-
Sacha Lansky authored
* Fix docs urls * Update bin/node-template/README.md * Update frame/aura/src/lib.rs * Run cargo +nightly fmt Co-authored-by:
Bastian Köcher <bkchr@users.noreply.github.com>
df074219
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
misc.rs 27.99 KiB
// This file is part of Substrate.
// Copyright (C) 2019-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Smaller traits used in FRAME which don't need their own file.
use crate::dispatch::Parameter;
use codec::{CompactLen, Decode, DecodeAll, Encode, EncodeLike, Input, MaxEncodedLen};
use scale_info::{build::Fields, meta_type, Path, Type, TypeInfo, TypeParameter};
use sp_arithmetic::traits::{CheckedAdd, CheckedMul, CheckedSub, Saturating};
#[doc(hidden)]
pub use sp_runtime::traits::{
ConstBool, ConstI128, ConstI16, ConstI32, ConstI64, ConstI8, ConstU128, ConstU16, ConstU32,
ConstU64, ConstU8, Get, GetDefault, TryCollect, TypedGet,
};
use sp_runtime::{traits::Block as BlockT, DispatchError};
use sp_std::{cmp::Ordering, prelude::*};
#[doc(hidden)]
pub const DEFENSIVE_OP_PUBLIC_ERROR: &str = "a defensive failure has been triggered; please report the block number at https://github.com/paritytech/substrate/issues";
#[doc(hidden)]
pub const DEFENSIVE_OP_INTERNAL_ERROR: &str = "Defensive failure has been triggered!";
/// Generic function to mark an execution path as ONLY defensive.
///
/// Similar to mark a match arm or `if/else` branch as `unreachable!`.
#[macro_export]
macro_rules! defensive {
() => {
frame_support::log::error!(
target: "runtime",
"{}",
$crate::traits::DEFENSIVE_OP_PUBLIC_ERROR
);
debug_assert!(false, "{}", $crate::traits::DEFENSIVE_OP_INTERNAL_ERROR);
};
($error:tt) => {
frame_support::log::error!(
target: "runtime",
"{}: {:?}",
$crate::traits::DEFENSIVE_OP_PUBLIC_ERROR,
$error
);
debug_assert!(false, "{}: {:?}", $crate::traits::DEFENSIVE_OP_INTERNAL_ERROR, $error);
};
($error:tt, $proof:tt) => {
frame_support::log::error!(
target: "runtime",
"{}: {:?}: {:?}",
$crate::traits::DEFENSIVE_OP_PUBLIC_ERROR,
$error,
$proof,
);
debug_assert!(false, "{}: {:?}: {:?}", $crate::traits::DEFENSIVE_OP_INTERNAL_ERROR, $error, $proof);
}
}
/// Prelude module for all defensive traits to be imported at once.
pub mod defensive_prelude {
pub use super::{Defensive, DefensiveOption, DefensiveResult};
}
/// A trait to handle errors and options when you are really sure that a condition must hold, but
/// not brave enough to `expect` on it, or a default fallback value makes more sense.
///
/// This trait mostly focuses on methods that eventually unwrap the inner value. See
/// [`DefensiveResult`] and [`DefensiveOption`] for methods that specifically apply to the
/// respective types.
///
/// Each function in this trait will have two side effects, aside from behaving exactly as the name
/// would suggest:
///
/// 1. It panics on `#[debug_assertions]`, so if the infallible code is reached in any of the tests,
/// you realize.
/// 2. It will log an error using the runtime logging system. This might help you detect such bugs
/// in production as well. Note that the log message, as of now, are not super expressive. Your
/// best shot of fully diagnosing the error would be to infer the block number of which the log
/// message was emitted, then re-execute that block using `check-block` or `try-runtime`
/// subcommands in substrate client.
pub trait Defensive<T> {
/// Exactly the same as `unwrap_or`, but it does the defensive warnings explained in the trait
/// docs.
fn defensive_unwrap_or(self, other: T) -> T;
/// Exactly the same as `unwrap_or_else`, but it does the defensive warnings explained in the
/// trait docs.
fn defensive_unwrap_or_else<F: FnOnce() -> T>(self, f: F) -> T;
/// Exactly the same as `unwrap_or_default`, but it does the defensive warnings explained in the
/// trait docs.
fn defensive_unwrap_or_default(self) -> T
where
T: Default;
/// Does not alter the inner value at all, but it will log warnings if the inner value is `None`
/// or `Err`.
///
/// In some ways, this is like `.defensive_map(|x| x)`.
///
/// This is useful as:
/// ```nocompile
/// if let Some(inner) = maybe_value().defensive() {
/// ..
/// }
/// ```
fn defensive(self) -> Self;
/// Same as [`Defensive::defensive`], but it takes a proof as input, and displays it if the
/// defensive operation has been triggered.
fn defensive_proof(self, proof: &'static str) -> Self;
}
/// Subset of methods similar to [`Defensive`] that can only work for a `Result`.
pub trait DefensiveResult<T, E> {
/// Defensively map the error into another return type, but you are really sure that this
/// conversion should never be needed.
fn defensive_map_err<F, O: FnOnce(E) -> F>(self, o: O) -> Result<T, F>;
/// Defensively map and unpack the value to something else (`U`), or call the default callback
/// if `Err`, which should never happen.
fn defensive_map_or_else<U, D: FnOnce(E) -> U, F: FnOnce(T) -> U>(self, default: D, f: F) -> U;
/// Defensively transform this result into an option, discarding the `Err` variant if it
/// happens, which should never happen.
fn defensive_ok(self) -> Option<T>;
/// Exactly the same as `map`, but it prints the appropriate warnings if the value being mapped
/// is `Err`.
fn defensive_map<U, F: FnOnce(T) -> U>(self, f: F) -> Result<U, E>;
}
/// Subset of methods similar to [`Defensive`] that can only work for a `Option`.
pub trait DefensiveOption<T> {
/// Potentially map and unpack the value to something else (`U`), or call the default callback
/// if `None`, which should never happen.
fn defensive_map_or_else<U, D: FnOnce() -> U, F: FnOnce(T) -> U>(self, default: D, f: F) -> U;
/// Defensively transform this option to a result, mapping `None` to the return value of an
/// error closure.
fn defensive_ok_or_else<E, F: FnOnce() -> E>(self, err: F) -> Result<T, E>;
/// Defensively transform this option to a result, mapping `None` to a default value.
fn defensive_ok_or<E>(self, err: E) -> Result<T, E>;
/// Exactly the same as `map`, but it prints the appropriate warnings if the value being mapped
/// is `None`.
fn defensive_map<U, F: FnOnce(T) -> U>(self, f: F) -> Option<U>;
}
impl<T> Defensive<T> for Option<T> {
fn defensive_unwrap_or(self, or: T) -> T {
match self {
Some(inner) => inner,
None => {
defensive!();
or
},
}
}
fn defensive_unwrap_or_else<F: FnOnce() -> T>(self, f: F) -> T {
match self {
Some(inner) => inner,
None => {
defensive!();
f()
},
}
}
fn defensive_unwrap_or_default(self) -> T
where
T: Default,
{
match self {
Some(inner) => inner,
None => {
defensive!();
Default::default()
},
}
}
fn defensive(self) -> Self {
match self {
Some(inner) => Some(inner),
None => {
defensive!();
None
},
}
}
fn defensive_proof(self, proof: &'static str) -> Self {
if self.is_none() {
defensive!(proof);
}
self
}
}
impl<T, E: sp_std::fmt::Debug> Defensive<T> for Result<T, E> {
fn defensive_unwrap_or(self, or: T) -> T {
match self {
Ok(inner) => inner,
Err(e) => {
defensive!(e);
or
},
}
}
fn defensive_unwrap_or_else<F: FnOnce() -> T>(self, f: F) -> T {
match self {
Ok(inner) => inner,
Err(e) => {
defensive!(e);
f()
},
}
}
fn defensive_unwrap_or_default(self) -> T
where
T: Default,
{
match self {
Ok(inner) => inner,
Err(e) => {
defensive!(e);
Default::default()
},
}
}
fn defensive(self) -> Self {
match self {
Ok(inner) => Ok(inner),
Err(e) => {
