runtime.rs 50.6 KiB
Newer Older
	// The data is encoded as Gas.
		ctx.charge_gas(RuntimeToken::GasLeft)?;
			out_ptr, out_len_ptr, &ctx.gas_meter.gas_left().encode(), false, already_charged
	// Stores the balance of the current account into the supplied buffer.
	// The value is stored to linear memory at the address pointed to by `out_ptr`.
	// `out_len_ptr` must point to a u32 value that describes the available space at
	// `out_ptr`. This call overwrites it with the size of the value. If the available
	// space at `out_ptr` is less than the size of the value a trap is triggered.
	//
	// The data is encoded as T::Balance.
		ctx.charge_gas(RuntimeToken::Balance)?;
			out_ptr, out_len_ptr, &ctx.ext.balance().encode(), false, already_charged
	// Stores the value transferred along with this call or as endowment into the supplied buffer.
	// The value is stored to linear memory at the address pointed to by `out_ptr`.
	// `out_len_ptr` must point to a u32 value that describes the available space at
	// `out_ptr`. This call overwrites it with the size of the value. If the available
	// space at `out_ptr` is less than the size of the value a trap is triggered.
	//
	// The data is encoded as T::Balance.
	seal_value_transferred(ctx, out_ptr: u32, out_len_ptr: u32) => {
		ctx.charge_gas(RuntimeToken::ValueTransferred)?;
			out_ptr, out_len_ptr, &ctx.ext.value_transferred().encode(), false, already_charged
	// Stores a random number for the current block and the given subject into the supplied buffer.
	//
	// The value is stored to linear memory at the address pointed to by `out_ptr`.
	// `out_len_ptr` must point to a u32 value that describes the available space at
	// `out_ptr`. This call overwrites it with the size of the value. If the available
	// space at `out_ptr` is less than the size of the value a trap is triggered.
	// The data is encoded as T::Hash.
	seal_random(ctx, subject_ptr: u32, subject_len: u32, out_ptr: u32, out_len_ptr: u32) => {
		ctx.charge_gas(RuntimeToken::Random)?;
		if subject_len > ctx.schedule.limits.subject_len {
		let subject_buf = ctx.read_sandbox_memory(subject_ptr, subject_len)?;
			out_ptr, out_len_ptr, &ctx.ext.random(&subject_buf).encode(), false, already_charged
	// Load the latest block timestamp into the supplied buffer
	//
	// The value is stored to linear memory at the address pointed to by `out_ptr`.
	// `out_len_ptr` must point to a u32 value that describes the available space at
	// `out_ptr`. This call overwrites it with the size of the value. If the available
	// space at `out_ptr` is less than the size of the value a trap is triggered.
		ctx.charge_gas(RuntimeToken::Now)?;
			out_ptr, out_len_ptr, &ctx.ext.now().encode(), false, already_charged
	// Stores the minimum balance (a.k.a. existential deposit) into the supplied buffer.
	// The data is encoded as T::Balance.
	seal_minimum_balance(ctx, out_ptr: u32, out_len_ptr: u32) => {
		ctx.charge_gas(RuntimeToken::MinimumBalance)?;
			out_ptr, out_len_ptr, &ctx.ext.minimum_balance().encode(), false, already_charged
	// Stores the tombstone deposit into the supplied buffer.
	//
	// The value is stored to linear memory at the address pointed to by `out_ptr`.
	// `out_len_ptr` must point to a u32 value that describes the available space at
	// `out_ptr`. This call overwrites it with the size of the value. If the available
	// space at `out_ptr` is less than the size of the value a trap is triggered.
	// The data is encoded as T::Balance.
	//
	// # Note
	//
	// The tombstone deposit is on top of the existential deposit. So in order for
	// a contract to leave a tombstone the balance of the contract must not go
	// below the sum of existential deposit and the tombstone deposit. The sum
	// is commonly referred as subsistence threshold in code.
	seal_tombstone_deposit(ctx, out_ptr: u32, out_len_ptr: u32) => {
		ctx.charge_gas(RuntimeToken::TombstoneDeposit)?;
			out_ptr, out_len_ptr, &ctx.ext.tombstone_deposit().encode(), false, already_charged
	// Try to restore the given destination contract sacrificing the caller.
	// This function will compute a tombstone hash from the caller's storage and the given code hash
	// and if the hash matches the hash found in the tombstone at the specified address - kill
	// the caller contract and restore the destination contract and set the specified `rent_allowance`.
	// All caller's funds are transfered to the destination.
	// If there is no tombstone at the destination address, the hashes don't match or this contract
	// instance is already present on the contract call stack, a trap is generated.
	//
	// Otherwise, the destination contract is restored. This function is diverging and stops execution
	// even on success.
	//
	// `dest_ptr`, `dest_len` - the pointer and the length of a buffer that encodes `T::AccountId`
	// with the address of the to be restored contract.
	// `code_hash_ptr`, `code_hash_len` - the pointer and the length of a buffer that encodes
	// a code hash of the to be restored contract.
	// `rent_allowance_ptr`, `rent_allowance_len` - the pointer and the length of a buffer that
	// encodes the rent allowance that must be set in the case of successful restoration.
	// `delta_ptr` is the pointer to the start of a buffer that has `delta_count` storage keys
	// laid out sequentially.
	//
	// # Traps
	//
	// - Tombstone hashes do not match
	// - Calling cantract is live i.e is already on the call stack.
		ctx,
		dest_ptr: u32,
		dest_len: u32,
		code_hash_ptr: u32,
		code_hash_len: u32,
		rent_allowance_ptr: u32,
		rent_allowance_len: u32,
		delta_ptr: u32,
		delta_count: u32
	) => {
		ctx.charge_gas(RuntimeToken::RestoreTo(delta_count))?;
		let dest: <<E as Ext>::T as frame_system::Config>::AccountId =
			ctx.read_sandbox_memory_as(dest_ptr, dest_len)?;
		let code_hash: CodeHash<<E as Ext>::T> =
			ctx.read_sandbox_memory_as(code_hash_ptr, code_hash_len)?;
		let rent_allowance: BalanceOf<<E as Ext>::T> =
			ctx.read_sandbox_memory_as(rent_allowance_ptr, rent_allowance_len)?;
			// We can eagerly allocate because we charged for the complete delta count already
			let mut delta = Vec::with_capacity(delta_count as usize);
			let mut key_ptr = delta_ptr;

