Newer
Older
// This file is part of Substrate.
// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Environment definition of the wasm smart-contract runtime.
use crate::{
address::AddressMapper,
evm::runtime::GAS_PRICE,
exec::{ExecError, ExecResult, Ext, Key},
gas::{ChargedAmount, Token},
limits,
primitives::ExecReturnValue,
Config, Error, LOG_TARGET, SENTINEL,
};
use alloc::{boxed::Box, vec, vec::Vec};
use codec::{Decode, DecodeLimit, Encode};
use core::{fmt, marker::PhantomData, mem};
use frame_support::{
dispatch::DispatchInfo, ensure, pallet_prelude::DispatchResultWithPostInfo, parameter_types,
traits::Get, weights::Weight,
};
use pallet_revive_proc_macro::define_env;
use pallet_revive_uapi::{CallFlags, ReturnErrorCode, ReturnFlags, StorageFlags};
use sp_core::{H160, H256, U256};
use sp_io::hashing::{blake2_128, blake2_256, keccak_256, sha2_256};
use sp_runtime::{DispatchError, RuntimeDebug};
type CallOf<T> = <T as frame_system::Config>::RuntimeCall;
/// The maximum nesting depth a contract can use when encoding types.
const MAX_DECODE_NESTING: u32 = 256;
/// Abstraction over the memory access within syscalls.
///
/// The reason for this abstraction is that we run syscalls on the host machine when
/// benchmarking them. In that case we have direct access to the contract's memory. However, when
/// running within PolkaVM we need to resort to copying as we can't map the contracts memory into
/// the host (as of now).
pub trait Memory<T: Config> {
/// Read designated chunk from the sandbox memory into the supplied buffer.
///
/// Returns `Err` if one of the following conditions occurs:
///
/// - requested buffer is not within the bounds of the sandbox memory.
fn read_into_buf(&self, ptr: u32, buf: &mut [u8]) -> Result<(), DispatchError>;
/// Write the given buffer to the designated location in the sandbox memory.
///
/// Returns `Err` if one of the following conditions occurs:
///
/// - designated area is not within the bounds of the sandbox memory.
fn write(&mut self, ptr: u32, buf: &[u8]) -> Result<(), DispatchError>;
/// Zero the designated location in the sandbox memory.
///
/// Returns `Err` if one of the following conditions occurs:
///
/// - designated area is not within the bounds of the sandbox memory.
fn zero(&mut self, ptr: u32, len: u32) -> Result<(), DispatchError>;
/// Read designated chunk from the sandbox memory.
///
/// Returns `Err` if one of the following conditions occurs:
///
/// - requested buffer is not within the bounds of the sandbox memory.
fn read(&self, ptr: u32, len: u32) -> Result<Vec<u8>, DispatchError> {
let mut buf = vec![0u8; len as usize];
self.read_into_buf(ptr, buf.as_mut_slice())?;
Ok(buf)
}
/// Same as `read` but reads into a fixed size buffer.
fn read_array<const N: usize>(&self, ptr: u32) -> Result<[u8; N], DispatchError> {
let mut buf = [0u8; N];
self.read_into_buf(ptr, &mut buf)?;
Ok(buf)
}
/// Read a `u32` from the sandbox memory.
fn read_u32(&self, ptr: u32) -> Result<u32, DispatchError> {
let buf: [u8; 4] = self.read_array(ptr)?;
Ok(u32::from_le_bytes(buf))
}
/// Read a `U256` from the sandbox memory.
fn read_u256(&self, ptr: u32) -> Result<U256, DispatchError> {
let buf: [u8; 32] = self.read_array(ptr)?;
Ok(U256::from_little_endian(&buf))
}
/// Read a `H160` from the sandbox memory.
fn read_h160(&self, ptr: u32) -> Result<H160, DispatchError> {
let mut buf = H160::default();
self.read_into_buf(ptr, buf.as_bytes_mut())?;
Ok(buf)
}
/// Read a `H256` from the sandbox memory.
fn read_h256(&self, ptr: u32) -> Result<H256, DispatchError> {
let mut code_hash = H256::default();
self.read_into_buf(ptr, code_hash.as_bytes_mut())?;
Ok(code_hash)
}
/// Read designated chunk from the sandbox memory and attempt to decode into the specified type.
///
/// Returns `Err` if one of the following conditions occurs:
///
/// - requested buffer is not within the bounds of the sandbox memory.
/// - the buffer contents cannot be decoded as the required type.
///
/// # Note
///
/// Make sure to charge a proportional amount of weight if `len` is not fixed.
fn read_as_unbounded<D: Decode>(&self, ptr: u32, len: u32) -> Result<D, DispatchError> {
let buf = self.read(ptr, len)?;
let decoded = D::decode_all_with_depth_limit(MAX_DECODE_NESTING, &mut buf.as_ref())
.map_err(|_| DispatchError::from(Error::<T>::DecodingFailed))?;
Ok(decoded)
}
}
/// Allows syscalls access to the PolkaVM instance they are executing in.
