!(!is_public_key(&[4; 33]));
}
// https://github.com/bitcoin/bitcoin/blob/d612837814020ae832499d18e6ee5eb919a87907/src/test/script_tests.cpp#L900
#[test]
fn test_push_data() {
let expected = vec![vec![0x5a]];
let flags = VerificationFlags::default()
.verify_p2sh(true);
let checker = NoopSignatureChecker;
let version = SignatureVersion::Base;
let direct = Script::new(vec![Opcode::OP_PUSHBYTES_1 as u8, 0x5a]);
let pushdata1 = Script::new(vec![Opcode::OP_PUSHDATA1 as u8, 0x1, 0x5a]);
let pushdata2 = Script::new(vec![Opcode::OP_PUSHDATA2 as u8, 0x1, 0, 0x5a]);
let pushdata4 = Script::new(vec![Opcode::OP_PUSHDATA4 as u8, 0x1, 0, 0, 0, 0x5a]);
let mut direct_stack = vec![];
let mut pushdata1_stack= vec![];
let mut pushdata2_stack= vec![];
let mut pushdata4_stack= vec![];
assert!(eval_script(&mut direct_stack, &direct, &flags, &checker, version).unwrap());
assert!(eval_script(&mut pushdata1_stack, &pushdata1, &flags, &checker, version).unwrap());
assert!(eval_script(&mut pushdata2_stack, &pushdata2, &flags, &checker, version).unwrap());
assert!(eval_script(&mut pushdata4_stack, &pushdata4, &flags, &checker, version).unwrap());
assert_eq!(expected, direct_stack);
assert_eq!(expected, pushdata1_stack);
assert_eq!(expected, pushdata2_stack);
assert_eq!(expected, pushdata4_stack);
}
fn basic_test(script: &Script, expected: Result<bool, Error>, expected_stack: Vec<Vec<u8>>) {