Newer
Older
// Copyright 2017-2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
use parity_scale_codec::{Decode, Encode};
use scale_info::TypeInfo;
use sp_std::{
marker::PhantomData,
prelude::*,
slice::{Iter, IterMut},
vec::IntoIter,
};
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
use application_crypto::KeyTypeId;
use inherents::InherentIdentifier;
use primitives::RuntimeDebug;
use runtime_primitives::traits::{AppVerify, Header as HeaderT};
use sp_arithmetic::traits::{BaseArithmetic, Saturating};
pub use runtime_primitives::traits::{BlakeTwo256, Hash as HashT};
// Export some core primitives.
pub use polkadot_core_primitives::v2::{
AccountId, AccountIndex, AccountPublic, Balance, Block, BlockId, BlockNumber, CandidateHash,
ChainId, DownwardMessage, Hash, Header, InboundDownwardMessage, InboundHrmpMessage, Moment,
Nonce, OutboundHrmpMessage, Remark, Signature, UncheckedExtrinsic,
};
// Export some polkadot-parachain primitives
pub use polkadot_parachain::primitives::{
HeadData, HrmpChannelId, Id, UpwardMessage, ValidationCode, ValidationCodeHash,
LOWEST_PUBLIC_ID, LOWEST_USER_ID,
};
#[cfg(feature = "std")]
use parity_util_mem::{MallocSizeOf, MallocSizeOfOps};
#[cfg(feature = "std")]
use serde::{Deserialize, Serialize};
pub use sp_authority_discovery::AuthorityId as AuthorityDiscoveryId;
pub use sp_consensus_slots::Slot;
pub use sp_staking::SessionIndex;
/// Signed data.
mod signed;
pub use signed::{EncodeAs, Signed, UncheckedSigned};
mod metrics;
pub use metrics::{
metric_definitions, RuntimeMetricLabel, RuntimeMetricLabelValue, RuntimeMetricLabelValues,
RuntimeMetricLabels, RuntimeMetricOp, RuntimeMetricUpdate,
};
/// The key type ID for a collator key.
pub const COLLATOR_KEY_TYPE_ID: KeyTypeId = KeyTypeId(*b"coll");
mod collator_app {
use application_crypto::{app_crypto, sr25519};
app_crypto!(sr25519, super::COLLATOR_KEY_TYPE_ID);
}
/// Identity that collators use.
pub type CollatorId = collator_app::Public;
#[cfg(feature = "std")]
impl MallocSizeOf for CollatorId {
fn size_of(&self, _ops: &mut MallocSizeOfOps) -> usize {
0
}
fn constant_size() -> Option<usize> {
Some(0)
}
}
/// A Parachain collator keypair.
#[cfg(feature = "std")]
pub type CollatorPair = collator_app::Pair;
/// Signature on candidate's block data by a collator.
pub type CollatorSignature = collator_app::Signature;
#[cfg(feature = "std")]
impl MallocSizeOf for CollatorSignature {
fn size_of(&self, _ops: &mut MallocSizeOfOps) -> usize {
0
}
fn constant_size() -> Option<usize> {
Some(0)
}
}
/// The key type ID for a parachain validator key.
pub const PARACHAIN_KEY_TYPE_ID: KeyTypeId = KeyTypeId(*b"para");
mod validator_app {
use application_crypto::{app_crypto, sr25519};
app_crypto!(sr25519, super::PARACHAIN_KEY_TYPE_ID);
}
/// Identity that parachain validators use when signing validation messages.
///
/// For now we assert that parachain validator set is exactly equivalent to the authority set, and
/// so we define it to be the same type as `SessionKey`. In the future it may have different crypto.
pub type ValidatorId = validator_app::Public;
#[cfg(feature = "std")]
impl MallocSizeOf for ValidatorId {
fn size_of(&self, _ops: &mut MallocSizeOfOps) -> usize {
0
}
fn constant_size() -> Option<usize> {
Some(0)
}
}
/// Trait required for type specific indices e.g. `ValidatorIndex` and `GroupIndex`
pub trait TypeIndex {
/// Returns the index associated to this value.
fn type_index(&self) -> usize;
}
/// Index of the validator is used as a lightweight replacement of the `ValidatorId` when appropriate.
