Newer
Older
// This file is part of Substrate.
// Copyright (C) 2020-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Tools for analyzing the benchmark results.
use std::collections::BTreeMap;
use core::convert::TryFrom;
use linregress::{FormulaRegressionBuilder, RegressionDataBuilder};
use crate::BenchmarkResults;
pub use linregress::RegressionModel;
pub base: u128,
pub slopes: Vec<u128>,
pub names: Vec<String>,
pub value_dists: Option<Vec<(Vec<u32>, u128, u128)>>,
pub model: Option<RegressionModel>,
#[derive(Clone, Copy)]
pub enum BenchmarkSelector {
ExtrinsicTime,
StorageRootTime,
Reads,
Writes,
}
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#[derive(Debug)]
pub enum AnalysisChoice {
/// Use minimum squares regression for analyzing the benchmarking results.
MinSquares,
/// Use median slopes for analyzing the benchmarking results.
MedianSlopes,
/// Use the maximum values among all other analysis functions for the benchmarking results.
Max,
}
impl Default for AnalysisChoice {
fn default() -> Self {
AnalysisChoice::MinSquares
}
}
impl TryFrom<Option<String>> for AnalysisChoice {
type Error = &'static str;
fn try_from(s: Option<String>) -> Result<Self, Self::Error> {
match s {
None => Ok(AnalysisChoice::default()),
Some(i) => {
match &i[..] {
"min-squares" | "min_squares" => Ok(AnalysisChoice::MinSquares),
"median-slopes" | "median_slopes" => Ok(AnalysisChoice::MedianSlopes),
"max" => Ok(AnalysisChoice::Max),
_ => Err("invalid analysis string")
}
}
}
}
}
// Useful for when there are no components, and we just need an median value of the benchmark results.
// Note: We choose the median value because it is more robust to outliers.
fn median_value(r: &Vec<BenchmarkResults>, selector: BenchmarkSelector) -> Option<Self> {
if r.is_empty() { return None }
let mut values: Vec<u128> = r.iter().map(|result|
match selector {
BenchmarkSelector::ExtrinsicTime => result.extrinsic_time,
BenchmarkSelector::StorageRootTime => result.storage_root_time,
BenchmarkSelector::Reads => result.reads.into(),
BenchmarkSelector::Writes => result.writes.into(),
}
).collect();
values.sort();
let mid = values.len() / 2;
Some(Self {
base: values[mid],
slopes: Vec::new(),
names: Vec::new(),
value_dists: None,
model: None,
})
}
pub fn median_slopes(r: &Vec<BenchmarkResults>, selector: BenchmarkSelector) -> Option<Self> {
if r[0].components.is_empty() { return Self::median_value(r, selector) }
let results = r[0].components.iter().enumerate().map(|(i, &(param, _))| {
let mut counted = BTreeMap::<Vec<u32>, usize>::new();
for result in r.iter() {
let mut p = result.components.iter().map(|x| x.1).collect::<Vec<_>>();
p[i] = 0;
*counted.entry(p).or_default() += 1;
}
let others: Vec<u32> = counted.iter().max_by_key(|i| i.1).expect("r is not empty; qed").0.clone();
let values = r.iter()
.filter(|v|
v.components.iter()
.map(|x| x.1)
.zip(others.iter())
.enumerate()
.all(|(j, (v1, v2))| j == i || v1 == *v2)
).map(|result| {
// Extract the data we are interested in analyzing
let data = match selector {
BenchmarkSelector::ExtrinsicTime => result.extrinsic_time,
BenchmarkSelector::StorageRootTime => result.storage_root_time,
BenchmarkSelector::Reads => result.reads.into(),
BenchmarkSelector::Writes => result.writes.into(),
};
(result.components[i].1, data)
})
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
.collect::<Vec<_>>();
(format!("{:?}", param), i, others, values)
}).collect::<Vec<_>>();
let models = results.iter().map(|(_, _, _, ref values)| {
let mut slopes = vec![];
for (i, &(x1, y1)) in values.iter().enumerate() {
for &(x2, y2) in values.iter().skip(i + 1) {
if x1 != x2 {
slopes.push((y1 as f64 - y2 as f64) / (x1 as f64 - x2 as f64));
}
}
}
slopes.sort_by(|a, b| a.partial_cmp(b).expect("values well defined; qed"));
let slope = slopes[slopes.len() / 2];
let mut offsets = vec![];
for &(x, y) in values.iter() {
offsets.push(y as f64 - slope * x as f64);
}
offsets.sort_by(|a, b| a.partial_cmp(b).expect("values well defined; qed"));
let offset = offsets[offsets.len() / 2];
(offset, slope)
}).collect::<Vec<_>>();
let models = models.iter()
.zip(results.iter())
.map(|((offset, slope), (_, i, others, _))| {
let over = others.iter()
.enumerate()
.filter(|(j, _)| j != i)
.map(|(j, v)| models[j].1 * *v as f64)
.fold(0f64, |acc, i| acc + i);
(*offset - over, *slope)
})
.collect::<Vec<_>>();
let base = models[0].0.max(0f64) as u128;
let slopes = models.iter().map(|x| x.1.max(0f64) as u128).collect::<Vec<_>>();
Some(Self {
base,
slopes,
names: results.into_iter().map(|x| x.0).collect::<Vec<_>>(),
value_dists: None,
model: None,
})
}
pub fn min_squares_iqr(r: &Vec<BenchmarkResults>, selector: BenchmarkSelector) -> Option<Self> {
if r[0].components.is_empty() { return Self::median_value(r, selector) }
let mut results = BTreeMap::<Vec<u32>, Vec<u128>>::new();
for result in r.iter() {
let p = result.components.iter().map(|x| x.1).collect::<Vec<_>>();
results.entry(p).or_default().push(match selector {
BenchmarkSelector::ExtrinsicTime => result.extrinsic_time,
BenchmarkSelector::StorageRootTime => result.storage_root_time,
BenchmarkSelector::Reads => result.reads.into(),
BenchmarkSelector::Writes => result.writes.into(),
})
for (_, rs) in results.iter_mut() {
rs.sort();
let ql = rs.len() / 4;
*rs = rs[ql..rs.len() - ql].to_vec();
}
let mut data = vec![("Y", results.iter().flat_map(|x| x.1.iter().map(|v| *v as f64)).collect())];
let names = r[0].components.iter().map(|x| format!("{:?}", x.0)).collect::<Vec<_>>();
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
data.extend(names.iter()
.enumerate()
.map(|(i, p)| (
p.as_str(),
results.iter()
.flat_map(|x| Some(x.0[i] as f64)
.into_iter()
.cycle()
.take(x.1.len())
).collect::<Vec<_>>()
))
);
let data = RegressionDataBuilder::new().build_from(data).ok()?;
let model = FormulaRegressionBuilder::new()
.data(&data)
.formula(format!("Y ~ {}", names.join(" + ")))
.fit()
.ok()?;
let slopes = model.parameters.regressor_values.iter()
.enumerate()
.map(|(_, x)| (*x + 0.5) as u128)
.collect();
let value_dists = results.iter().map(|(p, vs)| {
// Avoid divide by zero
if vs.len() == 0 { return (p.clone(), 0, 0) }
let total = vs.iter()
.fold(0u128, |acc, v| acc + *v);
let mean = total / vs.len() as u128;
let sum_sq_diff = vs.iter()
.fold(0u128, |acc, v| {
let d = mean.max(*v) - mean.min(*v);
acc + d * d
});
let stddev = (sum_sq_diff as f64 / vs.len() as f64).sqrt() as u128;
(p.clone(), mean, stddev)
}).collect::<Vec<_>>();
Some(Self {
base: (model.parameters.intercept_value + 0.5) as u128,
slopes,
names,
value_dists: Some(value_dists),
model: Some(model),
})
}
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
pub fn max(r: &Vec<BenchmarkResults>, selector: BenchmarkSelector) -> Option<Self> {
let median_slopes = Self::median_slopes(r, selector);
let min_squares = Self::min_squares_iqr(r, selector);
if median_slopes.is_none() || min_squares.is_none() {
return None;
}
let median_slopes = median_slopes.unwrap();
let min_squares = min_squares.unwrap();
let base = median_slopes.base.max(min_squares.base);
let slopes = median_slopes.slopes.into_iter()
.zip(min_squares.slopes.into_iter())
.map(|(a, b): (u128, u128)| { a.max(b) })
.collect::<Vec<u128>>();
// components should always be in the same order
median_slopes.names.iter()
.zip(min_squares.names.iter())
.for_each(|(a, b)| assert!(a == b, "benchmark results not in the same order"));
let names = median_slopes.names;
let value_dists = min_squares.value_dists;
let model = min_squares.model;
Some(Self {
base,
slopes,
names,
value_dists,
model,
})
}
}
fn ms(mut nanos: u128) -> String {
let mut x = 100_000u128;
while x > 1 {
if nanos > x * 1_000 {
nanos = nanos / x * x;
break;
}
x /= 10;
}
format!("{}", nanos as f64 / 1_000f64)
}
impl std::fmt::Display for Analysis {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
if let Some(ref value_dists) = self.value_dists {
writeln!(f, "\nData points distribution:")?;
writeln!(f, "{} mean µs sigma µs %", self.names.iter().map(|p| format!("{:>5}", p)).collect::<Vec<_>>().join(" "))?;
for (param_values, mean, sigma) in value_dists.iter() {
if *mean == 0 {
writeln!(f, "{} {:>8} {:>8} {:>3}.{}%",
param_values.iter().map(|v| format!("{:>5}", v)).collect::<Vec<_>>().join(" "),
ms(*mean),
ms(*sigma),
"?",
"?"
)?;
} else {
writeln!(f, "{} {:>8} {:>8} {:>3}.{}%",
param_values.iter().map(|v| format!("{:>5}", v)).collect::<Vec<_>>().join(" "),
ms(*mean),
ms(*sigma),
(sigma * 100 / mean),
(sigma * 1000 / mean % 10)
)?;
}
}
}
if let Some(ref model) = self.model {
writeln!(f, "\nQuality and confidence:")?;
writeln!(f, "param error")?;
for (p, se) in self.names.iter().zip(model.se.regressor_values.iter()) {
writeln!(f, "{} {:>8}", p, ms(*se as u128))?;
}
}
writeln!(f, "\nModel:")?;
writeln!(f, "Time ~= {:>8}", ms(self.base))?;
for (&t, n) in self.slopes.iter().zip(self.names.iter()) {
writeln!(f, " + {} {:>8}", n, ms(t))?;
}
writeln!(f, " µs")
}
}
impl std::fmt::Debug for Analysis {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "{}", self.base)?;
for (&m, n) in self.slopes.iter().zip(self.names.iter()) {
write!(f, " + ({} * {})", m, n)?;
}
write!(f,"")
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::BenchmarkParameter;
fn benchmark_result(
components: Vec<(BenchmarkParameter, u32)>,
extrinsic_time: u128,
storage_root_time: u128,
reads: u32,
writes: u32,
) -> BenchmarkResults {
BenchmarkResults {
components,
extrinsic_time,
storage_root_time,
reads,
repeat_reads: 0,
writes,
repeat_writes: 0,
}
}
#[test]
fn analysis_median_slopes_should_work() {
let data = vec![
benchmark_result(vec![(BenchmarkParameter::n, 1), (BenchmarkParameter::m, 5)], 11_500_000, 0, 3, 10),
benchmark_result(vec![(BenchmarkParameter::n, 2), (BenchmarkParameter::m, 5)], 12_500_000, 0, 4, 10),
benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 5)], 13_500_000, 0, 5, 10),
benchmark_result(vec![(BenchmarkParameter::n, 4), (BenchmarkParameter::m, 5)], 14_500_000, 0, 6, 10),
benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 1)], 13_100_000, 0, 5, 2),
benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 3)], 13_300_000, 0, 5, 6),
benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 7)], 13_700_000, 0, 5, 14),
benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 10)], 14_000_000, 0, 5, 20),
];
let extrinsic_time = Analysis::median_slopes(&data, BenchmarkSelector::ExtrinsicTime).unwrap();
assert_eq!(extrinsic_time.base, 10_000_000);
assert_eq!(extrinsic_time.slopes, vec![1_000_000, 100_000]);
let reads = Analysis::median_slopes(&data, BenchmarkSelector::Reads).unwrap();
assert_eq!(reads.base, 2);
assert_eq!(reads.slopes, vec![1, 0]);
let writes = Analysis::median_slopes(&data, BenchmarkSelector::Writes).unwrap();
assert_eq!(writes.base, 0);
assert_eq!(writes.slopes, vec![0, 2]);
}
#[test]
fn analysis_median_min_squares_should_work() {
let data = vec![
benchmark_result(vec![(BenchmarkParameter::n, 1), (BenchmarkParameter::m, 5)], 11_500_000, 0, 3, 10),
benchmark_result(vec![(BenchmarkParameter::n, 2), (BenchmarkParameter::m, 5)], 12_500_000, 0, 4, 10),
benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 5)], 13_500_000, 0, 5, 10),
benchmark_result(vec![(BenchmarkParameter::n, 4), (BenchmarkParameter::m, 5)], 14_500_000, 0, 6, 10),
benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 1)], 13_100_000, 0, 5, 2),
benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 3)], 13_300_000, 0, 5, 6),
benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 7)], 13_700_000, 0, 5, 14),
benchmark_result(vec![(BenchmarkParameter::n, 3), (BenchmarkParameter::m, 10)], 14_000_000, 0, 5, 20),
];
let extrinsic_time = Analysis::min_squares_iqr(&data, BenchmarkSelector::ExtrinsicTime).unwrap();
assert_eq!(extrinsic_time.base, 10_000_000);
assert_eq!(extrinsic_time.slopes, vec![1_000_000, 100_000]);
let reads = Analysis::min_squares_iqr(&data, BenchmarkSelector::Reads).unwrap();
assert_eq!(reads.base, 2);
assert_eq!(reads.slopes, vec![1, 0]);
let writes = Analysis::min_squares_iqr(&data, BenchmarkSelector::Writes).unwrap();
assert_eq!(writes.base, 0);
assert_eq!(writes.slopes, vec![0, 2]);