///
/// In case a contract is executing within PolkaVM its `memory` argument will also implement
/// this trait. The benchmarking implementation of syscalls will only require `Memory`
/// to be implemented.
pub trait PolkaVmInstance<T: Config>: Memory<T> {
fn gas(&self) -> polkavm::Gas;
fn set_gas(&mut self, gas: polkavm::Gas);
fn read_input_regs(&self) -> (u64, u64, u64, u64, u64, u64);
fn write_output(&mut self, output: u64);
}
// Memory implementation used in benchmarking where guest memory is mapped into the host.
//
// Please note that we could optimize the `read_as_*` functions by decoding directly from
// memory without a copy. However, we don't do that because as it would change the behaviour
// of those functions: A `read_as` with a `len` larger than the actual type can succeed
// in the streaming implementation while it could fail with a segfault in the copy implementation.
#[cfg(feature = "runtime-benchmarks")]
impl<T: Config> Memory<T> for [u8] {
fn read_into_buf(&self, ptr: u32, buf: &mut [u8]) -> Result<(), DispatchError> {
let ptr = ptr as usize;
let bound_checked =
self.get(ptr..ptr + buf.len()).ok_or_else(|| Error::<T>::OutOfBounds)?;
buf.copy_from_slice(bound_checked);
Ok(())
}
fn write(&mut self, ptr: u32, buf: &[u8]) -> Result<(), DispatchError> {
let ptr = ptr as usize;
let bound_checked =
self.get_mut(ptr..ptr + buf.len()).ok_or_else(|| Error::<T>::OutOfBounds)?;
bound_checked.copy_from_slice(buf);
Ok(())
}
fn zero(&mut self, ptr: u32, len: u32) -> Result<(), DispatchError> {
<[u8] as Memory<T>>::write(self, ptr, &vec![0; len as usize])
}
}
impl<T: Config> Memory<T> for polkavm::RawInstance {
fn read_into_buf(&self, ptr: u32, buf: &mut [u8]) -> Result<(), DispatchError> {
self.read_memory_into(ptr, buf)
.map(|_| ())
.map_err(|_| Error::<T>::OutOfBounds.into())
}
fn write(&mut self, ptr: u32, buf: &[u8]) -> Result<(), DispatchError> {
self.write_memory(ptr, buf).map_err(|_| Error::<T>::OutOfBounds.into())
}
fn zero(&mut self, ptr: u32, len: u32) -> Result<(), DispatchError> {
self.zero_memory(ptr, len).map_err(|_| Error::<T>::OutOfBounds.into())
}
}
impl<T: Config> PolkaVmInstance<T> for polkavm::RawInstance {
fn gas(&self) -> polkavm::Gas {
self.gas()
}
fn set_gas(&mut self, gas: polkavm::Gas) {
self.set_gas(gas)
}
fn read_input_regs(&self) -> (u64, u64, u64, u64, u64, u64) {
(
self.reg(polkavm::Reg::A0),
self.reg(polkavm::Reg::A1),
self.reg(polkavm::Reg::A2),
self.reg(polkavm::Reg::A3),
self.reg(polkavm::Reg::A4),
self.reg(polkavm::Reg::A5),
)
}
fn write_output(&mut self, output: u64) {
self.set_reg(polkavm::Reg::A0, output);
}
}
parameter_types! {
/// Getter types used by [`crate::SyscallDoc:call_runtime`]
const CallRuntimeFailed: ReturnErrorCode = ReturnErrorCode::CallRuntimeFailed;
/// Getter types used by [`crate::SyscallDoc::xcm_execute`]
const XcmExecutionFailed: ReturnErrorCode = ReturnErrorCode::XcmExecutionFailed;
}
impl From<&ExecReturnValue> for ReturnErrorCode {
fn from(from: &ExecReturnValue) -> Self {
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
if from.flags.contains(ReturnFlags::REVERT) {
Self::CalleeReverted
} else {
Self::Success
}
}
}
/// The data passed through when a contract uses `seal_return`.
#[derive(RuntimeDebug)]
pub struct ReturnData {
/// The flags as passed through by the contract. They are still unchecked and
/// will later be parsed into a `ReturnFlags` bitflags struct.
flags: u32,
/// The output buffer passed by the contract as return data.
data: Vec<u8>,
}
/// Enumerates all possible reasons why a trap was generated.
///
/// This is either used to supply the caller with more information about why an error
/// occurred (the SupervisorError variant).
/// The other case is where the trap does not constitute an error but rather was invoked
/// as a quick way to terminate the application (all other variants).
#[derive(RuntimeDebug)]
pub enum TrapReason {
/// The supervisor trapped the contract because of an error condition occurred during
/// execution in privileged code.
SupervisorError(DispatchError),
/// Signals that trap was generated in response to call `seal_return` host function.
Return(ReturnData),
/// Signals that a trap was generated in response to a successful call to the
/// `seal_terminate` host function.
Termination,
}
impl<T: Into<DispatchError>> From<T> for TrapReason {
fn from(from: T) -> Self {
Self::SupervisorError(from.into())
}
}
impl fmt::Display for TrapReason {
fn fmt(&self, _f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
Ok(())
}
}
#[cfg_attr(test, derive(Debug, PartialEq, Eq))]
#[derive(Copy, Clone)]
pub enum RuntimeCosts {
/// Base Weight of calling a host function.
HostFn,
/// Weight charged for copying data from the sandbox.
CopyFromContract(u32),
/// Weight charged for copying data to the sandbox.
CopyToContract(u32),
/// Weight of calling `seal_call_data_load``.
CallDataLoad,
/// Weight of calling `seal_call_data_copy`.
CallDataCopy(u32),
/// Weight of calling `seal_caller`.
Caller,
/// Weight of calling `seal_call_data_size`.
CallDataSize,
Cyrill Leutwiler
committed
/// Weight of calling `seal_return_data_size`.
ReturnDataSize,
/// Weight of calling `seal_to_account_id`.
ToAccountId,
/// Weight of calling `seal_origin`.
Origin,
/// Weight of calling `seal_is_contract`.
IsContract,
/// Weight of calling `seal_code_hash`.
CodeHash,
/// Weight of calling `seal_own_code_hash`.
OwnCodeHash,
/// Weight of calling `seal_code_size`.
CodeSize,
/// Weight of calling `seal_caller_is_origin`.
CallerIsOrigin,
/// Weight of calling `caller_is_root`.
CallerIsRoot,
/// Weight of calling `seal_address`.
Address,
/// Weight of calling `seal_ref_time_left`.
RefTimeLeft,
/// Weight of calling `seal_weight_left`.
WeightLeft,
/// Weight of calling `seal_balance`.
Balance,
Cyrill Leutwiler
committed
/// Weight of calling `seal_balance_of`.
BalanceOf,
/// Weight of calling `seal_value_transferred`.
ValueTransferred,
/// Weight of calling `seal_minimum_balance`.
MinimumBalance,
/// Weight of calling `seal_block_number`.
BlockNumber,
/// Weight of calling `seal_block_hash`.
BlockHash,
/// Weight of calling `seal_block_author`.
BlockAuthor,
/// Weight of calling `seal_gas_price`.
GasPrice,
/// Weight of calling `seal_base_fee`.
BaseFee,
/// Weight of calling `seal_now`.
Now,
/// Weight of calling `seal_gas_limit`.
GasLimit,
/// Weight of calling `seal_weight_to_fee`.
WeightToFee,
Alexander Theißen
committed
/// Weight of calling `seal_terminate`.
Terminate,
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
/// Weight of calling `seal_deposit_event` with the given number of topics and event size.
DepositEvent { num_topic: u32, len: u32 },
/// Weight of calling `seal_set_storage` for the given storage item sizes.
SetStorage { old_bytes: u32, new_bytes: u32 },
/// Weight of calling `seal_clear_storage` per cleared byte.
ClearStorage(u32),
/// Weight of calling `seal_contains_storage` per byte of the checked item.
ContainsStorage(u32),
/// Weight of calling `seal_get_storage` with the specified size in storage.
GetStorage(u32),
/// Weight of calling `seal_take_storage` for the given size.
TakeStorage(u32),
/// Weight of calling `seal_set_transient_storage` for the given storage item sizes.
SetTransientStorage { old_bytes: u32, new_bytes: u32 },
/// Weight of calling `seal_clear_transient_storage` per cleared byte.
ClearTransientStorage(u32),
/// Weight of calling `seal_contains_transient_storage` per byte of the checked item.
ContainsTransientStorage(u32),
/// Weight of calling `seal_get_transient_storage` with the specified size in storage.
GetTransientStorage(u32),
/// Weight of calling `seal_take_transient_storage` for the given size.
TakeTransientStorage(u32),
/// Base weight of calling `seal_call`.
CallBase,
/// Weight of calling `seal_delegate_call` for the given input size.
DelegateCallBase,
/// Weight of the transfer performed during a call.
CallTransferSurcharge,
/// Weight per byte that is cloned by supplying the `CLONE_INPUT` flag.
CallInputCloned(u32),
Alexander Theißen
committed
/// Weight of calling `seal_instantiate` for the given input lenth.
Instantiate { input_data_len: u32 },
/// Weight of calling `seal_hash_sha_256` for the given input size.
HashSha256(u32),
/// Weight of calling `seal_hash_keccak_256` for the given input size.
HashKeccak256(u32),
/// Weight of calling `seal_hash_blake2_256` for the given input size.
HashBlake256(u32),
/// Weight of calling `seal_hash_blake2_128` for the given input size.
