Skip to content
Snippets Groups Projects
Commit 28fa5c2b authored by thiolliere's avatar thiolliere Committed by GitHub
Browse files

Compute yearly inflation on-chain allowing to change x_ideal according to number of slots. (#8332)


* new crate

* Update frame/staking/reward-fn/src/lib.rs

Co-authored-by: default avatarGavin Wood <gavin@parity.io>

* fix doc

Co-authored-by: default avatarGavin Wood <gavin@parity.io>
parent c7277995
Branches
No related merge requests found
......@@ -5372,6 +5372,14 @@ dependencies = [
"syn",
]
[[package]]
name = "pallet-staking-reward-fn"
version = "3.0.0"
dependencies = [
"log",
"sp-arithmetic",
]
[[package]]
name = "pallet-sudo"
version = "3.0.0"
......
......@@ -107,6 +107,7 @@ members = [
"frame/staking",
"frame/staking/fuzzer",
"frame/staking/reward-curve",
"frame/staking/reward-fn",
"frame/sudo",
"frame/support",
"frame/support/procedural",
......
[package]
name = "pallet-staking-reward-fn"
version = "3.0.0"
authors = ["Parity Technologies <admin@parity.io>"]
edition = "2018"
license = "Apache-2.0"
homepage = "https://substrate.dev"
repository = "https://github.com/paritytech/substrate/"
description = "Reward function for FRAME staking pallet"
[package.metadata.docs.rs]
targets = ["x86_64-unknown-linux-gnu"]
[lib]
[dependencies]
sp-arithmetic = { version = "3.0.0", default-features = false, path = "../../../primitives/arithmetic" }
log = { version = "0.4.14", default-features = false }
[features]
default = ["std"]
std = [
"sp-arithmetic/std",
"log/std",
]
// This file is part of Substrate.
// Copyright (C) 2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Useful function for inflation for nominated proof of stake.
use sp_arithmetic::{Perquintill, PerThing, biguint::BigUint, traits::{Zero, SaturatedConversion}};
use core::convert::TryFrom;
/// Compute yearly inflation using function
///
/// ```ignore
/// I(x) = for x between 0 and x_ideal: x / x_ideal,
/// for x between x_ideal and 1: 2^((x_ideal - x) / d)
/// ```
///
/// where:
/// * x is the stake rate, i.e. fraction of total issued tokens that actively staked behind
/// validators.
/// * d is the falloff or `decay_rate`
/// * x_ideal: the ideal stake rate.
///
/// The result is meant to be scaled with minimum inflation and maximum inflation.
///
/// (as detailed
/// [here](https://research.web3.foundation/en/latest/polkadot/economics/1-token-economics.html#inflation-model-with-parachains))
///
/// Arguments are:
/// * `stake`:
/// The fraction of total issued tokens that actively staked behind
/// validators. Known as `x` in the literature.
/// Must be between 0 and 1.
/// * `ideal_stake`:
/// The fraction of total issued tokens that should be actively staked behind
/// validators. Known as `x_ideal` in the literature.
/// Must be between 0 and 1.
/// * `falloff`:
/// Known as `decay_rate` in the literature. A co-efficient dictating the strength of
/// the global incentivization to get the `ideal_stake`. A higher number results in less typical
/// inflation at the cost of greater volatility for validators.
/// Must be more than 0.01.
pub fn compute_inflation<P: PerThing>(
stake: P,
ideal_stake: P,
falloff: P,
) -> P {
if stake < ideal_stake {
// ideal_stake is more than 0 because it is strictly more than stake
return stake / ideal_stake
}
if falloff < P::from_percent(1.into()) {