#[derive(Eq, Ord, PartialEq, PartialOrd, Copy, Clone, Encode, Decode, TypeInfo, RuntimeDebug)]
#[cfg_attr(feature = "std", derive(Serialize, Deserialize, Hash, MallocSizeOf))]
pub struct ValidatorIndex(pub u32);
// We should really get https://github.com/paritytech/polkadot/issues/2403 going ..
impl From<u32> for ValidatorIndex {
fn from(n: u32) -> Self {
ValidatorIndex(n)
}
}
impl TypeIndex for ValidatorIndex {
fn type_index(&self) -> usize {
self.0 as usize
}
}
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
application_crypto::with_pair! {
/// A Parachain validator keypair.
pub type ValidatorPair = validator_app::Pair;
}
/// Signature with which parachain validators sign blocks.
///
/// For now we assert that parachain validator set is exactly equivalent to the authority set, and
/// so we define it to be the same type as `SessionKey`. In the future it may have different crypto.
pub type ValidatorSignature = validator_app::Signature;
#[cfg(feature = "std")]
impl MallocSizeOf for ValidatorSignature {
fn size_of(&self, _ops: &mut MallocSizeOfOps) -> usize {
0
}
fn constant_size() -> Option<usize> {
Some(0)
}
}
/// A declarations of storage keys where an external observer can find some interesting data.
pub mod well_known_keys {
use super::{HrmpChannelId, Id};
use hex_literal::hex;
use parity_scale_codec::Encode as _;
use sp_io::hashing::twox_64;
use sp_std::prelude::*;
// A note on generating these magic values below:
//
// The `StorageValue`, such as `ACTIVE_CONFIG` was obtained by calling:
//
// <Self as Store>::ActiveConfig::hashed_key()
//
// The `StorageMap` values require `prefix`, and for example for `hrmp_egress_channel_index`,
// it could be obtained like:
//
// <Hrmp as Store>::HrmpEgressChannelsIndex::prefix_hash();
//
/// The current epoch index.
///
/// The storage item should be access as a `u64` encoded value.
pub const EPOCH_INDEX: &[u8] =
&hex!["1cb6f36e027abb2091cfb5110ab5087f38316cbf8fa0da822a20ac1c55bf1be3"];
/// The current relay chain block randomness
///
/// The storage item should be accessed as a `schnorrkel::Randomness` encoded value.
pub const CURRENT_BLOCK_RANDOMNESS: &[u8] =
&hex!["1cb6f36e027abb2091cfb5110ab5087fd077dfdb8adb10f78f10a5df8742c545"];
/// The randomness for one epoch ago
///
/// The storage item should be accessed as a `schnorrkel::Randomness` encoded value.
pub const ONE_EPOCH_AGO_RANDOMNESS: &[u8] =
&hex!["1cb6f36e027abb2091cfb5110ab5087f7ce678799d3eff024253b90e84927cc6"];
/// The randomness for two epochs ago
///
/// The storage item should be accessed as a `schnorrkel::Randomness` encoded value.
pub const TWO_EPOCHS_AGO_RANDOMNESS: &[u8] =
&hex!["1cb6f36e027abb2091cfb5110ab5087f7a414cb008e0e61e46722aa60abdd672"];
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
/// The current slot number.
///
/// The storage entry should be accessed as a `Slot` encoded value.
pub const CURRENT_SLOT: &[u8] =
&hex!["1cb6f36e027abb2091cfb5110ab5087f06155b3cd9a8c9e5e9a23fd5dc13a5ed"];
/// The currently active host configuration.
///
/// The storage entry should be accessed as an `AbridgedHostConfiguration` encoded value.
pub const ACTIVE_CONFIG: &[u8] =
&hex!["06de3d8a54d27e44a9d5ce189618f22db4b49d95320d9021994c850f25b8e385"];
/// The upward message dispatch queue for the given para id.
///
/// The storage entry stores a tuple of two values:
///
/// - `count: u32`, the number of messages currently in the queue for given para,
/// - `total_size: u32`, the total size of all messages in the queue.
pub fn relay_dispatch_queue_size(para_id: Id) -> Vec<u8> {
let prefix = hex!["f5207f03cfdce586301014700e2c2593fad157e461d71fd4c1f936839a5f1f3e"];
para_id.using_encoded(|para_id: &[u8]| {
prefix
.as_ref()
.iter()
.chain(twox_64(para_id).iter())
.chain(para_id.iter())
.cloned()
.collect()
})
}
/// The HRMP channel for the given identifier.
///
/// The storage entry should be accessed as an `AbridgedHrmpChannel` encoded value.
pub fn hrmp_channels(channel: HrmpChannelId) -> Vec<u8> {
let prefix = hex!["6a0da05ca59913bc38a8630590f2627cb6604cff828a6e3f579ca6c59ace013d"];
channel.using_encoded(|channel: &[u8]| {
prefix
.as_ref()
.iter()
.chain(twox_64(channel).iter())
.chain(channel.iter())
.cloned()
.collect()
})
}
/// The list of inbound channels for the given para.