defensive!(e);
Err(e)
},
}
}
fn defensive_proof(self, proof: &'static str) -> Self {
match self {
Ok(inner) => Ok(inner),
Err(e) => {
defensive!(e, proof);
Err(e)
},
}
}
}
impl<T, E: sp_std::fmt::Debug> DefensiveResult<T, E> for Result<T, E> {
fn defensive_map_err<F, O: FnOnce(E) -> F>(self, o: O) -> Result<T, F> {
self.map_err(|e| {
defensive!(e);
o(e)
})
}
fn defensive_map_or_else<U, D: FnOnce(E) -> U, F: FnOnce(T) -> U>(self, default: D, f: F) -> U {
self.map_or_else(
|e| {
defensive!(e);
default(e)
},
f,
)
}
fn defensive_ok(self) -> Option<T> {
match self {
Ok(inner) => Some(inner),
Err(e) => {
defensive!(e);
None
},
}
}
fn defensive_map<U, F: FnOnce(T) -> U>(self, f: F) -> Result<U, E> {
match self {
Ok(inner) => Ok(f(inner)),
Err(e) => {
defensive!(e);
Err(e)
},
}
}
}
impl<T> DefensiveOption<T> for Option<T> {
fn defensive_map_or_else<U, D: FnOnce() -> U, F: FnOnce(T) -> U>(self, default: D, f: F) -> U {
self.map_or_else(
|| {
defensive!();
default()
},
f,
)
}
fn defensive_ok_or_else<E, F: FnOnce() -> E>(self, err: F) -> Result<T, E> {
self.ok_or_else(|| {
defensive!();
err()
})
}
fn defensive_ok_or<E>(self, err: E) -> Result<T, E> {
self.ok_or_else(|| {
defensive!();
err
})
}
fn defensive_map<U, F: FnOnce(T) -> U>(self, f: F) -> Option<U> {
match self {
Some(inner) => Some(f(inner)),
None => {
defensive!();
None
},
}
}
}
/// A variant of [`Defensive`] with the same rationale, for the arithmetic operations where in
/// case an infallible operation fails, it saturates.
pub trait DefensiveSaturating {
/// Add `self` and `other` defensively.
fn defensive_saturating_add(self, other: Self) -> Self;
/// Subtract `other` from `self` defensively.
fn defensive_saturating_sub(self, other: Self) -> Self;
/// Multiply `self` and `other` defensively.
fn defensive_saturating_mul(self, other: Self) -> Self;
}
// NOTE: A bit unfortunate, since T has to be bound by all the traits needed. Could make it
// `DefensiveSaturating<T>` to mitigate.
impl<T: Saturating + CheckedAdd + CheckedMul + CheckedSub> DefensiveSaturating for T {
fn defensive_saturating_add(self, other: Self) -> Self {
self.checked_add(&other).defensive_unwrap_or_else(|| self.saturating_add(other))
}
fn defensive_saturating_sub(self, other: Self) -> Self {
self.checked_sub(&other).defensive_unwrap_or_else(|| self.saturating_sub(other))
}
fn defensive_saturating_mul(self, other: Self) -> Self {
self.checked_mul(&other).defensive_unwrap_or_else(|| self.saturating_mul(other))
}
}
/// Anything that can have a `::len()` method.
pub trait Len {
/// Return the length of data type.
fn len(&self) -> usize;
}
impl<T: IntoIterator + Clone> Len for T
where
<T as IntoIterator>::IntoIter: ExactSizeIterator,
{
fn len(&self) -> usize {
self.clone().into_iter().len()
}
}
/// A type for which some values make sense to be able to drop without further consideration.
pub trait TryDrop: Sized {
/// Drop an instance cleanly. Only works if its value represents "no-operation".
fn try_drop(self) -> Result<(), Self>;
}
impl TryDrop for () {
fn try_drop(self) -> Result<(), Self> {
Ok(())
}
}
/// Return type used when we need to return one of two items, each of the opposite direction or
/// sign, with one (`Same`) being of the same type as the `self` or primary argument of the function
/// that returned it.
pub enum SameOrOther<A, B> {
/// No item.