log::error!("Invalid inflation computation: falloff less than 1% is not supported");
return PerThing::zero()
}
let accuracy = {
let mut a = BigUint::from(Into::<u128>::into(P::ACCURACY));
a.lstrip();
a
};
let mut falloff = BigUint::from(falloff.deconstruct().into());
falloff.lstrip();
let ln2 = {
let ln2 = P::from_rational(LN2.deconstruct().into(), Perquintill::ACCURACY.into());
BigUint::from(ln2.deconstruct().into())
};
// falloff is stripped above.
let ln2_div_d = div_by_stripped(ln2.mul(&accuracy), &falloff);
let inpos_param = INPoSParam {
x_ideal: BigUint::from(ideal_stake.deconstruct().into()),
x: BigUint::from(stake.deconstruct().into()),
accuracy,
ln2_div_d,
};
let res = compute_taylor_serie_part(&inpos_param);
match u128::try_from(res.clone()) {
Ok(res) if res <= Into::<u128>::into(P::ACCURACY) => {
P::from_parts(res.saturated_into())
},
// If result is beyond bounds there is nothing we can do
_ => {
log::error!("Invalid inflation computation: unexpected result {:?}", res);
P::zero()
},
}
}
/// Internal struct holding parameter info alongside other cached value.
///
/// All expressed in part from `accuracy`
struct INPoSParam {
ln2_div_d: BigUint,
x_ideal: BigUint,
x: BigUint,
/// Must be stripped and have no leading zeros.
accuracy: BigUint,
}
/// `ln(2)` expressed in as perquintillionth.
const LN2: Perquintill = Perquintill::from_parts(0_693_147_180_559_945_309);
/// Compute `2^((x_ideal - x) / d)` using taylor serie.
///
/// x must be strictly more than x_ideal.
///
/// result is expressed with accuracy `INPoSParam.accuracy`
fn compute_taylor_serie_part(p: &INPoSParam) -> BigUint {
// The last computed taylor term.
let mut last_taylor_term = p.accuracy.clone();
// Whereas taylor sum is positive.
let mut taylor_sum_positive = true;
// The sum of all taylor term.
let mut taylor_sum = last_taylor_term.clone();
for k in 1..300 {
last_taylor_term = compute_taylor_term(k, &last_taylor_term, p);
if last_taylor_term.is_zero() {
break
}
let last_taylor_term_positive = k % 2 == 0;
if taylor_sum_positive == last_taylor_term_positive {
taylor_sum = taylor_sum.add(&last_taylor_term);
} else {
if taylor_sum >= last_taylor_term {
taylor_sum = taylor_sum.sub(&last_taylor_term)
// NOTE: Should never happen as checked above
.unwrap_or_else(|e| e);
} else {
taylor_sum_positive = !taylor_sum_positive;
taylor_sum = last_taylor_term.clone().sub(&taylor_sum)
// NOTE: Should never happen as checked above
.unwrap_or_else(|e| e);
}
}
}
if !taylor_sum_positive {
return BigUint::zero()
}
taylor_sum.lstrip();
taylor_sum
}
/// Return the absolute value of k-th taylor term of `2^((x_ideal - x))/d` i.e.
/// `((x - x_ideal) * ln(2) / d)^k / k!`
///
/// x must be strictly more x_ideal.
///
/// We compute the term from the last term using this formula:
///
/// `((x - x_ideal) * ln(2) / d)^k / k! == previous_term * (x - x_ideal) * ln(2) / d / k`
///
/// `previous_taylor_term` and result are expressed with accuracy `INPoSParam.accuracy`
fn compute_taylor_term(k: u32, previous_taylor_term: &BigUint, p: &INPoSParam) -> BigUint {
let x_minus_x_ideal = p.x.clone().sub(&p.x_ideal)
// NOTE: Should never happen, as x must be more than x_ideal
.unwrap_or_else(|_| BigUint::zero());
let res = previous_taylor_term.clone()
.mul(&x_minus_x_ideal)
.mul(&p.ln2_div_d)
.div_unit(k);
// p.accuracy is stripped by definition.
let res = div_by_stripped(res, &p.accuracy);