HashBlake128(u32),
/// Weight of calling `seal_ecdsa_recover`.
EcdsaRecovery,
/// Weight of calling `seal_sr25519_verify` for the given input size.
Sr25519Verify(u32),
/// Weight charged by a chain extension through `seal_call_chain_extension`.
ChainExtension(Weight),
/// Weight charged for calling into the runtime.
CallRuntime(Weight),
/// Weight charged for calling xcm_execute.
CallXcmExecute(Weight),
/// Weight of calling `seal_set_code_hash`
SetCodeHash,
/// Weight of calling `ecdsa_to_eth_address`
EcdsaToEthAddress,
/// Weight of calling `get_immutable_dependency`
GetImmutableData(u32),
/// Weight of calling `set_immutable_dependency`
SetImmutableData(u32),
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
}
/// For functions that modify storage, benchmarks are performed with one item in the
/// storage. To account for the worst-case scenario, the weight of the overhead of
/// writing to or reading from full storage is included. For transient storage writes,
/// the rollback weight is added to reflect the worst-case scenario for this operation.
macro_rules! cost_storage {
(write_transient, $name:ident $(, $arg:expr )*) => {
T::WeightInfo::$name($( $arg ),*)
.saturating_add(T::WeightInfo::rollback_transient_storage())
.saturating_add(T::WeightInfo::set_transient_storage_full()
.saturating_sub(T::WeightInfo::set_transient_storage_empty()))
};
(read_transient, $name:ident $(, $arg:expr )*) => {
T::WeightInfo::$name($( $arg ),*)
.saturating_add(T::WeightInfo::get_transient_storage_full()
.saturating_sub(T::WeightInfo::get_transient_storage_empty()))
};
(write, $name:ident $(, $arg:expr )*) => {
T::WeightInfo::$name($( $arg ),*)
.saturating_add(T::WeightInfo::set_storage_full()
.saturating_sub(T::WeightInfo::set_storage_empty()))
};
(read, $name:ident $(, $arg:expr )*) => {
T::WeightInfo::$name($( $arg ),*)
.saturating_add(T::WeightInfo::get_storage_full()
.saturating_sub(T::WeightInfo::get_storage_empty()))
};
}
macro_rules! cost_args {
// cost_args!(name, a, b, c) -> T::WeightInfo::name(a, b, c).saturating_sub(T::WeightInfo::name(0, 0, 0))
($name:ident, $( $arg: expr ),+) => {
(T::WeightInfo::$name($( $arg ),+).saturating_sub(cost_args!(@call_zero $name, $( $arg ),+)))
};
// Transform T::WeightInfo::name(a, b, c) into T::WeightInfo::name(0, 0, 0)
(@call_zero $name:ident, $( $arg:expr ),*) => {
T::WeightInfo::$name($( cost_args!(@replace_token $arg) ),*)
};
// Replace the token with 0.
(@replace_token $_in:tt) => { 0 };
}
impl<T: Config> Token<T> for RuntimeCosts {
fn influence_lowest_gas_limit(&self) -> bool {
match self {
&Self::CallXcmExecute(_) => false,
_ => true,
}
}
fn weight(&self) -> Weight {
use self::RuntimeCosts::*;
match *self {
HostFn => cost_args!(noop_host_fn, 1),
CopyToContract(len) => T::WeightInfo::seal_copy_to_contract(len),
CopyFromContract(len) => T::WeightInfo::seal_return(len),
CallDataSize => T::WeightInfo::seal_call_data_size(),
Cyrill Leutwiler
committed
ReturnDataSize => T::WeightInfo::seal_return_data_size(),
CallDataLoad => T::WeightInfo::seal_call_data_load(),
CallDataCopy(len) => T::WeightInfo::seal_call_data_copy(len),
Caller => T::WeightInfo::seal_caller(),
Origin => T::WeightInfo::seal_origin(),
IsContract => T::WeightInfo::seal_is_contract(),
ToAccountId => T::WeightInfo::seal_to_account_id(),
CodeHash => T::WeightInfo::seal_code_hash(),
CodeSize => T::WeightInfo::seal_code_size(),
OwnCodeHash => T::WeightInfo::seal_own_code_hash(),
CallerIsOrigin => T::WeightInfo::seal_caller_is_origin(),
CallerIsRoot => T::WeightInfo::seal_caller_is_root(),
Address => T::WeightInfo::seal_address(),
RefTimeLeft => T::WeightInfo::seal_ref_time_left(),
WeightLeft => T::WeightInfo::seal_weight_left(),
Balance => T::WeightInfo::seal_balance(),
Cyrill Leutwiler
committed
BalanceOf => T::WeightInfo::seal_balance_of(),