None,
/// An item of the same type as the `Self` on which the return function was called.
Same(A),
/// An item of the opposite type to the `Self` on which the return function was called.
Other(B),
}
impl<A, B> TryDrop for SameOrOther<A, B> {
fn try_drop(self) -> Result<(), Self> {
if let SameOrOther::None = self {
Ok(())
} else {
Err(self)
}
}
}
impl<A, B> SameOrOther<A, B> {
/// Returns `Ok` with the inner value of `Same` if `self` is that, otherwise returns `Err` with
/// `self`.
pub fn try_same(self) -> Result<A, Self> {
match self {
SameOrOther::Same(a) => Ok(a),
x => Err(x),
}
}
/// Returns `Ok` with the inner value of `Other` if `self` is that, otherwise returns `Err` with
/// `self`.
pub fn try_other(self) -> Result<B, Self> {
match self {
SameOrOther::Other(b) => Ok(b),
x => Err(x),
}
}
/// Returns `Ok` if `self` is `None`, otherwise returns `Err` with `self`.
pub fn try_none(self) -> Result<(), Self> {
match self {
SameOrOther::None => Ok(()),
x => Err(x),
}
}
pub fn same(self) -> Result<A, B>
where
A: Default,
{
match self {
SameOrOther::Same(a) => Ok(a),
SameOrOther::None => Ok(A::default()),
SameOrOther::Other(b) => Err(b),
}
}
pub fn other(self) -> Result<B, A>
where
B: Default,
{
match self {
SameOrOther::Same(a) => Err(a),
SameOrOther::None => Ok(B::default()),
SameOrOther::Other(b) => Ok(b),
}
}
}
/// Handler for when a new account has been created.
#[impl_trait_for_tuples::impl_for_tuples(30)]
pub trait OnNewAccount<AccountId> {
/// A new account `who` has been registered.
fn on_new_account(who: &AccountId);
}
/// The account with the given id was reaped.
#[impl_trait_for_tuples::impl_for_tuples(30)]
pub trait OnKilledAccount<AccountId> {
/// The account with the given id was reaped.
fn on_killed_account(who: &AccountId);
}
/// A simple, generic one-parameter event notifier/handler.
pub trait HandleLifetime<T> {
/// An account was created.
fn created(_t: &T) -> Result<(), DispatchError> {
Ok(())
}
/// An account was killed.
fn killed(_t: &T) -> Result<(), DispatchError> {
Ok(())
}
}
impl<T> HandleLifetime<T> for () {}
pub trait Time {
type Moment: sp_arithmetic::traits::AtLeast32Bit + Parameter + Default + Copy + MaxEncodedLen;
fn now() -> Self::Moment;
}
/// Trait to deal with unix time.
pub trait UnixTime {
/// Return duration since `SystemTime::UNIX_EPOCH`.
fn now() -> core::time::Duration;
}
/// Trait to be used when types are exactly same.
///
/// This allow to convert back and forth from type, a reference and a mutable reference.
pub trait IsType<T>: Into<T> + From<T> {
/// Cast reference.
fn from_ref(t: &T) -> &Self;
/// Cast reference.
fn into_ref(&self) -> &T;
/// Cast mutable reference.
fn from_mut(t: &mut T) -> &mut Self;
/// Cast mutable reference.
fn into_mut(&mut self) -> &mut T;
}
impl<T> IsType<T> for T {
fn from_ref(t: &T) -> &Self {
t
}
fn into_ref(&self) -> &T {
self
}
fn from_mut(t: &mut T) -> &mut Self {
t
}
fn into_mut(&mut self) -> &mut T {
self
}
}
/// Something that can be checked to be a of sub type `T`.