///
/// The storage entry stores a `Vec<ParaId>`
pub fn hrmp_ingress_channel_index(para_id: Id) -> Vec<u8> {
let prefix = hex!["6a0da05ca59913bc38a8630590f2627c1d3719f5b0b12c7105c073c507445948"];
para_id.using_encoded(|para_id: &[u8]| {
prefix
.as_ref()
.iter()
.chain(twox_64(para_id).iter())
.chain(para_id.iter())
.cloned()
.collect()
})
}
/// The list of outbound channels for the given para.
///
/// The storage entry stores a `Vec<ParaId>`
pub fn hrmp_egress_channel_index(para_id: Id) -> Vec<u8> {
let prefix = hex!["6a0da05ca59913bc38a8630590f2627cf12b746dcf32e843354583c9702cc020"];
para_id.using_encoded(|para_id: &[u8]| {
prefix
.as_ref()
.iter()
.chain(twox_64(para_id).iter())
.chain(para_id.iter())
.cloned()
.collect()
})
}
/// The MQC head for the downward message queue of the given para. See more in the `Dmp` module.
///
/// The storage entry stores a `Hash`. This is polkadot hash which is at the moment
/// `blake2b-256`.
pub fn dmq_mqc_head(para_id: Id) -> Vec<u8> {
let prefix = hex!["63f78c98723ddc9073523ef3beefda0c4d7fefc408aac59dbfe80a72ac8e3ce5"];
para_id.using_encoded(|para_id: &[u8]| {
prefix
.as_ref()
.iter()
.chain(twox_64(para_id).iter())
.chain(para_id.iter())
.cloned()
.collect()
})
}
/// The signal that indicates whether the parachain should go-ahead with the proposed validation
/// code upgrade.
///
/// The storage entry stores a value of `UpgradeGoAhead` type.
pub fn upgrade_go_ahead_signal(para_id: Id) -> Vec<u8> {
let prefix = hex!["cd710b30bd2eab0352ddcc26417aa1949e94c040f5e73d9b7addd6cb603d15d3"];
para_id.using_encoded(|para_id: &[u8]| {
prefix
.as_ref()
.iter()
.chain(twox_64(para_id).iter())
.chain(para_id.iter())
.cloned()
.collect()
})
}
/// The signal that indicates whether the parachain is disallowed to signal an upgrade at this
/// relay-parent.
///
/// The storage entry stores a value of `UpgradeRestriction` type.
pub fn upgrade_restriction_signal(para_id: Id) -> Vec<u8> {
let prefix = hex!["cd710b30bd2eab0352ddcc26417aa194f27bbb460270642b5bcaf032ea04d56a"];
para_id.using_encoded(|para_id: &[u8]| {
prefix
.as_ref()
.iter()
.chain(twox_64(para_id).iter())
.chain(para_id.iter())
.cloned()
.collect()
})
}
}
/// Unique identifier for the Parachains Inherent
pub const PARACHAINS_INHERENT_IDENTIFIER: InherentIdentifier = *b"parachn0";
/// The key type ID for parachain assignment key.
pub const ASSIGNMENT_KEY_TYPE_ID: KeyTypeId = KeyTypeId(*b"asgn");
/// Maximum compressed code size we support right now.
/// At the moment we have runtime upgrade on chain, which restricts scalability severely. If we want
/// to have bigger values, we should fix that first.
///
/// Used for:
/// * initial genesis for the Parachains configuration
/// * checking updates to this stored runtime configuration do not exceed this limit
/// * when detecting a code decompression bomb in the client
// NOTE: This value is used in the runtime so be careful when changing it.
pub const MAX_CODE_SIZE: u32 = 3 * 1024 * 1024;
/// Maximum head data size we support right now.
///
/// Used for:
/// * initial genesis for the Parachains configuration
/// * checking updates to this stored runtime configuration do not exceed this limit
// NOTE: This value is used in the runtime so be careful when changing it.
pub const MAX_HEAD_DATA_SIZE: u32 = 1 * 1024 * 1024;
/// Maximum PoV size we support right now.
///
/// Used for:
/// * initial genesis for the Parachains configuration
/// * checking updates to this stored runtime configuration do not exceed this limit
/// * when detecting a PoV decompression bomb in the client
// NOTE: This value is used in the runtime so be careful when changing it.
pub const MAX_POV_SIZE: u32 = 5 * 1024 * 1024;
// The public key of a keypair used by a validator for determining assignments
/// to approve included parachain candidates.
mod assignment_app {
use application_crypto::{app_crypto, sr25519};
app_crypto!(sr25519, super::ASSIGNMENT_KEY_TYPE_ID);
}
/// The public key of a keypair used by a validator for determining assignments
/// to approve included parachain candidates.
pub type AssignmentId = assignment_app::Public;
application_crypto::with_pair! {
/// The full keypair used by a validator for determining assignments to approve included
/// parachain candidates.
pub type AssignmentPair = assignment_app::Pair;
}
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
impl MallocSizeOf for AssignmentId {
fn size_of(&self, _ops: &mut MallocSizeOfOps) -> usize {
0
}
fn constant_size() -> Option<usize> {
Some(0)
}
}
/// The index of the candidate in the list of candidates fully included as-of the block.
pub type CandidateIndex = u32;
/// Get a collator signature payload on a relay-parent, block-data combo.
pub fn collator_signature_payload<H: AsRef<[u8]>>(
relay_parent: &H,
para_id: &Id,
persisted_validation_data_hash: &Hash,
pov_hash: &Hash,
validation_code_hash: &ValidationCodeHash,
) -> [u8; 132] {
// 32-byte hash length is protected in a test below.
let mut payload = [0u8; 132];
payload[0..32].copy_from_slice(relay_parent.as_ref());
u32::from(*para_id).using_encoded(|s| payload[32..32 + s.len()].copy_from_slice(s));
payload[36..68].copy_from_slice(persisted_validation_data_hash.as_ref());
payload[68..100].copy_from_slice(pov_hash.as_ref());
payload[100..132].copy_from_slice(validation_code_hash.as_ref());
payload
}
fn check_collator_signature<H: AsRef<[u8]>>(
relay_parent: &H,
para_id: &Id,
persisted_validation_data_hash: &Hash,
pov_hash: &Hash,
validation_code_hash: &ValidationCodeHash,
collator: &CollatorId,
signature: &CollatorSignature,
) -> Result<(), ()> {
let payload = collator_signature_payload(
relay_parent,
para_id,
persisted_validation_data_hash,
pov_hash,
validation_code_hash,
);
if signature.verify(&payload[..], collator) {
Ok(())
} else {
Err(())
}
}
/// A unique descriptor of the candidate receipt.
#[derive(PartialEq, Eq, Clone, Encode, Decode, TypeInfo, RuntimeDebug)]
#[cfg_attr(feature = "std", derive(Hash, MallocSizeOf))]
pub struct CandidateDescriptor<H = Hash> {
/// The ID of the para this is a candidate for.
pub para_id: Id,
/// The hash of the relay-chain block this is executed in the context of.
pub relay_parent: H,
/// The collator's sr25519 public key.
pub collator: CollatorId,
/// The blake2-256 hash of the persisted validation data. This is extra data derived from
/// relay-chain state which may vary based on bitfields included before the candidate.
/// Thus it cannot be derived entirely from the relay-parent.
pub persisted_validation_data_hash: Hash,
/// The blake2-256 hash of the PoV.
pub pov_hash: Hash,
/// The root of a block's erasure encoding Merkle tree.
pub erasure_root: Hash,
/// Signature on blake2-256 of components of this receipt:
/// The parachain index, the relay parent, the validation data hash, and the `pov_hash`.
pub signature: CollatorSignature,
/// Hash of the para header that is being generated by this candidate.
pub para_head: Hash,
/// The blake2-256 hash of the validation code bytes.
pub validation_code_hash: ValidationCodeHash,
}
impl<H: AsRef<[u8]>> CandidateDescriptor<H> {
/// Check the signature of the collator within this descriptor.
pub fn check_collator_signature(&self) -> Result<(), ()> {
check_collator_signature(
&self.relay_parent,
&self.para_id,
&self.persisted_validation_data_hash,
&self.pov_hash,
&self.validation_code_hash,
&self.collator,
&self.signature,
)
}
}
/// A candidate-receipt.
#[derive(PartialEq, Eq, Clone, Encode, Decode, TypeInfo, RuntimeDebug)]
#[cfg_attr(feature = "std", derive(MallocSizeOf))]
pub struct CandidateReceipt<H = Hash> {
/// The descriptor of the candidate.
pub descriptor: CandidateDescriptor<H>,
/// The hash of the encoded commitments made as a result of candidate execution.
pub commitments_hash: Hash,
}
impl<H> CandidateReceipt<H> {
/// Get a reference to the candidate descriptor.
pub fn descriptor(&self) -> &CandidateDescriptor<H> {
&self.descriptor
}
/// Computes the blake2-256 hash of the receipt.
pub fn hash(&self) -> CandidateHash
where
H: Encode,
{
CandidateHash(BlakeTwo256::hash_of(self))
}
}
/// All data pertaining to the execution of a para candidate.
#[derive(PartialEq, Eq, Clone, Encode, Decode, TypeInfo, RuntimeDebug)]
pub struct FullCandidateReceipt<H = Hash, N = BlockNumber> {
/// The inner candidate receipt.
pub inner: CandidateReceipt<H>,
/// The validation data derived from the relay-chain state at that
/// point. The hash of the persisted validation data should
/// match the `persisted_validation_data_hash` in the descriptor
/// of the receipt.
pub validation_data: PersistedValidationData<H, N>,
}
/// A candidate-receipt with commitments directly included.
#[derive(PartialEq, Eq, Clone, Encode, Decode, TypeInfo, RuntimeDebug)]
#[cfg_attr(feature = "std", derive(Hash, MallocSizeOf))]
pub struct CommittedCandidateReceipt<H = Hash> {
/// The descriptor of the candidate.
pub descriptor: CandidateDescriptor<H>,
/// The commitments of the candidate receipt.
pub commitments: CandidateCommitments,
}
impl<H> CommittedCandidateReceipt<H> {
/// Get a reference to the candidate descriptor.
pub fn descriptor(&self) -> &CandidateDescriptor<H> {
&self.descriptor
}
}
impl<H: Clone> CommittedCandidateReceipt<H> {
/// Transforms this into a plain `CandidateReceipt`.
pub fn to_plain(&self) -> CandidateReceipt<H> {
CandidateReceipt {
descriptor: self.descriptor.clone(),
commitments_hash: self.commitments.hash(),
}
}
/// Computes the hash of the committed candidate receipt.
///
/// This computes the canonical hash, not the hash of the directly encoded data.
/// Thus this is a shortcut for `candidate.to_plain().hash()`.
pub fn hash(&self) -> CandidateHash
where
H: Encode,
{
self.to_plain().hash()
}
/// Does this committed candidate receipt corresponds to the given [`CandidateReceipt`]?
pub fn corresponds_to(&self, receipt: &CandidateReceipt<H>) -> bool
where
H: PartialEq,
{
receipt.descriptor == self.descriptor && receipt.commitments_hash == self.commitments.hash()
}
}
impl PartialOrd for CommittedCandidateReceipt {
fn partial_cmp(&self, other: &Self) -> Option<sp_std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl Ord for CommittedCandidateReceipt {
fn cmp(&self, other: &Self) -> sp_std::cmp::Ordering {
// TODO: compare signatures or something more sane
// https://github.com/paritytech/polkadot/issues/222
self.descriptor()
.para_id
.cmp(&other.descriptor().para_id)
.then_with(|| self.commitments.head_data.cmp(&other.commitments.head_data))
}
}
/// The validation data provides information about how to create the inputs for validation of a candidate.
/// This information is derived from the chain state and will vary from para to para, although some
/// fields may be the same for every para.
///
/// Since this data is used to form inputs to the validation function, it needs to be persisted by the
/// availability system to avoid dependence on availability of the relay-chain state.
///
/// Furthermore, the validation data acts as a way to authorize the additional data the collator needs
/// to pass to the validation function. For example, the validation function can check whether the incoming
/// messages (e.g. downward messages) were actually sent by using the data provided in the validation data
/// using so called MQC heads.
///
/// Since the commitments of the validation function are checked by the relay-chain, secondary checkers
/// can rely on the invariant that the relay-chain only includes para-blocks for which these checks have
/// already been done. As such, there is no need for the validation data used to inform validators and
/// collators about the checks the relay-chain will perform to be persisted by the availability system.
///
/// The `PersistedValidationData` should be relatively lightweight primarily because it is constructed
/// during inclusion for each candidate and therefore lies on the critical path of inclusion.
#[derive(PartialEq, Eq, Clone, Encode, Decode, TypeInfo, RuntimeDebug)]
#[cfg_attr(feature = "std", derive(Default, MallocSizeOf))]
pub struct PersistedValidationData<H = Hash, N = BlockNumber> {
/// The parent head-data.
pub parent_head: HeadData,
/// The relay-chain block number this is in the context of.
pub relay_parent_number: N,
/// The relay-chain block storage root this is in the context of.
pub relay_parent_storage_root: H,
/// The maximum legal size of a POV block, in bytes.
pub max_pov_size: u32,
}
impl<H: Encode, N: Encode> PersistedValidationData<H, N> {
/// Compute the blake2-256 hash of the persisted validation data.
pub fn hash(&self) -> Hash {
BlakeTwo256::hash_of(self)
}
}
/// Commitments made in a `CandidateReceipt`. Many of these are outputs of validation.