ValueTransferred => T::WeightInfo::seal_value_transferred(),
MinimumBalance => T::WeightInfo::seal_minimum_balance(),
BlockNumber => T::WeightInfo::seal_block_number(),
BlockHash => T::WeightInfo::seal_block_hash(),
BlockAuthor => T::WeightInfo::seal_block_author(),
GasPrice => T::WeightInfo::seal_gas_price(),
BaseFee => T::WeightInfo::seal_base_fee(),
Now => T::WeightInfo::seal_now(),
GasLimit => T::WeightInfo::seal_gas_limit(),
WeightToFee => T::WeightInfo::seal_weight_to_fee(),
Alexander Theißen
committed
Terminate => T::WeightInfo::seal_terminate(),
DepositEvent { num_topic, len } => T::WeightInfo::seal_deposit_event(num_topic, len),
SetStorage { new_bytes, old_bytes } => {
cost_storage!(write, seal_set_storage, new_bytes, old_bytes)
},
ClearStorage(len) => cost_storage!(write, seal_clear_storage, len),
ContainsStorage(len) => cost_storage!(read, seal_contains_storage, len),
GetStorage(len) => cost_storage!(read, seal_get_storage, len),
TakeStorage(len) => cost_storage!(write, seal_take_storage, len),
SetTransientStorage { new_bytes, old_bytes } => {
cost_storage!(write_transient, seal_set_transient_storage, new_bytes, old_bytes)
},
ClearTransientStorage(len) => {
cost_storage!(write_transient, seal_clear_transient_storage, len)
},
ContainsTransientStorage(len) => {
cost_storage!(read_transient, seal_contains_transient_storage, len)
},
GetTransientStorage(len) => {
cost_storage!(read_transient, seal_get_transient_storage, len)
},
TakeTransientStorage(len) => {
cost_storage!(write_transient, seal_take_transient_storage, len)
},
CallBase => T::WeightInfo::seal_call(0, 0),
DelegateCallBase => T::WeightInfo::seal_delegate_call(),
CallTransferSurcharge => cost_args!(seal_call, 1, 0),
CallInputCloned(len) => cost_args!(seal_call, 0, len),
Instantiate { input_data_len } => T::WeightInfo::seal_instantiate(input_data_len),
HashSha256(len) => T::WeightInfo::seal_hash_sha2_256(len),
HashKeccak256(len) => T::WeightInfo::seal_hash_keccak_256(len),
HashBlake256(len) => T::WeightInfo::seal_hash_blake2_256(len),
HashBlake128(len) => T::WeightInfo::seal_hash_blake2_128(len),
EcdsaRecovery => T::WeightInfo::seal_ecdsa_recover(),
Sr25519Verify(len) => T::WeightInfo::seal_sr25519_verify(len),
ChainExtension(weight) | CallRuntime(weight) | CallXcmExecute(weight) => weight,
SetCodeHash => T::WeightInfo::seal_set_code_hash(),
EcdsaToEthAddress => T::WeightInfo::seal_ecdsa_to_eth_address(),
GetImmutableData(len) => T::WeightInfo::seal_get_immutable_data(len),
SetImmutableData(len) => T::WeightInfo::seal_set_immutable_data(len),
}
}
}
/// Same as [`Runtime::charge_gas`].
///
/// We need this access as a macro because sometimes hiding the lifetimes behind
/// a function won't work out.
macro_rules! charge_gas {
($runtime:expr, $costs:expr) => {{
$runtime.ext.gas_meter_mut().charge($costs)
}};
}
/// The kind of call that should be performed.
enum CallType {
/// Execute another instantiated contract
Call { value_ptr: u32 },
/// Execute another contract code in the context (storage, account ID, value) of the caller
/// contract
DelegateCall,
}
impl CallType {
fn cost(&self) -> RuntimeCosts {
match self {
CallType::Call { .. } => RuntimeCosts::CallBase,
CallType::DelegateCall => RuntimeCosts::DelegateCallBase,
}
}
}
/// This is only appropriate when writing out data of constant size that does not depend on user
/// input. In this case the costs for this copy was already charged as part of the token at
/// the beginning of the API entry point.
fn already_charged(_: u32) -> Option<RuntimeCosts> {
None
}
/// Helper to extract two `u32` values from a given `u64` register.
fn extract_hi_lo(reg: u64) -> (u32, u32) {
((reg >> 32) as u32, reg as u32)
}
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
/// Can only be used for one call.