///
/// This is useful for enums where each variant encapsulates a different sub type, and
/// you need access to these sub types.
///
/// For example, in FRAME, this trait is implemented for the runtime `Call` enum. Pallets use this
/// to check if a certain call is an instance of the local pallet's `Call` enum.
///
/// # Example
///
/// ```
/// # use frame_support::traits::IsSubType;
///
/// enum Test {
/// String(String),
/// U32(u32),
/// }
///
/// impl IsSubType<String> for Test {
/// fn is_sub_type(&self) -> Option<&String> {
/// match self {
/// Self::String(ref r) => Some(r),
/// _ => None,
/// }
/// }
/// }
///
/// impl IsSubType<u32> for Test {
/// fn is_sub_type(&self) -> Option<&u32> {
/// match self {
/// Self::U32(ref r) => Some(r),
/// _ => None,
/// }
/// }
/// }
///
/// fn main() {
/// let data = Test::String("test".into());
///
/// assert_eq!("test", IsSubType::<String>::is_sub_type(&data).unwrap().as_str());
/// }
/// ```
pub trait IsSubType<T> {
/// Returns `Some(_)` if `self` is an instance of sub type `T`.
fn is_sub_type(&self) -> Option<&T>;
}
/// Something that can execute a given block.
///
/// Executing a block means that all extrinsics in a given block will be executed and the resulting
/// header will be checked against the header of the given block.
pub trait ExecuteBlock<Block: BlockT> {
/// Execute the given `block`.
///
/// This will execute all extrinsics in the block and check that the resulting header is
/// correct.
///
/// # Panic
///
/// Panics when an extrinsics panics or the resulting header doesn't match the expected header.
fn execute_block(block: Block);
}
/// Something that can compare privileges of two origins.
pub trait PrivilegeCmp<Origin> {
/// Compare the `left` to the `right` origin.
///
/// The returned ordering should be from the pov of the `left` origin.
///
/// Should return `None` when it can not compare the given origins.
fn cmp_privilege(left: &Origin, right: &Origin) -> Option<Ordering>;
}
/// Implementation of [`PrivilegeCmp`] that only checks for equal origins.
///
/// This means it will either return [`Ordering::Equal`] or `None`.
pub struct EqualPrivilegeOnly;
impl<Origin: PartialEq> PrivilegeCmp<Origin> for EqualPrivilegeOnly {
fn cmp_privilege(left: &Origin, right: &Origin) -> Option<Ordering> {
(left == right).then(|| Ordering::Equal)
}
}
/// Off-chain computation trait.
///
/// Implementing this trait on a module allows you to perform long-running tasks
/// that make (by default) validators generate transactions that feed results
/// of those long-running computations back on chain.
///
/// NOTE: This function runs off-chain, so it can access the block state,
/// but cannot preform any alterations. More specifically alterations are
/// not forbidden, but they are not persisted in any way after the worker
/// has finished.
#[impl_trait_for_tuples::impl_for_tuples(30)]
pub trait OffchainWorker<BlockNumber> {
/// This function is being called after every block import (when fully synced).
///
/// Implement this and use any of the `Offchain` `sp_io` set of APIs
/// to perform off-chain computations, calls and submit transactions
/// with results to trigger any on-chain changes.
/// Any state alterations are lost and are not persisted.
fn offchain_worker(_n: BlockNumber) {}
}
/// Some amount of backing from a group. The precise definition of what it means to "back" something
/// is left flexible.
pub struct Backing {
/// The number of members of the group that back some motion.
pub approvals: u32,
/// The total count of group members.
pub eligible: u32,
}
/// Retrieve the backing from an object's ref.
pub trait GetBacking {
/// Returns `Some` `Backing` if `self` represents a fractional/groupwise backing of some
/// implicit motion. `None` if it does not.
fn get_backing(&self) -> Option<Backing>;
}
/// A trait to ensure the inherent are before non-inherent in a block.