			for _ in 0..delta_count {
				const KEY_SIZE: usize = 32;

				// Read the delta into the provided buffer and collect it into the buffer.
				let mut delta_key: StorageKey = [0; KEY_SIZE];
				ctx.read_sandbox_memory_into_buf(key_ptr, &mut delta_key)?;
				delta.push(delta_key);

				// Offset key_ptr to the next element.
				key_ptr = key_ptr.checked_add(KEY_SIZE as u32).ok_or(Error::<E::T>::OutOfBounds)?;
		ctx.ext.restore_to(dest, code_hash, rent_allowance, delta)?;
		Err(TrapReason::Restoration)
	// Deposit a contract event with the data buffer and optional list of topics. There is a limit
	// on the maximum number of topics specified by `event_topics`.
	//
	// - topics_ptr - a pointer to the buffer of topics encoded as `Vec<T::Hash>`. The value of this
	//   is ignored if `topics_len` is set to 0. The topics list can't contain duplicates.
	// - topics_len - the length of the topics buffer. Pass 0 if you want to pass an empty vector.
	// - data_ptr - a pointer to a raw data buffer which will saved along the event.
	// - data_len - the length of the data buffer.
	seal_deposit_event(ctx, topics_ptr: u32, topics_len: u32, data_ptr: u32, data_len: u32) => {
		let num_topic = topics_len
			.checked_div(sp_std::mem::size_of::<TopicOf<E::T>>() as u32)
		ctx.charge_gas(RuntimeToken::DepositEvent {
			num_topic,
			len: data_len,
		})?;
		if data_len > ctx.ext.max_value_size() {
		let mut topics: Vec::<TopicOf<<E as Ext>::T>> = match topics_len {
			0 => Vec::new(),
			_ => ctx.read_sandbox_memory_as(topics_ptr, topics_len)?,
		// If there are more than `event_topics`, then trap.
		if topics.len() > ctx.schedule.limits.event_topics as usize {
		}

		// Check for duplicate topics. If there are any, then trap.
		if has_duplicates(&mut topics) {
		let event_data = ctx.read_sandbox_memory(data_ptr, data_len)?;

		ctx.ext.deposit_event(topics, event_data);
	// Set rent allowance of the contract
	//
	// - value_ptr: a pointer to the buffer with value, how much to allow for rent
	//   Should be decodable as a `T::Balance`. Traps otherwise.
	// - value_len: length of the value buffer.
	seal_set_rent_allowance(ctx, value_ptr: u32, value_len: u32) => {
		ctx.charge_gas(RuntimeToken::SetRentAllowance)?;
		let value: BalanceOf<<E as Ext>::T> =
			ctx.read_sandbox_memory_as(value_ptr, value_len)?;
		ctx.ext.set_rent_allowance(value);