pub struct Runtime<'a, E: Ext, M: ?Sized> {
ext: &'a mut E,
input_data: Option<Vec<u8>>,
chain_extension: Option<Box<<E::T as Config>::ChainExtension>>,
_phantom_data: PhantomData<M>,
}
impl<'a, E: Ext, M: PolkaVmInstance<E::T>> Runtime<'a, E, M> {
pub fn handle_interrupt(
&mut self,
interrupt: Result<polkavm::InterruptKind, polkavm::Error>,
module: &polkavm::Module,
instance: &mut M,
) -> Option<ExecResult> {
use polkavm::InterruptKind::*;
match interrupt {
Err(error) => {
// in contrast to the other returns this "should" not happen: log level error
log::error!(target: LOG_TARGET, "polkavm execution error: {error}");
Some(Err(Error::<E::T>::ExecutionFailed.into()))
},
Ok(Finished) =>
Some(Ok(ExecReturnValue { flags: ReturnFlags::empty(), data: Vec::new() })),
Ok(Trap) => Some(Err(Error::<E::T>::ContractTrapped.into())),
Ok(Segfault(_)) => Some(Err(Error::<E::T>::ExecutionFailed.into())),
Ok(NotEnoughGas) => Some(Err(Error::<E::T>::OutOfGas.into())),
Ok(Step) => None,
Ok(Ecalli(idx)) => {
// This is a special hard coded syscall index which is used by benchmarks
// to abort contract execution. It is used to terminate the execution without
// breaking up a basic block. The fixed index is used so that the benchmarks
// don't have to deal with import tables.
if cfg!(feature = "runtime-benchmarks") && idx == SENTINEL {
return Some(Ok(ExecReturnValue {
flags: ReturnFlags::empty(),
data: Vec::new(),
}))
}
let Some(syscall_symbol) = module.imports().get(idx) else {
return Some(Err(<Error<E::T>>::InvalidSyscall.into()));
match self.handle_ecall(instance, syscall_symbol.as_bytes()) {
Ok(None) => None,
Ok(Some(return_value)) => {
instance.write_output(return_value);
None
},
Err(TrapReason::Return(ReturnData { flags, data })) =>
match ReturnFlags::from_bits(flags) {
None => Some(Err(Error::<E::T>::InvalidCallFlags.into())),
Some(flags) => Some(Ok(ExecReturnValue { flags, data })),
},
Err(TrapReason::Termination) => Some(Ok(Default::default())),
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
Err(TrapReason::SupervisorError(error)) => Some(Err(error.into())),
}
},
}
}
}
impl<'a, E: Ext, M: ?Sized + Memory<E::T>> Runtime<'a, E, M> {
pub fn new(ext: &'a mut E, input_data: Vec<u8>) -> Self {
Self {
ext,
input_data: Some(input_data),
chain_extension: Some(Box::new(Default::default())),
_phantom_data: Default::default(),
}
}
/// Get a mutable reference to the inner `Ext`.
///
/// This is mainly for the chain extension to have access to the environment the
/// contract is executing in.
pub fn ext(&mut self) -> &mut E {
self.ext
}
/// Charge the gas meter with the specified token.
///
/// Returns `Err(HostError)` if there is not enough gas.
pub fn charge_gas(&mut self, costs: RuntimeCosts) -> Result<ChargedAmount, DispatchError> {
charge_gas!(self, costs)
}
/// Adjust a previously charged amount down to its actual amount.
///
/// This is when a maximum a priori amount was charged and then should be partially
/// refunded to match the actual amount.
pub fn adjust_gas(&mut self, charged: ChargedAmount, actual_costs: RuntimeCosts) {
self.ext.gas_meter_mut().adjust_gas(charged, actual_costs);
}
/// Charge, Run and adjust gas, for executing the given dispatchable.
fn call_dispatchable<ErrorReturnCode: Get<ReturnErrorCode>>(
&mut self,
dispatch_info: DispatchInfo,
runtime_cost: impl Fn(Weight) -> RuntimeCosts,
run: impl FnOnce(&mut Self) -> DispatchResultWithPostInfo,
) -> Result<ReturnErrorCode, TrapReason> {
use frame_support::dispatch::extract_actual_weight;
georgepisaltu
committed
let charged = self.charge_gas(runtime_cost(dispatch_info.call_weight))?;
let result = run(self);
let actual_weight = extract_actual_weight(&result, &dispatch_info);
self.adjust_gas(charged, runtime_cost(actual_weight));
match result {
Ok(_) => Ok(ReturnErrorCode::Success),
Err(e) => {
log::debug!(target: LOG_TARGET, "call failed with: {e:?}");
Ok(ErrorReturnCode::get())
},
}
}
/// Write the given buffer and its length to the designated locations in sandbox memory and
/// charge gas according to the token returned by `create_token`.
Cyrill Leutwiler
committed
///
/// `out_ptr` is the location in sandbox memory where `buf` should be written to.
/// `out_len_ptr` is an in-out location in sandbox memory. It is read to determine the
Cyrill Leutwiler
committed
/// length of the buffer located at `out_ptr`. If that buffer is smaller than the actual
/// `buf.len()`, only what fits into that buffer is written to `out_ptr`.
/// The actual amount of bytes copied to `out_ptr` is written to `out_len_ptr`.
///
/// If `out_ptr` is set to the sentinel value of `SENTINEL` and `allow_skip` is true the
/// operation is skipped and `Ok` is returned. This is supposed to help callers to make copying
/// output optional. For example to skip copying back the output buffer of an `seal_call`
/// when the caller is not interested in the result.
///
/// `create_token` can optionally instruct this function to charge the gas meter with the token
/// it returns. `create_token` receives the variable amount of bytes that are about to be copied
/// by this function.
///
/// In addition to the error conditions of `Memory::write` this functions returns
/// `Err` if the size of the buffer located at `out_ptr` is too small to fit `buf`.
pub fn write_sandbox_output(
&mut self,
memory: &mut M,
out_ptr: u32,
out_len_ptr: u32,
buf: &[u8],
allow_skip: bool,
create_token: impl FnOnce(u32) -> Option<RuntimeCosts>,
) -> Result<(), DispatchError> {
if allow_skip && out_ptr == SENTINEL {
return Ok(());
let len = memory.read_u32(out_len_ptr)?;
Cyrill Leutwiler
committed
let buf_len = len.min(buf.len() as u32);
if let Some(costs) = create_token(buf_len) {
self.charge_gas(costs)?;
}
Cyrill Leutwiler
committed
memory.write(out_ptr, &buf[..buf_len as usize])?;
memory.write(out_len_ptr, &buf_len.encode())
}
/// Same as `write_sandbox_output` but for static size output.
pub fn write_fixed_sandbox_output(
&mut self,
memory: &mut M,
out_ptr: u32,
buf: &[u8],
allow_skip: bool,
create_token: impl FnOnce(u32) -> Option<RuntimeCosts>,
) -> Result<(), DispatchError> {
if allow_skip && out_ptr == SENTINEL {
return Ok(());
}
let buf_len = buf.len() as u32;
if let Some(costs) = create_token(buf_len) {
self.charge_gas(costs)?;
}
memory.write(out_ptr, buf)
}
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
/// Computes the given hash function on the supplied input.
///
/// Reads from the sandboxed input buffer into an intermediate buffer.
/// Returns the result directly to the output buffer of the sandboxed memory.
///
/// It is the callers responsibility to provide an output buffer that
/// is large enough to hold the expected amount of bytes returned by the
/// chosen hash function.
///
/// # Note
///
/// The `input` and `output` buffers may overlap.
fn compute_hash_on_intermediate_buffer<F, R>(
&self,
memory: &mut M,
hash_fn: F,
input_ptr: u32,
input_len: u32,
output_ptr: u32,
) -> Result<(), DispatchError>
where
F: FnOnce(&[u8]) -> R,
R: AsRef<[u8]>,
{
// Copy input into supervisor memory.
let input = memory.read(input_ptr, input_len)?;
// Compute the hash on the input buffer using the given hash function.
let hash = hash_fn(&input);
// Write the resulting hash back into the sandboxed output buffer.
memory.write(output_ptr, hash.as_ref())?;
Ok(())
}
/// Fallible conversion of a `ExecError` to `ReturnErrorCode`.
///
/// This is used when converting the error returned from a subcall in order to decide
/// whether to trap the caller or allow handling of the error.
fn exec_error_into_return_code(from: ExecError) -> Result<ReturnErrorCode, DispatchError> {
use crate::exec::ErrorOrigin::Callee;
use ReturnErrorCode::*;
let transfer_failed = Error::<E::T>::TransferFailed.into();
let out_of_gas = Error::<E::T>::OutOfGas.into();
let out_of_deposit = Error::<E::T>::StorageDepositLimitExhausted.into();
xermicus
committed
let duplicate_contract = Error::<E::T>::DuplicateContract.into();
// errors in the callee do not trap the caller
match (from.error, from.origin) {
(err, _) if err == transfer_failed => Ok(TransferFailed),
xermicus
committed
(err, _) if err == duplicate_contract => Ok(DuplicateContractAddress),
(err, Callee) if err == out_of_gas || err == out_of_deposit => Ok(OutOfResources),
(_, Callee) => Ok(CalleeTrapped),
(err, _) => Err(err),
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
fn decode_key(&self, memory: &M, key_ptr: u32, key_len: u32) -> Result<Key, TrapReason> {
let res = match key_len {
SENTINEL => {
let mut buffer = [0u8; 32];
memory.read_into_buf(key_ptr, buffer.as_mut())?;
Ok(Key::from_fixed(buffer))
},
len => {
ensure!(len <= limits::STORAGE_KEY_BYTES, Error::<E::T>::DecodingFailed);
let key = memory.read(key_ptr, len)?;
Key::try_from_var(key)
},
};
res.map_err(|_| Error::<E::T>::DecodingFailed.into())
}
fn is_transient(flags: u32) -> Result<bool, TrapReason> {
StorageFlags::from_bits(flags)
.ok_or_else(|| <Error<E::T>>::InvalidStorageFlags.into())
.map(|flags| flags.contains(StorageFlags::TRANSIENT))
}
fn set_storage(
&mut self,
memory: &M,
flags: u32,
key_ptr: u32,
key_len: u32,
value_ptr: u32,
value_len: u32,
) -> Result<u32, TrapReason> {
let transient = Self::is_transient(flags)?;
let costs = |new_bytes: u32, old_bytes: u32| {
if transient {
RuntimeCosts::SetTransientStorage { new_bytes, old_bytes }
} else {
RuntimeCosts::SetStorage { new_bytes, old_bytes }
}
};
let max_size = self.ext.max_value_size();
let charged = self.charge_gas(costs(value_len, self.ext.max_value_size()))?;
if value_len > max_size {
return Err(Error::<E::T>::ValueTooLarge.into());
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
}
let key = self.decode_key(memory, key_ptr, key_len)?;
let value = Some(memory.read(value_ptr, value_len)?);
let write_outcome = if transient {
self.ext.set_transient_storage(&key, value, false)?
} else {
self.ext.set_storage(&key, value, false)?
};
self.adjust_gas(charged, costs(value_len, write_outcome.old_len()));
Ok(write_outcome.old_len_with_sentinel())
}
fn clear_storage(
&mut self,
memory: &M,
flags: u32,
key_ptr: u32,
key_len: u32,
) -> Result<u32, TrapReason> {
let transient = Self::is_transient(flags)?;
let costs = |len| {
if transient {
RuntimeCosts::ClearTransientStorage(len)
} else {
RuntimeCosts::ClearStorage(len)
}
};
let charged = self.charge_gas(costs(self.ext.max_value_size()))?;
let key = self.decode_key(memory, key_ptr, key_len)?;
let outcome = if transient {
self.ext.set_transient_storage(&key, None, false)?
} else {
self.ext.set_storage(&key, None, false)?
};
self.adjust_gas(charged, costs(outcome.old_len()));
Ok(outcome.old_len_with_sentinel())
}
fn get_storage(
&mut self,
memory: &mut M,
flags: u32,
key_ptr: u32,
key_len: u32,
out_ptr: u32,
out_len_ptr: u32,
) -> Result<ReturnErrorCode, TrapReason> {
let transient = Self::is_transient(flags)?;
let costs = |len| {
if transient {
RuntimeCosts::GetTransientStorage(len)
} else {
RuntimeCosts::GetStorage(len)
}
};
let charged = self.charge_gas(costs(self.ext.max_value_size()))?;
let key = self.decode_key(memory, key_ptr, key_len)?;
let outcome = if transient {
self.ext.get_transient_storage(&key)
} else {
self.ext.get_storage(&key)
};
if let Some(value) = outcome {
self.adjust_gas(charged, costs(value.len() as u32));
self.write_sandbox_output(
memory,
out_ptr,
out_len_ptr,
&value,
false,
already_charged,
)?;
Ok(ReturnErrorCode::Success)
} else {
self.adjust_gas(charged, costs(0));
Ok(ReturnErrorCode::KeyNotFound)
}
}
fn contains_storage(
&mut self,
memory: &M,
flags: u32,
key_ptr: u32,
key_len: u32,
) -> Result<u32, TrapReason> {
let transient = Self::is_transient(flags)?;
let costs = |len| {
if transient {
RuntimeCosts::ContainsTransientStorage(len)
} else {
RuntimeCosts::ContainsStorage(len)
}
};
let charged = self.charge_gas(costs(self.ext.max_value_size()))?;
let key = self.decode_key(memory, key_ptr, key_len)?;
let outcome = if transient {
self.ext.get_transient_storage_size(&key)
} else {
self.ext.get_storage_size(&key)
};
self.adjust_gas(charged, costs(outcome.unwrap_or(0)));
Ok(outcome.unwrap_or(SENTINEL))
}
fn take_storage(
&mut self,
memory: &mut M,
flags: u32,
key_ptr: u32,
key_len: u32,
out_ptr: u32,
out_len_ptr: u32,
) -> Result<ReturnErrorCode, TrapReason> {
let transient = Self::is_transient(flags)?;
let costs = |len| {
if transient {
RuntimeCosts::TakeTransientStorage(len)
} else {
RuntimeCosts::TakeStorage(len)
}
};
let charged = self.charge_gas(costs(self.ext.max_value_size()))?;
let key = self.decode_key(memory, key_ptr, key_len)?;
let outcome = if transient {
self.ext.set_transient_storage(&key, None, true)?
} else {
self.ext.set_storage(&key, None, true)?
};
if let crate::storage::WriteOutcome::Taken(value) = outcome {
self.adjust_gas(charged, costs(value.len() as u32));
self.write_sandbox_output(
memory,
out_ptr,
out_len_ptr,
&value,
false,
already_charged,
)?;
Ok(ReturnErrorCode::Success)
} else {
self.adjust_gas(charged, costs(0));
Ok(ReturnErrorCode::KeyNotFound)
}