let mut res = div_by_stripped(res, &p.accuracy);
res.lstrip();
res
}
/// Compute a div b.
///
/// requires `b` to be stripped and have no leading zeros.
fn div_by_stripped(mut a: BigUint, b: &BigUint) -> BigUint {
a.lstrip();
if b.len() == 0 {
log::error!("Computation error: Invalid division");
return BigUint::zero()
}
if b.len() == 1 {
return a.div_unit(b.checked_get(0).unwrap_or(1))
}
if b.len() > a.len() {
return BigUint::zero()
}
if b.len() == a.len() {
// 100_000^2 is more than 2^32-1, thus `new_a` has more limbs than `b`.
let mut new_a = a.mul(&BigUint::from(100_000u64.pow(2)));
new_a.lstrip();
debug_assert!(new_a.len() > b.len());
return new_a
.div(b, false)
.map(|res| res.0)
.unwrap_or_else(|| BigUint::zero())
.div_unit(100_000)
.div_unit(100_000)
}
a.div(b, false)
.map(|res| res.0)
.unwrap_or_else(|| BigUint::zero())
}
// This file is part of Substrate.
// Copyright (C) 2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use sp_arithmetic::{PerThing, Perbill, PerU16, Percent, Perquintill};
/// This test the precision and panics if error too big error.
///
/// error is asserted to be less or equal to 8/accuracy or 8*f64::EPSILON
fn test_precision<P: PerThing>(stake: P, ideal_stake: P, falloff: P) {
let accuracy_f64 = Into::<u128>::into(P::ACCURACY) as f64;
let res = pallet_staking_reward_fn::compute_inflation(stake, ideal_stake, falloff);
let res = Into::<u128>::into(res.deconstruct()) as f64 / accuracy_f64;
let expect = float_i_npos(stake, ideal_stake, falloff);
let error = (res - expect).abs();
if error > 8f64 / accuracy_f64 && error > 8.0 * f64::EPSILON {
panic!(
"stake: {:?}, ideal_stake: {:?}, falloff: {:?}, res: {}, expect: {}",
stake, ideal_stake, falloff, res , expect
);
}
}
/// compute the inflation using floats
fn float_i_npos<P: PerThing>(stake: P, ideal_stake: P, falloff: P) -> f64 {
let accuracy_f64 = Into::<u128>::into(P::ACCURACY) as f64;
let ideal_stake = Into::<u128>::into(ideal_stake.deconstruct()) as f64 / accuracy_f64;
let stake = Into::<u128>::into(stake.deconstruct()) as f64 / accuracy_f64;
let falloff = Into::<u128>::into(falloff.deconstruct()) as f64 / accuracy_f64;
let x_ideal = ideal_stake;
let x = stake;
let d = falloff;
if x < x_ideal {
x / x_ideal
} else {
2_f64.powf((x_ideal - x) / d)
}
}
#[test]
fn test_precision_for_minimum_falloff() {
fn test_falloff_precision_for_minimum_falloff<P: PerThing>() {
for stake in 0..1_000 {
let stake = P::from_rational(stake, 1_000);
let ideal_stake = P::zero();
let falloff = P::from_rational(1, 100);
test_precision(stake, ideal_stake, falloff);
}
}
test_falloff_precision_for_minimum_falloff::<Perquintill>();
test_falloff_precision_for_minimum_falloff::<PerU16>();
test_falloff_precision_for_minimum_falloff::<Perbill>();
test_falloff_precision_for_minimum_falloff::<Percent>();
}
#[test]
fn compute_inflation_works() {
fn compute_inflation_works<P: PerThing>() {
for stake in 0..100 {
for ideal_stake in 0..10 {
for falloff in 1..10 {
let stake = P::from_rational(stake, 100);
let ideal_stake = P::from_rational(ideal_stake, 10);
let falloff = P::from_rational(falloff, 100);
test_precision(stake, ideal_stake, falloff);
}
}
}
}
compute_inflation_works::<Perquintill>();
compute_inflation_works::<PerU16>();
compute_inflation_works::<Perbill>();
compute_inflation_works::<Percent>();
}
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment