Skip to content
Snippets Groups Projects
Commit 97328ee6 authored by Yash Garg's avatar Yash Garg Committed by Shawn Tabrizi
Browse files

Update README.adoc (#3744)


* Update README.adoc

* Update README.adoc

Co-Authored-By: default avatarjoe petrowski <25483142+joepetrowski@users.noreply.github.com>

* Update README.adoc

Co-Authored-By: default avatarjoe petrowski <25483142+joepetrowski@users.noreply.github.com>

* Update README.adoc

Co-Authored-By: default avatarjoe petrowski <25483142+joepetrowski@users.noreply.github.com>

* Update README.adoc

Co-Authored-By: default avatarjoe petrowski <25483142+joepetrowski@users.noreply.github.com>
parent 62b97a09
Branches
No related merge requests found
......@@ -20,13 +20,13 @@ See also https://www.parity.io/what-is-substrate/.
Substrate is still an early stage project, and while it has already been used as the basis of major projects like Polkadot, using it is still a significant undertaking. In particular, you should have a good knowledge of blockchain concepts and basic cryptography. Terminology like header, block, client, hash, transaction and signature should be familiar. At present you will need a working knowledge of Rust to be able to do anything interesting (though eventually, we aim for this not to be the case).
Substrate is designed to be used in one of three ways:
Substrate is designed for use in one of three ways:
1. Trivial: By running the Substrate binary `substrate` and configuring it with a genesis block that includes the current demonstration runtime. In this case, you just build Substrate, configure a JSON file and launch your own blockchain. This affords you the least amount of customisability, primarily allowing you to change the genesis parameters of the various included runtime modules such as balances, staking, block-period, fees and governance.
**1. Trivial**: By running the Substrate binary `substrate` and configuring it with a genesis block that includes the current demonstration runtime. In this case, you just build Substrate, configure a JSON file, and launch your own blockchain. This affords you the least amount of customizability, primarily allowing you to change the genesis parameters of the various included runtime modules such as balances, staking, block-period, fees, and governance.
2. Modular: By hacking together modules from the Substrate Runtime Module Library into a new runtime and possibly altering or reconfiguring the Substrate client's block authoring logic. This affords you a very large amount of freedom over your own blockchain's logic, letting you change datatypes, add or remove modules and, crucially, add your own modules. Much can be changed without touching the block-authoring logic (since it is generic). If this is the case, then the existing Substrate binary can be used for block authoring and syncing. If the block authoring logic needs to be tweaked, then a new altered block-authoring binary must be built as a separate project and used by validators. This is how the Polkadot relay chain is built and should suffice for almost all circumstances in the near to mid-term.
**2. Modular**: By hacking together modules from the Substrate Runtime Module Library (SRML) into a new runtime and possibly altering or reconfiguring the Substrate client's block authoring logic. This affords you a very large amount of freedom over your blockchain's logic, letting you change datatypes, add or remove modules, and crucially, add your own modules. Much can be changed without touching the block authoring logic (since it is generic). If this is the case, then the existing Substrate binary can be used for block authoring and syncing. If the block authoring logic needs to be tweaked, then a new, altered block authoring binary must be built as a separate project and used by validators. This is how the Polkadot relay chain is built and should suffice for almost all circumstances in the near to mid-term.
3. Generic: The entire Substrate Runtime Module Library can be ignored and the entire runtime designed and implemented from scratch. If desired, this can be done in a language other than Rust, providing it can target WebAssembly. If the runtime can be made to be compatible with the existing client's block authoring logic, then you can simply construct a new genesis block from your Wasm blob and launch your chain with the existing Rust-based Substrate client. If not, then you'll need to alter the client's block authoring logic accordingly. This is probably a useless option for most projects right now, but provides complete flexibility allowing for a long-term far-reaching upgrade path for the Substrate paradigm.
**3. Generic**: The entire SRML can be ignored and the entire runtime designed and implemented from scratch. If desired, this can be done in a language other than Rust, provided it can target WebAssembly. If the runtime can be made compatible with the existing client's block authoring logic, then you can simply construct a new genesis block from your Wasm blob and launch your chain with the existing Rust-based Substrate client. If not, then you'll need to alter the client's block authoring logic accordingly. This is probably a useless option for most projects right now, but provides complete flexibility allowing for a long-term, far-reaching upgrade path for the Substrate paradigm.
=== The Basics of Substrate
......
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment