-
Peter Goodspeed-Niklaus authored
* Refactor election solution trimming for efficiency The previous version always trimmed the `CompactOf<T>` instance, which was intrinsically inefficient: that's a packed data structure, which is naturally expensive to edit. It's much easier to edit the unpacked data structures: the `voters` and `assignments` lists. * rework length-trim tests to work with the new interface Test suite now compiles. Tests still don't pass because the macro generating the compact structure still generates `unimplemented!()` for the actual `compact_length_of` implementation. * simplify * add a fuzzer which can validate `Compact::encoded_size_for` The `Compact` solution type is generated distinctly for each runtime, and has both three type parameters and a built-in limit to the number of candidates that each voter can vote for. Finally, they have an optional `#[compact]` attribute which changes the encoding behavior. The assignment truncation algorithm we're using depends on the ability to efficiently and accurately determine how much space a `Compact` solution will take once encoded. Together, these two facts imply that simple unit tests are not sufficient to validate the behavior of `Compact::encoded_size_for`. This commit adds such a fuzzer. It is designed such that it is possible to add a new fuzzer to the family by simply adjusting the `generate_solution_type` macro invocation as desired, and making a few minor documentation edits. Of course, the fuzzer still fails for now: the generated implementation for `encoded_size_for` is still `unimplemented!()`. However, once the macro is updated appropriately, this fuzzer family should allow us to gain confidence in the correctness of the generated code. * Revert "add a fuzzer which can validate `Compact::encoded_size_for`" This reverts commit 916038790887e64217c6a46e9a6d281386762bfb. The design of `Compact::encoded_size_for` is flawed. When `#[compact]` mode is enabled, every integer in the dataset is encoded using run- length encoding. This means that it is impossible to compute the final length faster than actually encoding the data structure, because the encoded length of every field varies with the actual value stored. Given that we won't be adding that method to the trait, we won't be needing a fuzzer to validate its performance. * revert changes to `trait CompactSolution` If `CompactSolution::encoded_size_for` can't be implemented in the way that we wanted, there's no point in adding it. * WIP: restructure trim_assignments_length by actually encoding This is not as efficient as what we'd hoped for, but it should still be better than what it's replacing. Overall efficiency of `fn trim_assignments_length` is now `O(edges * lg assignments.len())`. * fix compiler errors * don't sort voters, just assignments Sorting the `voters` list causes lots of problems; an invariant that we need to maintain is that an index into the voters list has a stable meaning. Luckily, it turns out that there is no need for the assignments list to correspond to the voters list. That isn't an invariant, though previously I'd thought that it was. This simplifies things; we can just leave the voters list alone, and sort the assignments list the way that is convenient. * WIP: add `IndexAssignment` type to speed up repeatedly creating `Compact` Next up: `impl<'a, T> From<&'a [IndexAssignmentOf<T>]> for Compact`, in the proc-macro which makes `Compact`. Should be a pretty straightforward adaptation of `from_assignment`. * Add IndexAssignment and conversion method to CompactSolution This involves a bit of duplication of types from `election-provider-multi-phase`; we'll clean those up shortly. I'm not entirely happy that we had to add a `from_index_assignments` method to `CompactSolution`, but we couldn't define `trait CompactSolution: TryFrom<&'a [Self::IndexAssignment]` because that made trait lookup recursive, and I didn't want to propagate `CompactSolutionOf<T> + TryFrom<&[IndexAssignmentOf<T>]>` everywhere that compact solutions are specified. * use `CompactSolution::from_index_assignment` and clean up dead code * get rid of `from_index_assignments` in favor of `TryFrom` * cause `pallet-election-provider-multi-phase` tests to compile successfully Mostly that's just updating the various test functions to keep track of refactorings elsewhere, though in a few places we needed to refactor some test-only helpers as well. * fix infinite binary search loop Turns out that moving `low` and `high` into an averager function is a bad idea, because the averager gets copies of those values, which of course are never updated. Can't use mutable references, because we want to read them elsewhere in the code. Just compute the average directly; life is better that way. * fix a test failure * fix the rest of test failures * remove unguarded subtraction * fix npos-elections tests compilation * ensure we use sp_std::vec::Vec in assignments * add IndexAssignmentOf to sp_npos_elections * move miner types to `unsigned` * use stable sort * rewrap some long comments * use existing cache instead of building a dedicated stake map * generalize the TryFrom bound on CompactSolution * undo adding sp-core dependency * consume assignments to produce index_assignments * Add a test of Assignment -> IndexAssignment -> Compact * fix `IndexAssignmentOf` doc * move compact test from sp-npos-elections-compact to sp-npos-elections This means that we can put the mocking parts of that into a proper mock package, put the test into a test package among other tests. Having the mocking parts in a mock package enables us to create a benchmark (which is treated as a separate crate) import them. * rename assignments -> sorted_assignments * sort after reducing to avoid potential re-sort issues * add runtime benchmark, fix critical binary search error "Why don't you add a benchmark?", he said. "It'll be good practice, and can help demonstrate that this isn't blowing up the runtime." He was absolutely right. The biggest discovery is that adding a parametric benchmark means that you get a bunch of new test cases, for free. This is excellent, because those test cases uncovered a binary search bug. Fixing that simplified that part of the code nicely. The other nice thing you get from a parametric benchmark is data about what each parameter does. In this case, `f` is the size factor: what percent of the votes (by size) should be removed. 0 means that we should keep everything, 95 means that we should trim down to 5% of original size or less. ``` Median Slopes Analysis ======== -- Extrinsic Time -- Model: Time ~= 3846 + v 0.015 + t 0 + a 0.192 + d 0 + f 0 µs Min Squares Analysis ======== -- Extrinsic Time -- Data points distribution: v t a d f mean µs sigma µs % <snip> 6000 1600 3000 800 0 4385 75.87 1.7% 6000 1600 3000 800 9 4089 46.28 1.1% 6000 1600 3000 800 18 3793 36.45 0.9% 6000 1600 3000 800 27 3365 41.13 1.2% 6000 1600 3000 800 36 3096 7.498 0.2% 6000 1600 3000 800 45 2774 17.96 0.6% 6000 1600 3000 800 54 2057 37.94 1.8% 6000 1600 3000 800 63 1885 2.515 0.1% 6000 1600 3000 800 72 1591 3.203 0.2% 6000 1600 3000 800 81 1219 25.72 2.1% 6000 1600 3000 800 90 859 5.295 0.6% 6000 1600 3000 800 95 684.6 2.969 0.4% Quality and confidence: param error v 0.008 t 0.029 a 0.008 d 0.044 f 0.185 Model: Time ~= 3957 + v 0.009 + t 0 + a 0.185 + d 0 + f 0 µs ``` What's nice about this is the clear negative correlation between amount removed and total time. The more we remove, the less total time things take.
c786fb21
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
tests.rs 36.67 KiB
// This file is part of Substrate.
// Copyright (C) 2019-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Tests for npos-elections.
use crate::{
balancing, helpers::*, is_score_better, mock::*, seq_phragmen, seq_phragmen_core, setup_inputs,
to_support_map, to_supports, Assignment, CompactSolution, ElectionResult, ExtendedBalance,
IndexAssignment, StakedAssignment, Support, Voter, EvaluateSupport,
};
use rand::{self, SeedableRng};
use sp_arithmetic::{PerU16, Perbill, Percent, Permill};
use substrate_test_utils::assert_eq_uvec;
use std::convert::TryInto;
#[test]
fn float_phragmen_poc_works() {
let candidates = vec![1, 2, 3];
let voters = vec![
(10, vec![1, 2]),
(20, vec![1, 3]),
(30, vec![2, 3]),
];
let stake_of = create_stake_of(&[(10, 10), (20, 20), (30, 30), (1, 0), (2, 0), (3, 0)]);
let mut phragmen_result = elect_float(2, candidates, voters, &stake_of).unwrap();
let winners = phragmen_result.clone().winners;
let assignments = phragmen_result.clone().assignments;
assert_eq_uvec!(winners, vec![(2, 40), (3, 50)]);
assert_eq_uvec!(
assignments,
vec![
(10, vec![(2, 1.0)]),
(20, vec![(3, 1.0)]),
(30, vec![(2, 0.5), (3, 0.5)]),
]
);
let mut support_map = build_support_map_float(&mut phragmen_result, &stake_of);
assert_eq!(
support_map.get(&2).unwrap(),
&_Support { own: 0.0, total: 25.0, others: vec![(10u64, 10.0), (30u64, 15.0)] }
);
assert_eq!(
support_map.get(&3).unwrap(),
&_Support { own: 0.0, total: 35.0, others: vec![(20u64, 20.0), (30u64, 15.0)] }
);
equalize_float(phragmen_result.assignments, &mut support_map, 0.0, 2, stake_of);
assert_eq!(
support_map.get(&2).unwrap(),
&_Support { own: 0.0, total: 30.0, others: vec![(10u64, 10.0), (30u64, 20.0)] }
);
assert_eq!(
support_map.get(&3).unwrap(),
&_Support { own: 0.0, total: 30.0, others: vec![(20u64, 20.0), (30u64, 10.0)] }
);
}
#[test]
fn phragmen_core_test_without_edges() {
let candidates = vec![1, 2, 3];
let voters = vec![
(10, 10, vec![]),
(20, 20, vec![]),
(30, 30, vec![]),
];
let (candidates, voters) = setup_inputs(candidates, voters);
assert_eq!(
voters
.iter()
.map(|v| (
v.who,
v.budget,
(v.edges.iter().map(|e| (e.who, e.weight)).collect::<Vec<_>>()),
))
.collect::<Vec<_>>(),
vec![]
);
assert_eq!(
candidates
.iter()
.map(|c_ptr| (
c_ptr.borrow().who,
c_ptr.borrow().elected,
c_ptr.borrow().round,
c_ptr.borrow().backed_stake,
)).collect::<Vec<_>>(),
vec![
(1, false, 0, 0),
(2, false, 0, 0),
(3, false, 0, 0),
]
);
}
#[test]
fn phragmen_core_poc_works() {
let candidates = vec![1, 2, 3];
let voters = vec![
(10, 10, vec![1, 2]),
(20, 20, vec![1, 3]),
(30, 30, vec![2, 3]),
];
let (candidates, voters) = setup_inputs(candidates, voters);
let (candidates, voters) = seq_phragmen_core(2, candidates, voters).unwrap();
assert_eq!(
voters
.iter()
.map(|v| (
v.who,
v.budget,
(v.edges.iter().map(|e| (e.who, e.weight)).collect::<Vec<_>>()),
))
.collect::<Vec<_>>(),
vec![
(10, 10, vec![(2, 10)]),
(20, 20, vec![(3, 20)]),
(30, 30, vec![(2, 15), (3, 15)]),
]
);
assert_eq!(
candidates
.iter()
.map(|c_ptr| (
c_ptr.borrow().who,
c_ptr.borrow().elected,
c_ptr.borrow().round,
c_ptr.borrow().backed_stake,
)).collect::<Vec<_>>(),
vec![
(1, false, 0, 0),
(2, true, 1, 25),
(3, true, 0, 35),
]
);
}
#[test]
fn balancing_core_works() {
let candidates = vec![1, 2, 3, 4, 5];
let voters = vec![
(10, 10, vec![1, 2]),
(20, 20, vec![1, 3]),
(30, 30, vec![1, 2, 3, 4]),
(40, 40, vec![1, 3, 4, 5]),
(50, 50, vec![2, 4, 5]),
];
let (candidates, voters) = setup_inputs(candidates, voters);
let (candidates, mut voters) = seq_phragmen_core(4, candidates, voters).unwrap();
let iters = balancing::balance::<AccountId>(&mut voters, 4, 0);
assert!(iters > 0);
assert_eq!(
voters
.iter()
.map(|v| (
v.who,
v.budget,
(v.edges.iter().map(|e| (e.who, e.weight)).collect::<Vec<_>>()),
))
.collect::<Vec<_>>(),
vec![
// note the 0 edge. This is know and not an issue per se. Also note that the stakes are
// normalized.
(10, 10, vec![(1, 9), (2, 1)]),
(20, 20, vec![(1, 9), (3, 11)]),
(30, 30, vec![(1, 8), (2, 7), (3, 8), (4, 7)]),
(40, 40, vec![(1, 11), (3, 18), (4, 11)]),
(50, 50, vec![(2, 30), (4, 20)]),
]
);
assert_eq!(
candidates
.iter()
.map(|c_ptr| (
c_ptr.borrow().who,
c_ptr.borrow().elected,
c_ptr.borrow().round,
c_ptr.borrow().backed_stake,
)).collect::<Vec<_>>(),
vec![
(1, true, 1, 37),
(2, true, 2, 38),
(3, true, 3, 37),
(4, true, 0, 38),
(5, false, 0, 0),
]
);
}
#[test]
fn voter_normalize_ops_works() {
use crate::{Candidate, Edge};
use sp_std::{cell::RefCell, rc::Rc};
// normalize
{
let c1 = Candidate { who: 10, elected: false ,..Default::default() };
let c2 = Candidate { who: 20, elected: false ,..Default::default() };
let c3 = Candidate { who: 30, elected: false ,..Default::default() };
let e1 = Edge { candidate: Rc::new(RefCell::new(c1)), weight: 30, ..Default::default() };
let e2 = Edge { candidate: Rc::new(RefCell::new(c2)), weight: 33, ..Default::default() };
let e3 = Edge { candidate: Rc::new(RefCell::new(c3)), weight: 30, ..Default::default() };
let mut v = Voter {
who: 1,
budget: 100,
edges: vec![e1, e2, e3],
..Default::default()
};
v.try_normalize().unwrap();
assert_eq!(v.edges.iter().map(|e| e.weight).collect::<Vec<_>>(), vec![34, 33, 33]);
}
// // normalize_elected
{
let c1 = Candidate { who: 10, elected: false ,..Default::default() };
let c2 = Candidate { who: 20, elected: true ,..Default::default() };
let c3 = Candidate { who: 30, elected: true ,..Default::default() };
let e1 = Edge { candidate: Rc::new(RefCell::new(c1)), weight: 30, ..Default::default() };
let e2 = Edge { candidate: Rc::new(RefCell::new(c2)), weight: 33, ..Default::default() };
let e3 = Edge { candidate: Rc::new(RefCell::new(c3)), weight: 30, ..Default::default() };
let mut v = Voter {
who: 1,
budget: 100,
edges: vec![e1, e2, e3],
..Default::default()
};
v.try_normalize_elected().unwrap();
assert_eq!(v.edges.iter().map(|e| e.weight).collect::<Vec<_>>(), vec![30, 34, 66]);
}
}
#[test]
fn phragmen_poc_works() {
let candidates = vec![1, 2, 3];
let voters = vec![
(10, vec![1, 2]),
(20, vec![1, 3]),
(30, vec![2, 3]),
];
let stake_of = create_stake_of(&[(10, 10), (20, 20), (30, 30)]);
let ElectionResult { winners, assignments } = seq_phragmen::<_, Perbill>(
2,
candidates,
voters.iter().map(|(ref v, ref vs)| (v.clone(), stake_of(v), vs.clone())).collect::<Vec<_>>(),
None,
).unwrap();
assert_eq_uvec!(winners, vec![(2, 25), (3, 35)]);
assert_eq_uvec!(
assignments,
vec![
Assignment {
who: 10u64,
distribution: vec![(2, Perbill::from_percent(100))],
},
Assignment {
who: 20,
distribution: vec![(3, Perbill::from_percent(100))],
},
Assignment {
who: 30,
distribution: vec![
(2, Perbill::from_percent(100/2)),
(3, Perbill::from_percent(100/2)),
],
},
]
);
let staked = assignment_ratio_to_staked(assignments, &stake_of);
let winners = to_without_backing(winners);
let support_map = to_support_map::<AccountId>(&winners, &staked).unwrap();
assert_eq_uvec!(
staked,
vec![
StakedAssignment {
who: 10u64,
distribution: vec![(2, 10)],
},
StakedAssignment {
who: 20,
distribution: vec![(3, 20)],
},
StakedAssignment {
who: 30,
distribution: vec![
(2, 15),
(3, 15),
],
},
]
);
assert_eq!(
*support_map.get(&2).unwrap(),
Support::<AccountId> { total: 25, voters: vec![(10, 10), (30, 15)] },
);
assert_eq!(
*support_map.get(&3).unwrap(),
Support::<AccountId> { total: 35, voters: vec![(20, 20), (30, 15)] },
);
}
#[test]
fn phragmen_poc_works_with_balancing() {
let candidates = vec![1, 2, 3];
let voters = vec![
(10, vec![1, 2]),
(20, vec![1, 3]),
(30, vec![2, 3]),
];
let stake_of = create_stake_of(&[(10, 10), (20, 20), (30, 30)]);
let ElectionResult { winners, assignments } = seq_phragmen::<_, Perbill>(
2,
candidates,
voters.iter().map(|(ref v, ref vs)| (v.clone(), stake_of(v), vs.clone())).collect::<Vec<_>>(),
Some((4, 0)),
).unwrap();
assert_eq_uvec!(winners, vec![(2, 30), (3, 30)]);
assert_eq_uvec!(
assignments,
vec![
Assignment {
who: 10u64,
distribution: vec![(2, Perbill::from_percent(100))],
},
Assignment {
who: 20,
distribution: vec![(3, Perbill::from_percent(100))],
},
Assignment {
who: 30,
distribution: vec![
(2, Perbill::from_parts(666666666)),
(3, Perbill::from_parts(333333334)),
],
},
]
);
let staked = assignment_ratio_to_staked(assignments, &stake_of);
let winners = to_without_backing(winners);
let support_map = to_support_map::<AccountId>(&winners, &staked).unwrap();
assert_eq_uvec!(
staked,
vec![
StakedAssignment {
who: 10u64,
distribution: vec![(2, 10)],
},
StakedAssignment {
who: 20,
distribution: vec![(3, 20)],
},
StakedAssignment {
who: 30,
distribution: vec![
(2, 20),
(3, 10),
],
},
]
);
assert_eq!(
*support_map.get(&2).unwrap(),
Support::<AccountId> { total: 30, voters: vec![(10, 10), (30, 20)] },
);
assert_eq!(
*support_map.get(&3).unwrap(),
Support::<AccountId> { total: 30, voters: vec![(20, 20), (30, 10)] },
);
}
#[test]
fn phragmen_poc_2_works() {
let candidates = vec![10, 20, 30];
let voters = vec![
(2, vec![10, 20, 30]),
(4, vec![10, 20, 40]),
];
let stake_of = create_stake_of(&[
(10, 1000),
(20, 1000),
(30, 1000),
(40, 1000),
(2, 500),
(4, 500),
]);
run_and_compare::<Perbill, _>(candidates.clone(), voters.clone(), &stake_of, 2);
run_and_compare::<Permill, _>(candidates.clone(), voters.clone(), &stake_of, 2);
run_and_compare::<Percent, _>(candidates.clone(), voters.clone(), &stake_of, 2);
run_and_compare::<PerU16, _>(candidates, voters, &stake_of, 2);
}
#[test]
fn phragmen_poc_3_works() {
let candidates = vec![10, 20, 30];
let voters = vec![
(2, vec![10, 20, 30]),
(4, vec![10, 20, 40]),
];
let stake_of = create_stake_of(&[
(10, 1000),
(20, 1000),
(30, 1000),
(2, 50),
(4, 1000),
]);
run_and_compare::<Perbill, _>(candidates.clone(), voters.clone(), &stake_of, 2);
run_and_compare::<Permill, _>(candidates.clone(), voters.clone(), &stake_of, 2);
run_and_compare::<Percent, _>(candidates.clone(), voters.clone(), &stake_of, 2);
run_and_compare::<PerU16, _>(candidates, voters, &stake_of, 2);
}
#[test]
fn phragmen_accuracy_on_large_scale_only_candidates() {
// because of this particular situation we had per_u128 and now rational128. In practice, a
// candidate can have the maximum amount of tokens, and also supported by the maximum.
let candidates = vec![1, 2, 3, 4, 5];
let stake_of = create_stake_of(&[
(1, (u64::max_value() - 1).into()),
(2, (u64::max_value() - 4).into()),
(3, (u64::max_value() - 5).into()),
(4, (u64::max_value() - 3).into()),
(5, (u64::max_value() - 2).into()),
]);
let ElectionResult { winners, assignments } = seq_phragmen::<_, Perbill>(
2,
candidates.clone(),
auto_generate_self_voters(&candidates)
.iter()
.map(|(ref v, ref vs)| (v.clone(), stake_of(v), vs.clone()))
.collect::<Vec<_>>(),
None,
).unwrap();
assert_eq_uvec!(winners, vec![(1, 18446744073709551614u128), (5, 18446744073709551613u128)]);
assert_eq!(assignments.len(), 2);
check_assignments_sum(&assignments);
}
#[test]
fn phragmen_accuracy_on_large_scale_voters_and_candidates() {
let candidates = vec![1, 2, 3, 4, 5];
let mut voters = vec![
(13, vec![1, 3, 5]),
(14, vec![2, 4]),
];
voters.extend(auto_generate_self_voters(&candidates));
let stake_of = create_stake_of(&[
(1, (u64::max_value() - 1).into()),
(2, (u64::max_value() - 4).into()),
(3, (u64::max_value() - 5).into()),
(4, (u64::max_value() - 3).into()),
(5, (u64::max_value() - 2).into()),
(13, (u64::max_value() - 10).into()),
(14, u64::max_value().into()),
]);
let ElectionResult { winners, assignments } = seq_phragmen::<_, Perbill>(
2,
candidates,
voters.iter().map(|(ref v, ref vs)| (v.clone(), stake_of(v), vs.clone())).collect::<Vec<_>>(),
None,
).unwrap();
assert_eq_uvec!(winners, vec![(2, 36893488147419103226u128), (1, 36893488147419103219u128)]);
assert_eq!(
assignments,
vec![
Assignment {
who: 13u64,
distribution: vec![(1, Perbill::one())],
},
Assignment {
who: 14,
distribution: vec![(2, Perbill::one())],
},
Assignment {
who: 1,
distribution: vec![(1, Perbill::one())],
},
Assignment {
who: 2,
distribution: vec![(2, Perbill::one())],
},
]
);
check_assignments_sum(&assignments);
}
#[test]
fn phragmen_accuracy_on_small_scale_self_vote() {
let candidates = vec![40, 10, 20, 30];
let voters = auto_generate_self_voters(&candidates);
let stake_of = create_stake_of(&[
(40, 0),
(10, 1),
(20, 2),
(30, 1),
]);
let ElectionResult { winners, assignments } = seq_phragmen::<_, Perbill>(
3,
candidates,
voters.iter().map(|(ref v, ref vs)| (v.clone(), stake_of(v), vs.clone())).collect::<Vec<_>>(),
None,
).unwrap();
assert_eq_uvec!(winners, vec![(20, 2), (10, 1), (30, 1)]);
check_assignments_sum(&assignments);
}
#[test]
fn phragmen_accuracy_on_small_scale_no_self_vote() {
let candidates = vec![40, 10, 20, 30];
let voters = vec![
(1, vec![10]),
(2, vec![20]),
(3, vec![30]),
(4, vec![40]),
];
let stake_of = create_stake_of(&[
(40, 1000), // don't care
(10, 1000), // don't care
(20, 1000), // don't care
(30, 1000), // don't care
(4, 0),
(1, 1),
(2, 2),
(3, 1),
]);
let ElectionResult { winners, assignments } = seq_phragmen::<_, Perbill>(
3,
candidates,
voters.iter().map(|(ref v, ref vs)| (v.clone(), stake_of(v), vs.clone())).collect::<Vec<_>>(),
None,
).unwrap();
assert_eq_uvec!(winners, vec![(20, 2), (10, 1), (30, 1)]);
check_assignments_sum(&assignments);
}
#[test]
fn phragmen_large_scale_test() {
let candidates = vec![2, 4, 6, 8, 10, 12, 14, 16 ,18, 20, 22, 24];
let mut voters = vec![
(50, vec![2, 4, 6, 8, 10, 12, 14, 16 ,18, 20, 22, 24]),
];
voters.extend(auto_generate_self_voters(&candidates));
let stake_of = create_stake_of(&[
(2, 1),
(4, 100),
(6, 1000000),
(8, 100000000001000),
(10, 100000000002000),
(12, 100000000003000),
(14, 400000000000000),
(16, 400000000001000),
(18, 18000000000000000),
(20, 20000000000000000),
(22, 500000000000100000),
(24, 500000000000200000),
(50, 990000000000000000),
]);
let ElectionResult { winners, assignments } = seq_phragmen::<_, Perbill>(
2,
candidates,
voters.iter().map(|(ref v, ref vs)| (v.clone(), stake_of(v), vs.clone())).collect::<Vec<_>>(),
None,
).unwrap();
assert_eq_uvec!(to_without_backing(winners.clone()), vec![24, 22]);
check_assignments_sum(&assignments);
}
#[test]
fn phragmen_large_scale_test_2() {
let nom_budget: u64 = 1_000_000_000_000_000_000;
let c_budget: u64 = 4_000_000;
let candidates = vec![2, 4];
let mut voters = vec![(50, vec![2, 4])];
voters.extend(auto_generate_self_voters(&candidates));
let stake_of = create_stake_of(&[
(2, c_budget.into()),
(4, c_budget.into()),
(50, nom_budget.into()),
]);
let ElectionResult { winners, assignments } = seq_phragmen::<_, Perbill>(
2,
candidates,
voters.iter().map(|(ref v, ref vs)| (v.clone(), stake_of(v), vs.clone())).collect::<Vec<_>>(),
None,
).unwrap();
assert_eq_uvec!(winners, vec![(2, 500000000005000000u128), (4, 500000000003000000)]);
assert_eq_uvec!(
assignments,
vec![
Assignment {
who: 50u64,
distribution: vec![
(2, Perbill::from_parts(500000000)),
(4, Perbill::from_parts(500000000)),
],
},
Assignment {
who: 2,
distribution: vec![(2, Perbill::one())],
},
Assignment {
who: 4,
distribution: vec![(4, Perbill::one())],
},
],
);
check_assignments_sum(&assignments);
}
#[test]
fn phragmen_linear_equalize() {
let candidates = vec![11, 21, 31, 41, 51, 61, 71];
let voters = vec![
(2, vec![11]),
(4, vec![11, 21]),
(6, vec![21, 31]),
(8, vec![31, 41]),
(110, vec![41, 51]),
(120, vec![51, 61]),
(130, vec![61, 71]),
];
let stake_of = create_stake_of(&[
(11, 1000),
(21, 1000),
(31, 1000),
(41, 1000),
(51, 1000),
(61, 1000),
(71, 1000),
(2, 2000),
(4, 1000),
(6, 1000),
(8, 1000),
(110, 1000),
(120, 1000),
(130, 1000),
]);
run_and_compare::<Perbill, _>(candidates, voters, &stake_of, 2);
}
#[test]
fn elect_has_no_entry_barrier() {
let candidates = vec![10, 20, 30];
let voters = vec![
(1, vec![10]),
(2, vec![20]),
];
let stake_of = create_stake_of(&[
(1, 10),
(2, 10),
]);
let ElectionResult { winners, assignments: _ } = seq_phragmen::<_, Perbill>(
3,
candidates,
voters.iter().map(|(ref v, ref vs)| (v.clone(), stake_of(v), vs.clone())).collect::<Vec<_>>(),
None,
).unwrap();
// 30 is elected with stake 0. The caller is responsible for stripping this.
assert_eq_uvec!(winners, vec![
(10, 10),
(20, 10),
(30, 0),
]);
}
#[test]
fn phragmen_self_votes_should_be_kept() {
let candidates = vec![5, 10, 20, 30];
let voters = vec![
(5, vec![5]),
(10, vec![10]),
(20, vec![20]),
(1, vec![10, 20])
];
let stake_of = create_stake_of(&[
(5, 5),
(10, 10),
(20, 20),
(1, 8),
]);
let result = seq_phragmen::<_, Perbill>(
2,
candidates,
voters.iter().map(|(ref v, ref vs)| (v.clone(), stake_of(v), vs.clone())).collect::<Vec<_>>(),
None,
).unwrap();
assert_eq!(result.winners, vec![(20, 24), (10, 14)]);
assert_eq_uvec!(
result.assignments,
vec![
Assignment { who: 1, distribution: vec![
(10, Perbill::from_percent(50)),
(20, Perbill::from_percent(50)),
]
},
Assignment { who: 10, distribution: vec![(10, Perbill::from_percent(100))] },
Assignment { who: 20, distribution: vec![(20, Perbill::from_percent(100))] },
]
);
let staked_assignments = assignment_ratio_to_staked(result.assignments, &stake_of);
let winners = to_without_backing(result.winners);
let supports = to_support_map::<AccountId>(&winners, &staked_assignments).unwrap();
assert_eq!(supports.get(&5u64), None);
assert_eq!(
supports.get(&10u64).unwrap(),
&Support { total: 14u128, voters: vec![(10u64, 10u128), (1u64, 4u128)] },
);
assert_eq!(
supports.get(&20u64).unwrap(),
&Support { total: 24u128, voters: vec![(20u64, 20u128), (1u64, 4u128)] },
);
}
#[test]
fn duplicate_target_is_ignored() {
let candidates = vec![1, 2, 3];
let voters = vec![
(10, 100, vec![1, 1, 2, 3]),
(20, 100, vec![2, 3]),
(30, 50, vec![1, 1, 2]),
];
let ElectionResult { winners, assignments } = seq_phragmen::<_, Perbill>(
2,
candidates,
voters,
None,
).unwrap();
let winners = to_without_backing(winners);
assert_eq!(winners, vec![(2), (3)]);
assert_eq!(
assignments
.into_iter()
.map(|x| (x.who, x.distribution.into_iter().map(|(w, _)| w).collect::<Vec<_>>()))
.collect::<Vec<_>>(),
vec![
(10, vec![2, 3]),
(20, vec![2, 3]),
(30, vec![2]),
],
);
}
#[test]
fn duplicate_target_is_ignored_when_winner() {
let candidates = vec![1, 2, 3];
let voters = vec![
(10, 100, vec![1, 1, 2, 3]),
(20, 100, vec![1, 2]),
];
let ElectionResult { winners, assignments } = seq_phragmen::<_, Perbill>(
2,
candidates,
voters,
None,
).unwrap();
let winners = to_without_backing(winners);
assert_eq!(winners, vec![1, 2]);
assert_eq!(
assignments
.into_iter()
.map(|x| (x.who, x.distribution.into_iter().map(|(w, _)| w).collect::<Vec<_>>()))
.collect::<Vec<_>>(),
vec![
(10, vec![1, 2]),
(20, vec![1, 2]),
],
);
}
#[test]
fn support_map_and_vec_can_be_evaluated() {
let candidates = vec![1, 2, 3];
let voters = vec![(10, vec![1, 2]), (20, vec![1, 3]), (30, vec![2, 3])];
let stake_of = create_stake_of(&[(10, 10), (20, 20), (30, 30)]);
let ElectionResult {
winners,
assignments,
} = seq_phragmen::<_, Perbill>(
2,
candidates,
voters
.iter()
.map(|(ref v, ref vs)| (v.clone(), stake_of(v), vs.clone()))
.collect::<Vec<_>>(),
None,
)
.unwrap();
let staked = assignment_ratio_to_staked(assignments, &stake_of);
let winners = to_without_backing(winners);
let support_map = to_support_map::<AccountId>(&winners, &staked).unwrap();
let support_vec = to_supports(&winners, &staked).unwrap();
assert_eq!(support_map.evaluate(), support_vec.evaluate());
}
mod assignment_convert_normalize {
use super::*;
#[test]
fn assignment_convert_works() {
let staked = StakedAssignment {
who: 1 as AccountId,
distribution: vec![
(20, 100 as ExtendedBalance),
(30, 25),
],
};
let assignment = staked.clone().into_assignment();
assert_eq!(
assignment,
Assignment {
who: 1,
distribution: vec![
(20, Perbill::from_percent(80)),
(30, Perbill::from_percent(20)),
]
}
);
assert_eq!(
assignment.into_staked(125),
staked,
);
}
#[test]
fn assignment_convert_will_not_normalize() {
assert_eq!(
Assignment {
who: 1,
distribution: vec![
(2, Perbill::from_percent(33)),
(3, Perbill::from_percent(66)),
]
}.into_staked(100),
StakedAssignment {
who: 1,
distribution: vec![
(2, 33),
(3, 66),
// sum is not 100!
],
},
);
assert_eq!(
StakedAssignment {
who: 1,
distribution: vec![
(2, 333_333_333_333_333),
(3, 333_333_333_333_333),
(4, 666_666_666_666_333),
],
}.into_assignment(),
Assignment {
who: 1,
distribution: vec![
(2, Perbill::from_parts(250000000)),
(3, Perbill::from_parts(250000000)),
(4, Perbill::from_parts(499999999)),
// sum is not 100%!
]
},
)
}
#[test]
fn assignment_can_normalize() {
let mut a = Assignment {
who: 1,
distribution: vec![
(2, Perbill::from_parts(330000000)),
(3, Perbill::from_parts(660000000)),
// sum is not 100%!
]
};
a.try_normalize().unwrap();
assert_eq!(
a,
Assignment {
who: 1,
distribution: vec![
(2, Perbill::from_parts(340000000)),
(3, Perbill::from_parts(660000000)),
]
},
);
}
#[test]
fn staked_assignment_can_normalize() {
let mut a = StakedAssignment {
who: 1,
distribution: vec![
(2, 33),
(3, 66),
]
};
a.try_normalize(100).unwrap();
assert_eq!(
a,
StakedAssignment {
who: 1,
distribution: vec![
(2, 34),
(3, 66),
]
},
);
}
}
mod score {
use super::*;
#[test]
fn score_comparison_is_lexicographical_no_epsilon() {
let epsilon = Perbill::zero();
// only better in the fist parameter, worse in the other two ✅
assert_eq!(
is_score_better([12, 10, 35], [10, 20, 30], epsilon),
true,
);
// worse in the first, better in the other two ❌
assert_eq!(
is_score_better([9, 30, 10], [10, 20, 30], epsilon),
false,
);
// equal in the first, the second one dictates.
assert_eq!(
is_score_better([10, 25, 40], [10, 20, 30], epsilon),
true,
);
// equal in the first two, the last one dictates.
assert_eq!(
is_score_better([10, 20, 40], [10, 20, 30], epsilon),
false,
);
}
#[test]
fn score_comparison_with_epsilon() {
let epsilon = Perbill::from_percent(1);
{
// no more than 1 percent (10) better in the first param.
assert_eq!(
is_score_better([1009, 5000, 100000], [1000, 5000, 100000], epsilon),
false,
);
// now equal, still not better.
assert_eq!(
is_score_better([1010, 5000, 100000], [1000, 5000, 100000], epsilon),
false,
);
// now it is.
assert_eq!(
is_score_better([1011, 5000, 100000], [1000, 5000, 100000], epsilon),
true,
);
}
{
// First score score is epsilon better, but first score is no longer `ge`. Then this is
// still not a good solution.
assert_eq!(
is_score_better([999, 6000, 100000], [1000, 5000, 100000], epsilon),
false,
);
}
{
// first score is equal or better, but not epsilon. Then second one is the determinant.
assert_eq!(
is_score_better([1005, 5000, 100000], [1000, 5000, 100000], epsilon),
false,
);
assert_eq!(
is_score_better([1005, 5050, 100000], [1000, 5000, 100000], epsilon),
false,
);
assert_eq!(
is_score_better([1005, 5051, 100000], [1000, 5000, 100000], epsilon),
true,
);
}
{
// first score and second are equal or less than epsilon more, third is determinant.
assert_eq!(
is_score_better([1005, 5025, 100000], [1000, 5000, 100000], epsilon),
false,
);
assert_eq!(
is_score_better([1005, 5025, 99_000], [1000, 5000, 100000], epsilon),
false,
);
assert_eq!(
is_score_better([1005, 5025, 98_999], [1000, 5000, 100000], epsilon),
true,
);
}
}
#[test]
fn score_comparison_large_value() {
// some random value taken from eras in kusama.
let initial = [12488167277027543u128, 5559266368032409496, 118749283262079244270992278287436446];
// this claim is 0.04090% better in the third component. It should be accepted as better if
// epsilon is smaller than 5/10_0000
let claim = [12488167277027543u128, 5559266368032409496, 118700736389524721358337889258988054];
assert_eq!(
is_score_better(
claim.clone(),
initial.clone(),
Perbill::from_rational(1u32, 10_000),
),
true,
);
assert_eq!(
is_score_better(
claim.clone(),
initial.clone(),
Perbill::from_rational(2u32, 10_000),
),
true,
);
assert_eq!(
is_score_better(
claim.clone(),
initial.clone(),
Perbill::from_rational(3u32, 10_000),
),
true,
);
assert_eq!(
is_score_better(
claim.clone(),
initial.clone(),
Perbill::from_rational(4u32, 10_000),
),
true,
);
assert_eq!(
is_score_better(
claim.clone(),
initial.clone(),
Perbill::from_rational(5u32, 10_000),
),
false,
);
}
}
mod solution_type {
use super::AccountId;
use codec::{Decode, Encode};
// these need to come from the same dev-dependency `sp-npos-elections`, not from the crate.
use crate::{generate_solution_type, Assignment, CompactSolution, Error as PhragmenError};
use sp_arithmetic::Percent;
use sp_std::{convert::TryInto, fmt::Debug};
type TestAccuracy = Percent;
generate_solution_type!(pub struct TestSolutionCompact::<
VoterIndex = u32,
TargetIndex = u8,
Accuracy = TestAccuracy,
>(16));
#[allow(dead_code)]
mod __private {
// This is just to make sure that that the compact can be generated in a scope without any
// imports.
use crate::generate_solution_type;
use sp_arithmetic::Percent;
generate_solution_type!(
#[compact]
struct InnerTestSolutionCompact::<VoterIndex = u32, TargetIndex = u8, Accuracy = Percent>(12)
);
}
#[test]
fn solution_struct_works_with_and_without_compact() {
// we use u32 size to make sure compact is smaller.
let without_compact = {
generate_solution_type!(pub struct InnerTestSolution::<
VoterIndex = u32,
TargetIndex = u32,
Accuracy = Percent,
>(16));
let compact = InnerTestSolution {
votes1: vec![(2, 20), (4, 40)],
votes2: vec![
(1, (10, TestAccuracy::from_percent(80)), 11),
(5, (50, TestAccuracy::from_percent(85)), 51),
],
..Default::default()
};
compact.encode().len()
};
let with_compact = {
generate_solution_type!(#[compact] pub struct InnerTestSolutionCompact::<
VoterIndex = u32,
TargetIndex = u32,
Accuracy = Percent,
>(16));
let compact = InnerTestSolutionCompact {
votes1: vec![(2, 20), (4, 40)],
votes2: vec![
(1, (10, TestAccuracy::from_percent(80)), 11),
(5, (50, TestAccuracy::from_percent(85)), 51),
],
..Default::default()
};
compact.encode().len()
};
assert!(with_compact < without_compact);
}
#[test]
fn solution_struct_is_codec() {
let compact = TestSolutionCompact {
votes1: vec![(2, 20), (4, 40)],
votes2: vec![
(1, (10, TestAccuracy::from_percent(80)), 11),
(5, (50, TestAccuracy::from_percent(85)), 51),
],
..Default::default()
};
let encoded = compact.encode();
assert_eq!(
compact,
Decode::decode(&mut &encoded[..]).unwrap(),
);
assert_eq!(compact.voter_count(), 4);
assert_eq!(compact.edge_count(), 2 + 4);
assert_eq!(compact.unique_targets(), vec![10, 11, 20, 40, 50, 51]);
}
#[test]
fn remove_voter_works() {
let mut compact = TestSolutionCompact {
votes1: vec![(0, 2), (1, 6)],
votes2: vec![
(2, (0, TestAccuracy::from_percent(80)), 1),
(3, (7, TestAccuracy::from_percent(85)), 8),
],
votes3: vec![
(
4,
[(3, TestAccuracy::from_percent(50)), (4, TestAccuracy::from_percent(25))],
5,
),
],
..Default::default()
};
assert!(!compact.remove_voter(11));
assert!(compact.remove_voter(2));
assert_eq!(
compact,
TestSolutionCompact {
votes1: vec![(0, 2), (1, 6)],
votes2: vec![
(3, (7, TestAccuracy::from_percent(85)), 8),
],
votes3: vec![
(
4,
[(3, TestAccuracy::from_percent(50)), (4, TestAccuracy::from_percent(25))],
5,
),
],
..Default::default()
},
);
assert!(compact.remove_voter(4));
assert_eq!(
compact,
TestSolutionCompact {
votes1: vec![(0, 2), (1, 6)],
votes2: vec![
(3, (7, TestAccuracy::from_percent(85)), 8),
],
..Default::default()
},
);
assert!(compact.remove_voter(1));
assert_eq!(
compact,
TestSolutionCompact {
votes1: vec![(0, 2)],
votes2: vec![
(3, (7, TestAccuracy::from_percent(85)), 8),
],
..Default::default()
},
);
}
#[test]
fn basic_from_and_into_compact_works_assignments() {
let voters = vec![
2 as AccountId,
4,
1,
5,
3,
];
let targets = vec![
10 as AccountId,
11,
20, // 2
30,
31, // 4
32,
40, // 6
50,
51, // 8
];
let assignments = vec![
Assignment {
who: 2 as AccountId,
distribution: vec![(20u64, TestAccuracy::from_percent(100))]
},
Assignment {
who: 4,
distribution: vec![(40, TestAccuracy::from_percent(100))],
},
Assignment {
who: 1,
distribution: vec![
(10, TestAccuracy::from_percent(80)),
(11, TestAccuracy::from_percent(20))
],
},
Assignment {
who: 5,
distribution: vec![
(50, TestAccuracy::from_percent(85)),
(51, TestAccuracy::from_percent(15)),
]
},
Assignment {
who: 3,
distribution: vec![
(30, TestAccuracy::from_percent(50)),
(31, TestAccuracy::from_percent(25)),
(32, TestAccuracy::from_percent(25)),
],
},
];
let voter_index = |a: &AccountId| -> Option<u32> {
voters.iter().position(|x| x == a).map(TryInto::try_into).unwrap().ok()
};
let target_index = |a: &AccountId| -> Option<u8> {
targets.iter().position(|x| x == a).map(TryInto::try_into).unwrap().ok()
};
let compacted = TestSolutionCompact::from_assignment(
&assignments,
voter_index,
target_index,
).unwrap();
// basically number of assignments that it is encoding.
assert_eq!(compacted.voter_count(), assignments.len());
assert_eq!(
compacted.edge_count(),
assignments.iter().fold(0, |a, b| a + b.distribution.len()),
);
assert_eq!(
compacted,
TestSolutionCompact {
votes1: vec![(0, 2), (1, 6)],
votes2: vec![
(2, (0, TestAccuracy::from_percent(80)), 1),
(3, (7, TestAccuracy::from_percent(85)), 8),
],
votes3: vec![
(
4,
[(3, TestAccuracy::from_percent(50)), (4, TestAccuracy::from_percent(25))],
5,
),
],
..Default::default()
}
);
assert_eq!(
compacted.unique_targets(),
vec![0, 1, 2, 3, 4, 5, 6, 7, 8],
);
let voter_at = |a: u32| -> Option<AccountId> {
voters.get(<u32 as TryInto<usize>>::try_into(a).unwrap()).cloned()
};
let target_at = |a: u8| -> Option<AccountId> {
targets.get(<u8 as TryInto<usize>>::try_into(a).unwrap()).cloned()
};
assert_eq!(
compacted.into_assignment(voter_at, target_at).unwrap(),
assignments,
);
}
#[test]
fn unique_targets_len_edge_count_works() {
const ACC: TestAccuracy = TestAccuracy::from_percent(10);
// we don't really care about voters here so all duplicates. This is not invalid per se.
let compact = TestSolutionCompact {
votes1: vec![(99, 1), (99, 2)],
votes2: vec![
(99, (3, ACC.clone()), 7),
(99, (4, ACC.clone()), 8),
],
votes3: vec![
(99, [(11, ACC.clone()), (12, ACC.clone())], 13),
],
// ensure the last one is also counted.
votes16: vec![
(
99,
[
(66, ACC.clone()),
(66, ACC.clone()),
(66, ACC.clone()),
(66, ACC.clone()),
(66, ACC.clone()),
(66, ACC.clone()),
(66, ACC.clone()),
(66, ACC.clone()),
(66, ACC.clone()),
(66, ACC.clone()),
(66, ACC.clone()),
(66, ACC.clone()),
(66, ACC.clone()),
(66, ACC.clone()),
(66, ACC.clone()),
],
67,
)
],
..Default::default()
};
assert_eq!(
compact.unique_targets(),
vec![1, 2, 3, 4, 7, 8, 11, 12, 13, 66, 67]
);
assert_eq!(compact.edge_count(), 2 + (2 * 2) + 3 + 16);
assert_eq!(compact.voter_count(), 6);
// this one has some duplicates.
let compact = TestSolutionCompact {
votes1: vec![(99, 1), (99, 1)],
votes2: vec![
(99, (3, ACC.clone()), 7),
(99, (4, ACC.clone()), 8),
],
votes3: vec![
(99, [(11, ACC.clone()), (11, ACC.clone())], 13),
],
..Default::default()
};
assert_eq!(compact.unique_targets(), vec![1, 3, 4, 7, 8, 11, 13]);
assert_eq!(compact.edge_count(), 2 + (2 * 2) + 3);
assert_eq!(compact.voter_count(), 5);
}
#[test]
fn compact_into_assignment_must_report_overflow() {
// in votes2
let compact = TestSolutionCompact {
votes1: Default::default(),
votes2: vec![(0, (1, TestAccuracy::from_percent(100)), 2)],
..Default::default()
};
let voter_at = |a: u32| -> Option<AccountId> { Some(a as AccountId) };
let target_at = |a: u8| -> Option<AccountId> { Some(a as AccountId) };
assert_eq!(
compact.into_assignment(&voter_at, &target_at).unwrap_err(),
PhragmenError::CompactStakeOverflow,
);
// in votes3 onwards
let compact = TestSolutionCompact {
votes1: Default::default(),
votes2: Default::default(),
votes3: vec![(0, [(1, TestAccuracy::from_percent(70)), (2, TestAccuracy::from_percent(80))], 3)],
..Default::default()
};
assert_eq!(
compact.into_assignment(&voter_at, &target_at).unwrap_err(),
PhragmenError::CompactStakeOverflow,
);
}
#[test]
fn target_count_overflow_is_detected() {
let voter_index = |a: &AccountId| -> Option<u32> { Some(*a as u32) };
let target_index = |a: &AccountId| -> Option<u8> { Some(*a as u8) };
let assignments = vec![
Assignment {
who: 1 as AccountId,
distribution:
(10..27)
.map(|i| (i as AccountId, Percent::from_parts(i as u8)))
.collect::<Vec<_>>(),
},
];
let compacted = TestSolutionCompact::from_assignment(
&assignments,
voter_index,
target_index,
);
assert_eq!(compacted.unwrap_err(), PhragmenError::CompactTargetOverflow);
}
#[test]
fn zero_target_count_is_ignored() {
let voters = vec![1 as AccountId, 2];
let targets = vec![10 as AccountId, 11];
let assignments = vec![
Assignment {
who: 1 as AccountId,
distribution: vec![(10, Percent::from_percent(50)), (11, Percent::from_percent(50))],
},
Assignment {
who: 2,
distribution: vec![],
},
];
let voter_index = |a: &AccountId| -> Option<u32> {
voters.iter().position(|x| x == a).map(TryInto::try_into).unwrap().ok()
};
let target_index = |a: &AccountId| -> Option<u8> {
targets.iter().position(|x| x == a).map(TryInto::try_into).unwrap().ok()
};
let compacted = TestSolutionCompact::from_assignment(
&assignments,
voter_index,
target_index,
).unwrap();
assert_eq!(
compacted,
TestSolutionCompact {
votes1: Default::default(),
votes2: vec![(0, (0, Percent::from_percent(50)), 1)],
..Default::default()
}
);
}
}
#[test]
fn index_assignments_generate_same_compact_as_plain_assignments() {
let rng = rand::rngs::SmallRng::seed_from_u64(0);
let (voters, assignments, candidates) = generate_random_votes(1000, 2500, rng);
let voter_index = make_voter_fn(&voters);
let target_index = make_target_fn(&candidates);
let compact = Compact::from_assignment(&assignments, &voter_index, &target_index).unwrap();
let index_assignments = assignments
.into_iter()
.map(|assignment| IndexAssignment::new(&assignment, &voter_index, &target_index))
.collect::<Result<Vec<_>, _>>()
.unwrap();
let index_compact = index_assignments.as_slice().try_into().unwrap();
assert_eq!(compact, index_compact);
}