		Ok(())
	},

	// Stores the rent allowance into the supplied buffer.
	// The value is stored to linear memory at the address pointed to by `out_ptr`.
	// `out_len_ptr` must point to a u32 value that describes the available space at
	// `out_ptr`. This call overwrites it with the size of the value. If the available
	// space at `out_ptr` is less than the size of the value a trap is triggered.
	//
	// The data is encoded as T::Balance.
	seal_rent_allowance(ctx, out_ptr: u32, out_len_ptr: u32) => {
		ctx.charge_gas(RuntimeToken::RentAllowance)?;
			out_ptr, out_len_ptr, &ctx.ext.rent_allowance().encode(), false, already_charged
	// Prints utf8 encoded string from the data buffer.
	// Only available on `--dev` chains.
	// This function may be removed at any time, superseded by a more general contract debugging feature.
		let data = ctx.read_sandbox_memory(str_ptr, str_len)?;
		if let Ok(utf8) = core::str::from_utf8(&data) {
			sp_runtime::print(utf8);
	// Stores the current block number of the current contract into the supplied buffer.
	//
	// The value is stored to linear memory at the address pointed to by `out_ptr`.
	// `out_len_ptr` must point to a u32 value that describes the available space at
	// `out_ptr`. This call overwrites it with the size of the value. If the available
	// space at `out_ptr` is less than the size of the value a trap is triggered.
	seal_block_number(ctx, out_ptr: u32, out_len_ptr: u32) => {
		ctx.charge_gas(RuntimeToken::BlockNumber)?;
			out_ptr, out_len_ptr, &ctx.ext.block_number().encode(), false, already_charged
	// Computes the SHA2 256-bit hash on the given input buffer.
	//
	// Returns the result directly into the given output buffer.
	//
	// # Note
	//
	// - The `input` and `output` buffer may overlap.
	// - The output buffer is expected to hold at least 32 bytes (256 bits).
	// - It is the callers responsibility to provide an output buffer that
	//   is large enough to hold the expected amount of bytes returned by the
	//   chosen hash function.
	//
	// # Parameters
	//
	// - `input_ptr`: the pointer into the linear memory where the input
	//                data is placed.
	// - `input_len`: the length of the input data in bytes.
	// - `output_ptr`: the pointer into the linear memory where the output
	//                 data is placed. The function will write the result
	//                 directly into this buffer.
	seal_hash_sha2_256(ctx, input_ptr: u32, input_len: u32, output_ptr: u32) => {
		ctx.charge_gas(RuntimeToken::HashSha256(input_len))?;
		Ok(ctx.compute_hash_on_intermediate_buffer(sha2_256, input_ptr, input_len, output_ptr)?)
	},

	// Computes the KECCAK 256-bit hash on the given input buffer.
	//
	// Returns the result directly into the given output buffer.
	//
	// # Note
	//
	// - The `input` and `output` buffer may overlap.
	// - The output buffer is expected to hold at least 32 bytes (256 bits).
	// - It is the callers responsibility to provide an output buffer that
	//   is large enough to hold the expected amount of bytes returned by the
	//   chosen hash function.
	//
	// # Parameters
	//
	// - `input_ptr`: the pointer into the linear memory where the input
	//                data is placed.
	// - `input_len`: the length of the input data in bytes.
	// - `output_ptr`: the pointer into the linear memory where the output
	//                 data is placed. The function will write the result
	//                 directly into this buffer.
	seal_hash_keccak_256(ctx, input_ptr: u32, input_len: u32, output_ptr: u32) => {
		ctx.charge_gas(RuntimeToken::HashKeccak256(input_len))?;
		Ok(ctx.compute_hash_on_intermediate_buffer(keccak_256, input_ptr, input_len, output_ptr)?)
	},

	// Computes the BLAKE2 256-bit hash on the given input buffer.
	//
	// Returns the result directly into the given output buffer.
	//
	// # Note
	//
	// - The `input` and `output` buffer may overlap.
	// - The output buffer is expected to hold at least 32 bytes (256 bits).
	// - It is the callers responsibility to provide an output buffer that
	//   is large enough to hold the expected amount of bytes returned by the
	//   chosen hash function.
	//
	// # Parameters
	//
	// - `input_ptr`: the pointer into the linear memory where the input
	//                data is placed.
	// - `input_len`: the length of the input data in bytes.
	// - `output_ptr`: the pointer into the linear memory where the output
	//                 data is placed. The function will write the result
	//                 directly into this buffer.
	seal_hash_blake2_256(ctx, input_ptr: u32, input_len: u32, output_ptr: u32) => {
		ctx.charge_gas(RuntimeToken::HashBlake256(input_len))?;
		Ok(ctx.compute_hash_on_intermediate_buffer(blake2_256, input_ptr, input_len, output_ptr)?)
	},

	// Computes the BLAKE2 128-bit hash on the given input buffer.
	//
	// Returns the result directly into the given output buffer.
	//
	// # Note
	//
	// - The `input` and `output` buffer may overlap.
	// - The output buffer is expected to hold at least 16 bytes (128 bits).
	// - It is the callers responsibility to provide an output buffer that
	//   is large enough to hold the expected amount of bytes returned by the
	//   chosen hash function.
	//
	// # Parameters
	//
	// - `input_ptr`: the pointer into the linear memory where the input
	//                data is placed.
	// - `input_len`: the length of the input data in bytes.
	// - `output_ptr`: the pointer into the linear memory where the output
	//                 data is placed. The function will write the result
	//                 directly into this buffer.
	seal_hash_blake2_128(ctx, input_ptr: u32, input_len: u32, output_ptr: u32) => {
		ctx.charge_gas(RuntimeToken::HashBlake128(input_len))?;
		Ok(ctx.compute_hash_on_intermediate_buffer(blake2_128, input_ptr, input_len, output_ptr)?)