#[derive(PartialEq, Eq, Clone, Encode, Decode, TypeInfo, RuntimeDebug)]
#[cfg_attr(feature = "std", derive(Hash, MallocSizeOf, Default))]
pub struct CandidateCommitments<N = BlockNumber> {
/// Messages destined to be interpreted by the Relay chain itself.
pub upward_messages: Vec<UpwardMessage>,
/// Horizontal messages sent by the parachain.
pub horizontal_messages: Vec<OutboundHrmpMessage<Id>>,
/// New validation code.
pub new_validation_code: Option<ValidationCode>,
/// The head-data produced as a result of execution.
pub head_data: HeadData,
/// The number of messages processed from the DMQ.
pub processed_downward_messages: u32,
/// The mark which specifies the block number up to which all inbound HRMP messages are processed.
pub hrmp_watermark: N,
}
impl CandidateCommitments {
/// Compute the blake2-256 hash of the commitments.
pub fn hash(&self) -> Hash {
BlakeTwo256::hash_of(self)
}
}
/// A bitfield concerning availability of backed candidates.
///
/// Every bit refers to an availability core index.
#[derive(PartialEq, Eq, Clone, Encode, Decode, RuntimeDebug, TypeInfo)]
pub struct AvailabilityBitfield(pub BitVec<u8, bitvec::order::Lsb0>);
impl From<BitVec<u8, bitvec::order::Lsb0>> for AvailabilityBitfield {
fn from(inner: BitVec<u8, bitvec::order::Lsb0>) -> Self {
AvailabilityBitfield(inner)
}
}
/// A signed compact statement, suitable to be sent to the chain.
pub type SignedStatement = Signed<CompactStatement>;
/// A signed compact statement, with signature not yet checked.
pub type UncheckedSignedStatement = UncheckedSigned<CompactStatement>;
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
/// A bitfield signed by a particular validator about the availability of pending candidates.
pub type SignedAvailabilityBitfield = Signed<AvailabilityBitfield>;
/// A signed bitfield with signature not yet checked.
pub type UncheckedSignedAvailabilityBitfield = UncheckedSigned<AvailabilityBitfield>;
/// A set of signed availability bitfields. Should be sorted by validator index, ascending.
pub type SignedAvailabilityBitfields = Vec<SignedAvailabilityBitfield>;
/// A set of unchecked signed availability bitfields. Should be sorted by validator index, ascending.
pub type UncheckedSignedAvailabilityBitfields = Vec<UncheckedSignedAvailabilityBitfield>;
/// A backed (or backable, depending on context) candidate.
#[derive(Encode, Decode, Clone, PartialEq, Eq, RuntimeDebug, TypeInfo)]
pub struct BackedCandidate<H = Hash> {
/// The candidate referred to.
pub candidate: CommittedCandidateReceipt<H>,
/// The validity votes themselves, expressed as signatures.
pub validity_votes: Vec<ValidityAttestation>,
/// The indices of the validators within the group, expressed as a bitfield.
pub validator_indices: BitVec<u8, bitvec::order::Lsb0>,
}
impl<H> BackedCandidate<H> {
/// Get a reference to the descriptor of the para.
pub fn descriptor(&self) -> &CandidateDescriptor<H> {
&self.candidate.descriptor
}
/// Compute this candidate's hash.
pub fn hash(&self) -> CandidateHash
where
H: Clone + Encode,
{
self.candidate.hash()
}
/// Get this candidate's receipt.
pub fn receipt(&self) -> CandidateReceipt<H>
where
H: Clone,
{
self.candidate.to_plain()
}
}
/// Verify the backing of the given candidate.
///
/// Provide a lookup from the index of a validator within the group assigned to this para,
/// as opposed to the index of the validator within the overall validator set, as well as
/// the number of validators in the group.
///
/// Also provide the signing context.
///
/// Returns either an error, indicating that one of the signatures was invalid or that the index
/// was out-of-bounds, or the number of signatures checked.
pub fn check_candidate_backing<H: AsRef<[u8]> + Clone + Encode>(
backed: &BackedCandidate<H>,
signing_context: &SigningContext<H>,
group_len: usize,
validator_lookup: impl Fn(usize) -> Option<ValidatorId>,
) -> Result<usize, ()> {
if backed.validator_indices.len() != group_len {
return Err(())
}
if backed.validity_votes.len() > group_len {
return Err(())
}
// this is known, even in runtime, to be blake2-256.
let hash = backed.candidate.hash();
let mut signed = 0;
for ((val_in_group_idx, _), attestation) in backed
.validator_indices
.iter()
.enumerate()
.filter(|(_, signed)| **signed)
.zip(backed.validity_votes.iter())
{
let validator_id = validator_lookup(val_in_group_idx).ok_or(())?;
let payload = attestation.signed_payload(hash.clone(), signing_context);
let sig = attestation.signature();
if sig.verify(&payload[..], &validator_id) {
signed += 1;
} else {
return Err(())
}
}
if signed != backed.validity_votes.len() {
return Err(())
}
Ok(signed)
}
/// The unique (during session) index of a core.
#[derive(
Encode, Decode, Default, PartialOrd, Ord, Eq, PartialEq, Clone, Copy, TypeInfo, RuntimeDebug,
)]
#[cfg_attr(feature = "std", derive(Hash, MallocSizeOf))]
pub struct CoreIndex(pub u32);
impl From<u32> for CoreIndex {
fn from(i: u32) -> CoreIndex {
CoreIndex(i)
}
}
impl TypeIndex for CoreIndex {
fn type_index(&self) -> usize {
self.0 as usize
}
}
/// The unique (during session) index of a validator group.
#[derive(Encode, Decode, Default, Clone, Copy, Debug, PartialEq, Eq, TypeInfo)]
#[cfg_attr(feature = "std", derive(Hash, MallocSizeOf))]
pub struct GroupIndex(pub u32);
impl From<u32> for GroupIndex {
fn from(i: u32) -> GroupIndex {
GroupIndex(i)
}
}
impl TypeIndex for GroupIndex {
fn type_index(&self) -> usize {
self.0 as usize
}
}
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/// A claim on authoring the next block for a given parathread.
#[derive(Clone, Encode, Decode, TypeInfo, RuntimeDebug)]
#[cfg_attr(feature = "std", derive(PartialEq))]
pub struct ParathreadClaim(pub Id, pub CollatorId);
/// An entry tracking a claim to ensure it does not pass the maximum number of retries.
#[derive(Clone, Encode, Decode, TypeInfo, RuntimeDebug)]
#[cfg_attr(feature = "std", derive(PartialEq))]
pub struct ParathreadEntry {
/// The claim.
pub claim: ParathreadClaim,
/// Number of retries.
pub retries: u32,
}
/// What is occupying a specific availability core.
#[derive(Clone, Encode, Decode, TypeInfo, RuntimeDebug)]
#[cfg_attr(feature = "std", derive(PartialEq))]
pub enum CoreOccupied {
/// A parathread.
Parathread(ParathreadEntry),
/// A parachain.
Parachain,
}
/// A helper data-type for tracking validator-group rotations.
#[derive(Clone, Encode, Decode, TypeInfo, RuntimeDebug)]
#[cfg_attr(feature = "std", derive(PartialEq, MallocSizeOf))]
pub struct GroupRotationInfo<N = BlockNumber> {
/// The block number where the session started.
pub session_start_block: N,
/// How often groups rotate. 0 means never.
pub group_rotation_frequency: N,
/// The current block number.
pub now: N,
}
impl GroupRotationInfo {
/// Returns the index of the group needed to validate the core at the given index, assuming
/// the given number of cores.
///
/// `core_index` should be less than `cores`, which is capped at `u32::max()`.
pub fn group_for_core(&self, core_index: CoreIndex, cores: usize) -> GroupIndex {
if self.group_rotation_frequency == 0 {
return GroupIndex(core_index.0)
}
if cores == 0 {
return GroupIndex(0)
}
let cores = sp_std::cmp::min(cores, u32::MAX as usize);
let blocks_since_start = self.now.saturating_sub(self.session_start_block);
let rotations = blocks_since_start / self.group_rotation_frequency;
// g = c + r mod cores
let idx = (core_index.0 as usize + rotations as usize) % cores;
GroupIndex(idx as u32)
}
/// Returns the index of the group assigned to the given core. This does no checking or
/// whether the group index is in-bounds.
///
/// `core_index` should be less than `cores`, which is capped at `u32::max()`.
pub fn core_for_group(&self, group_index: GroupIndex, cores: usize) -> CoreIndex {
if self.group_rotation_frequency == 0 {
return CoreIndex(group_index.0)
}
if cores == 0 {
return CoreIndex(0)
}
let cores = sp_std::cmp::min(cores, u32::MAX as usize);
let blocks_since_start = self.now.saturating_sub(self.session_start_block);
let rotations = blocks_since_start / self.group_rotation_frequency;
let rotations = rotations % cores as u32;
// g = c + r mod cores
// c = g - r mod cores
// x = x + cores mod cores
// c = (g + cores) - r mod cores
let idx = (group_index.0 as usize + cores - rotations as usize) % cores;
CoreIndex(idx as u32)
}
/// Create a new `GroupRotationInfo` with one further rotation applied.
pub fn bump_rotation(&self) -> Self {
GroupRotationInfo {
session_start_block: self.session_start_block,
group_rotation_frequency: self.group_rotation_frequency,
now: self.next_rotation_at(),
}
}
}
impl<N: Saturating + BaseArithmetic + Copy> GroupRotationInfo<N> {
/// Returns the block number of the next rotation after the current block. If the current block
/// is 10 and the rotation frequency is 5, this should return 15.
pub fn next_rotation_at(&self) -> N {
let cycle_once = self.now + self.group_rotation_frequency;
cycle_once -
(cycle_once.saturating_sub(self.session_start_block) % self.group_rotation_frequency)
}
/// Returns the block number of the last rotation before or including the current block. If the
/// current block is 10 and the rotation frequency is 5, this should return 10.
pub fn last_rotation_at(&self) -> N {
self.now -
(self.now.saturating_sub(self.session_start_block) % self.group_rotation_frequency)
}
}
/// Information about a core which is currently occupied.
#[derive(Clone, Encode, Decode, TypeInfo, RuntimeDebug)]
#[cfg_attr(feature = "std", derive(PartialEq, MallocSizeOf))]
pub struct OccupiedCore<H = Hash, N = BlockNumber> {
// NOTE: this has no ParaId as it can be deduced from the candidate descriptor.
/// If this core is freed by availability, this is the assignment that is next up on this
/// core, if any. None if there is nothing queued for this core.
pub next_up_on_available: Option<ScheduledCore>,
/// The relay-chain block number this began occupying the core at.
pub occupied_since: N,
/// The relay-chain block this will time-out at, if any.
pub time_out_at: N,
/// If this core is freed by being timed-out, this is the assignment that is next up on this
/// core. None if there is nothing queued for this core or there is no possibility of timing
/// out.
pub next_up_on_time_out: Option<ScheduledCore>,
/// A bitfield with 1 bit for each validator in the set. `1` bits mean that the corresponding
/// validators has attested to availability on-chain. A 2/3+ majority of `1` bits means that
/// this will be available.
#[cfg_attr(feature = "std", ignore_malloc_size_of = "outside type")]
pub availability: BitVec<u8, bitvec::order::Lsb0>,
/// The group assigned to distribute availability pieces of this candidate.
pub group_responsible: GroupIndex,
/// The hash of the candidate occupying the core.
pub candidate_hash: CandidateHash,
/// The descriptor of the candidate occupying the core.
pub candidate_descriptor: CandidateDescriptor<H>,
}
impl<H, N> OccupiedCore<H, N> {
/// Get the Para currently occupying this core.
pub fn para_id(&self) -> Id {
self.candidate_descriptor.para_id
}
}
/// Information about a core which is currently occupied.
#[derive(Clone, Encode, Decode, TypeInfo, RuntimeDebug)]
#[cfg_attr(feature = "std", derive(PartialEq, MallocSizeOf))]
pub struct ScheduledCore {
/// The ID of a para scheduled.
pub para_id: Id,
/// The collator required to author the block, if any.
pub collator: Option<CollatorId>,
}
/// The state of a particular availability core.
#[derive(Clone, Encode, Decode, TypeInfo, RuntimeDebug)]
#[cfg_attr(feature = "std", derive(PartialEq, MallocSizeOf))]
pub enum CoreState<H = Hash, N = BlockNumber> {
/// The core is currently occupied.
#[codec(index = 0)]
Occupied(OccupiedCore<H, N>),
/// The core is currently free, with a para scheduled and given the opportunity
/// to occupy.
///
/// If a particular Collator is required to author this block, that is also present in this
/// variant.
#[codec(index = 1)]
Scheduled(ScheduledCore),
/// The core is currently free and there is nothing scheduled. This can be the case for parathread
/// cores when there are no parathread blocks queued. Parachain cores will never be left idle.
#[codec(index = 2)]
Free,
}