///
/// This is typically implemented on runtime, through `construct_runtime!`.
pub trait EnsureInherentsAreFirst<Block> {
/// Ensure the position of inherent is correct, i.e. they are before non-inherents.
///
/// On error return the index of the inherent with invalid position (counting from 0).
fn ensure_inherents_are_first(block: &Block) -> Result<(), u32>;
}
/// An extrinsic on which we can get access to call.
pub trait ExtrinsicCall: sp_runtime::traits::Extrinsic {
/// Get the call of the extrinsic.
fn call(&self) -> &Self::Call;
}
#[cfg(feature = "std")]
impl<Call, Extra> ExtrinsicCall for sp_runtime::testing::TestXt<Call, Extra>
where
Call: codec::Codec + Sync + Send,
{
fn call(&self) -> &Self::Call {
&self.call
}
}
impl<Address, Call, Signature, Extra> ExtrinsicCall
for sp_runtime::generic::UncheckedExtrinsic<Address, Call, Signature, Extra>
where
Extra: sp_runtime::traits::SignedExtension,
{
fn call(&self) -> &Self::Call {
&self.function
}
}
/// Something that can estimate the fee of a (frame-based) call.
///
/// Typically, the same pallet that will charge transaction fees will implement this.
pub trait EstimateCallFee<Call, Balance> {
/// Estimate the fee of this call.
///
/// The dispatch info and the length is deduced from the call. The post info can optionally be
/// provided.
fn estimate_call_fee(call: &Call, post_info: crate::weights::PostDispatchInfo) -> Balance;
}
// Useful for building mocks.
#[cfg(feature = "std")]
impl<Call, Balance: From<u32>, const T: u32> EstimateCallFee<Call, Balance> for ConstU32<T> {
fn estimate_call_fee(_: &Call, _: crate::weights::PostDispatchInfo) -> Balance {
T.into()
}
}
/// A wrapper for any type `T` which implement encode/decode in a way compatible with `Vec<u8>`.
///
/// The encoding is the encoding of `T` prepended with the compact encoding of its size in bytes.
/// Thus the encoded value can be decoded as a `Vec<u8>`.
#[derive(Debug, Eq, PartialEq, Default, Clone)]
#[cfg_attr(feature = "std", derive(serde::Serialize, serde::Deserialize))]
pub struct WrapperOpaque<T>(pub T);
impl<T: Encode> EncodeLike for WrapperOpaque<T> {}
impl<T: Encode> EncodeLike<WrapperKeepOpaque<T>> for WrapperOpaque<T> {}
impl<T: Encode> Encode for WrapperOpaque<T> {
fn size_hint(&self) -> usize {
self.0.size_hint().saturating_add(<codec::Compact<u32>>::max_encoded_len())
}
fn encode_to<O: codec::Output + ?Sized>(&self, dest: &mut O) {
self.0.encode().encode_to(dest);
}
fn encode(&self) -> Vec<u8> {
self.0.encode().encode()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.0.encode().using_encoded(f)
}
}
impl<T: Decode> Decode for WrapperOpaque<T> {
fn decode<I: Input>(input: &mut I) -> Result<Self, codec::Error> {
Ok(Self(T::decode_all(&mut &<Vec<u8>>::decode(input)?[..])?))
}
fn skip<I: Input>(input: &mut I) -> Result<(), codec::Error> {
<Vec<u8>>::skip(input)
}
}
impl<T> From<T> for WrapperOpaque<T> {
fn from(t: T) -> Self {
Self(t)
}
}
impl<T: MaxEncodedLen> MaxEncodedLen for WrapperOpaque<T> {
fn max_encoded_len() -> usize {
let t_max_len = T::max_encoded_len();
// See scale encoding: https://docs.substrate.io/reference/scale-codec/
if t_max_len < 64 {
t_max_len + 1
} else if t_max_len < 2usize.pow(14) {
t_max_len + 2
} else if t_max_len < 2usize.pow(30) {
t_max_len + 4
} else {
<codec::Compact<u32>>::max_encoded_len().saturating_add(T::max_encoded_len())
}
}
}
impl<T: TypeInfo + 'static> TypeInfo for WrapperOpaque<T> {
type Identity = Self;
fn type_info() -> Type {
Type::builder()
.path(Path::new("WrapperOpaque", module_path!()))
.type_params(vec![TypeParameter::new("T", Some(meta_type::<T>()))])
.composite(
Fields::unnamed()
.field(|f| f.compact::<u32>())
.field(|f| f.ty::<T>().type_name("T")),
)
}
}
/// A wrapper for any type `T` which implement encode/decode in a way compatible with `Vec<u8>`.
///
/// This type is similar to [`WrapperOpaque`], but it differs in the way it stores the type `T`.
/// While [`WrapperOpaque`] stores the decoded type, the [`WrapperKeepOpaque`] stores the type only
/// in its opaque format, aka as a `Vec<u8>`. To access the real type `T` [`Self::try_decode`] needs
/// to be used.
#[derive(Debug, Eq, PartialEq, Default, Clone)]
pub struct WrapperKeepOpaque<T> {
data: Vec<u8>,
_phantom: sp_std::marker::PhantomData<T>,
}
impl<T: Decode> WrapperKeepOpaque<T> {
/// Try to decode the wrapped type from the inner `data`.
///
/// Returns `None` if the decoding failed.
pub fn try_decode(&self) -> Option<T> {
T::decode_all(&mut &self.data[..]).ok()
}
/// Returns the length of the encoded `T`.
pub fn encoded_len(&self) -> usize {
self.data.len()
}
/// Returns the encoded data.
pub fn encoded(&self) -> &[u8] {
&self.data
}
/// Create from the given encoded `data`.
pub fn from_encoded(data: Vec<u8>) -> Self {
Self { data, _phantom: sp_std::marker::PhantomData }
}
}
impl<T: Encode> EncodeLike for WrapperKeepOpaque<T> {}
impl<T: Encode> EncodeLike<WrapperOpaque<T>> for WrapperKeepOpaque<T> {}
impl<T: Encode> Encode for WrapperKeepOpaque<T> {
fn size_hint(&self) -> usize {
self.data.len() + codec::Compact::<u32>::compact_len(&(self.data.len() as u32))
}
fn encode_to<O: codec::Output + ?Sized>(&self, dest: &mut O) {
self.data.encode_to(dest);
}
fn encode(&self) -> Vec<u8> {
self.data.encode()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.data.using_encoded(f)
}
}
impl<T: Decode> Decode for WrapperKeepOpaque<T> {
fn decode<I: Input>(input: &mut I) -> Result<Self, codec::Error> {
Ok(Self { data: Vec::<u8>::decode(input)?, _phantom: sp_std::marker::PhantomData })
}
fn skip<I: Input>(input: &mut I) -> Result<(), codec::Error> {
<Vec<u8>>::skip(input)
}
}
impl<T: MaxEncodedLen> MaxEncodedLen for WrapperKeepOpaque<T> {
fn max_encoded_len() -> usize {
WrapperOpaque::<T>::max_encoded_len()
}
}
impl<T: TypeInfo + 'static> TypeInfo for WrapperKeepOpaque<T> {
type Identity = Self;
fn type_info() -> Type {
Type::builder()
.path(Path::new("WrapperKeepOpaque", module_path!()))
.type_params(vec![TypeParameter::new("T", Some(meta_type::<T>()))])
.composite(
Fields::unnamed()
.field(|f| f.compact::<u32>())
.field(|f| f.ty::<T>().type_name("T")),
)
}
}
/// A interface for looking up preimages from their hash on chain.
pub trait PreimageProvider<Hash> {
/// Returns whether a preimage exists for a given hash.
///
/// A value of `true` implies that `get_preimage` is `Some`.
fn have_preimage(hash: &Hash) -> bool;
/// Returns the preimage for a given hash.
fn get_preimage(hash: &Hash) -> Option<Vec<u8>>;
/// Returns whether a preimage request exists for a given hash.
fn preimage_requested(hash: &Hash) -> bool;
/// Request that someone report a preimage. Providers use this to optimise the economics for
/// preimage reporting.
fn request_preimage(hash: &Hash);
/// Cancel a previous preimage request.
fn unrequest_preimage(hash: &Hash);
}
impl<Hash> PreimageProvider<Hash> for () {
fn have_preimage(_: &Hash) -> bool {
false
}
fn get_preimage(_: &Hash) -> Option<Vec<u8>> {
None
}
fn preimage_requested(_: &Hash) -> bool {
false
}
fn request_preimage(_: &Hash) {}
fn unrequest_preimage(_: &Hash) {}
}
/// A interface for managing preimages to hashes on chain.
///
/// Note that this API does not assume any underlying user is calling, and thus
/// does not handle any preimage ownership or fees. Other system level logic that
/// uses this API should implement that on their own side.
pub trait PreimageRecipient<Hash>: PreimageProvider<Hash> {
/// Maximum size of a preimage.
type MaxSize: Get<u32>;
/// Store the bytes of a preimage on chain.
fn note_preimage(bytes: crate::BoundedVec<u8, Self::MaxSize>);
/// Clear a previously noted preimage. This is infallible and should be treated more like a
/// hint - if it was not previously noted or if it is now requested, then this will not do
/// anything.
fn unnote_preimage(hash: &Hash);
}
impl<Hash> PreimageRecipient<Hash> for () {
type MaxSize = ();
fn note_preimage(_: crate::BoundedVec<u8, Self::MaxSize>) {}
fn unnote_preimage(_: &Hash) {}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_opaque_wrapper() {
let encoded = WrapperOpaque(3u32).encode();
assert_eq!(encoded, [codec::Compact(4u32).encode(), 3u32.to_le_bytes().to_vec()].concat());
let vec_u8 = <Vec<u8>>::decode(&mut &encoded[..]).unwrap();
let decoded_from_vec_u8 = u32::decode(&mut &vec_u8[..]).unwrap();
assert_eq!(decoded_from_vec_u8, 3u32);
let decoded = <WrapperOpaque<u32>>::decode(&mut &encoded[..]).unwrap();
assert_eq!(decoded.0, 3u32);
assert_eq!(<WrapperOpaque<[u8; 63]>>::max_encoded_len(), 63 + 1);
assert_eq!(
<WrapperOpaque<[u8; 63]>>::max_encoded_len(),
WrapperOpaque([0u8; 63]).encode().len()
);
assert_eq!(<WrapperOpaque<[u8; 64]>>::max_encoded_len(), 64 + 2);
assert_eq!(
<WrapperOpaque<[u8; 64]>>::max_encoded_len(),
WrapperOpaque([0u8; 64]).encode().len()
);
assert_eq!(
<WrapperOpaque<[u8; 2usize.pow(14) - 1]>>::max_encoded_len(),
2usize.pow(14) - 1 + 2
);
assert_eq!(<WrapperOpaque<[u8; 2usize.pow(14)]>>::max_encoded_len(), 2usize.pow(14) + 4);
let data = 4u64;
// Ensure that we check that the `Vec<u8>` is consumed completly on decode.
assert!(WrapperOpaque::<u32>::decode(&mut &data.encode().encode()[..]).is_err());
}
#[test]
fn test_keep_opaque_wrapper() {
let data = 3u32.encode().encode();
let keep_opaque = WrapperKeepOpaque::<u32>::decode(&mut &data[..]).unwrap();
keep_opaque.try_decode().unwrap();
let data = WrapperOpaque(50u32).encode();
let decoded = WrapperKeepOpaque::<u32>::decode(&mut &data[..]).unwrap();
let data = decoded.encode();
WrapperOpaque::<u32>::decode(&mut &data[..]).unwrap();
}
}