Newer
Older
// Copyright 2017-2020 Parity Technologies (UK) Ltd.
// This file is part of Substrate.
// Substrate is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Substrate is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Substrate. If not, see <http://www.gnu.org/licenses/>.
//! Substrate service. Starts a thread that spins up the network, client, and extrinsic pool.
//! Manages communication between them.

Svyatoslav Nikolsky
committed
pub mod error;
mod status_sinks;
use std::time::{Duration, Instant};
use futures::sync::mpsc;
use parking_lot::Mutex;
use futures03::{
future::{ready, FutureExt as _, TryFutureExt as _},
stream::{StreamExt as _, TryStreamExt as _},
};
NetworkService, NetworkState, specialization::NetworkSpecialization,
PeerId, ReportHandle,
};
use log::{log, warn, debug, error, Level};
use sp_runtime::generic::BlockId;
use sp_runtime::traits::{NumberFor, Block as BlockT};
new_full_client,
ServiceBuilder, ServiceBuilderCommand, TFullClient, TLightClient, TFullBackend, TLightBackend,
TFullCallExecutor, TLightCallExecutor,
};
pub use config::{Configuration, Roles, PruningMode};
pub use sc_chain_spec::{ChainSpec, Properties, RuntimeGenesis, Extension as ChainSpecExtension};
pub use sp_transaction_pool::{TransactionPool, TransactionPoolMaintainer, InPoolTransaction, error::IntoPoolError};
pub use sc_transaction_pool::txpool::Options as TransactionPoolOptions;
pub use sc_client::FinalityNotifications;
pub use sc_rpc::Metadata as RpcMetadata;
#[doc(hidden)]
pub use std::{ops::Deref, result::Result, sync::Arc};
#[doc(hidden)]
pub use sc_network::{FinalityProofProvider, OnDemand, config::BoxFinalityProofRequestBuilder};
const DEFAULT_PROTOCOL_ID: &str = "sup";
pub struct Service<TBl, TCl, TSc, TNetStatus, TNet, TTxPool, TOc> {
client: Arc<TCl>,
select_chain: Option<TSc>,
network: Arc<TNet>,
/// Sinks to propagate network status updates.
/// For each element, every time the `Interval` fires we push an element on the sender.
network_status_sinks: Arc<Mutex<status_sinks::StatusSinks<(TNetStatus, NetworkState)>>>,
/// A future that resolves when the service has exited, this is useful to
/// make sure any internally spawned futures stop when the service does.
/// A signal that makes the exit future above resolve, fired on service drop.
/// Send a signal when a spawned essential task has concluded. The next time
/// the service future is polled it should complete with an error.
essential_failed_tx: mpsc::UnboundedSender<()>,
/// A receiver for spawned essential-tasks concluding.
essential_failed_rx: mpsc::UnboundedReceiver<()>,
/// Sender for futures that must be spawned as background tasks.
to_spawn_tx: mpsc::UnboundedSender<Box<dyn Future<Item = (), Error = ()> + Send>>,
/// Receiver for futures that must be spawned as background tasks.
to_spawn_rx: mpsc::UnboundedReceiver<Box<dyn Future<Item = (), Error = ()> + Send>>,
/// List of futures to poll from `poll`.
/// If spawning a background task is not possible, we instead push the task into this `Vec`.
/// The elements must then be polled manually.
to_poll: Vec<Box<dyn Future<Item = (), Error = ()> + Send>>,
rpc_handlers: sc_rpc_server::RpcHandler<sc_rpc::Metadata>,
_rpc: Box<dyn std::any::Any + Send + Sync>,
_telemetry: Option<sc_telemetry::Telemetry>,
_telemetry_on_connect_sinks: Arc<Mutex<Vec<mpsc::UnboundedSender<()>>>>,
keystore: sc_keystore::KeyStorePtr,
/// Alias for a an implementation of `futures::future::Executor`.
pub type TaskExecutor = Arc<dyn Executor<Box<dyn Future<Item = (), Error = ()> + Send>> + Send + Sync>;
/// An handle for spawning tasks in the service.
#[derive(Clone)]
pub struct SpawnTaskHandle {
sender: mpsc::UnboundedSender<Box<dyn Future<Item = (), Error = ()> + Send>>,
on_exit: exit_future::Exit,
impl Executor<Box<dyn Future<Item = (), Error = ()> + Send>> for SpawnTaskHandle {
fn execute(
&self,
future: Box<dyn Future<Item = (), Error = ()> + Send>,
) -> Result<(), futures::future::ExecuteError<Box<dyn Future<Item = (), Error = ()> + Send>>> {
let exit = self.on_exit.clone().map(Ok).compat();
let future = Box::new(future.select(exit).then(|_| Ok(())));
if let Err(err) = self.sender.unbounded_send(future) {
let kind = futures::future::ExecuteErrorKind::Shutdown;
Err(futures::future::ExecuteError::new(kind, err.into_inner()))
} else {
Ok(())
}
impl futures03::task::Spawn for SpawnTaskHandle {
fn spawn_obj(&self, future: futures03::task::FutureObj<'static, ()>)
-> Result<(), futures03::task::SpawnError> {
self.execute(Box::new(futures03::compat::Compat::new(future.unit_error())))
.map_err(|_| futures03::task::SpawnError::shutdown())
}
}
/// Abstraction over a Substrate service.
pub trait AbstractService: 'static + Future<Item = (), Error = Error> +
Executor<Box<dyn Future<Item = (), Error = ()> + Send>> + Send {
/// Type of block of this chain.
Bastian Köcher
committed
type Block: BlockT;
Bastian Köcher
committed
type Backend: 'static + sc_client_api::backend::Backend<Self::Block>;
/// How to execute calls towards the runtime.
Bastian Köcher
committed
type CallExecutor: 'static + sc_client::CallExecutor<Self::Block> + Send + Sync + Clone;
/// API that the runtime provides.
type RuntimeApi: Send + Sync;
/// Chain selection algorithm.
type SelectChain: sp_consensus::SelectChain<Self::Block>;
/// Transaction pool.
type TransactionPool: TransactionPool<Block = Self::Block>
+ TransactionPoolMaintainer<Block = Self::Block>;
/// Network specialization.
type NetworkSpecialization: NetworkSpecialization<Self::Block>;
/// Get event stream for telemetry connection established events.
fn telemetry_on_connect_stream(&self) -> mpsc::UnboundedReceiver<()>;
/// return a shared instance of Telemetry (if enabled)
fn telemetry(&self) -> Option<sc_telemetry::Telemetry>;
/// Spawns a task in the background that runs the future passed as parameter.
fn spawn_task(&self, task: impl Future<Item = (), Error = ()> + Send + 'static);
/// Spawns a task in the background that runs the future passed as
/// parameter. The given task is considered essential, i.e. if it errors we
/// trigger a service exit.
fn spawn_essential_task(&self, task: impl Future<Item = (), Error = ()> + Send + 'static);
/// Returns a handle for spawning tasks.
fn spawn_task_handle(&self) -> SpawnTaskHandle;
/// Returns the keystore that stores keys.
fn keystore(&self) -> sc_keystore::KeyStorePtr;
/// Starts an RPC query.
///
/// The query is passed as a string and must be a JSON text similar to what an HTTP client
/// would for example send.
///
/// Returns a `Future` that contains the optional response.
///
/// If the request subscribes you to events, the `Sender` in the `RpcSession` object is used to
/// send back spontaneous events.
fn rpc_query(&self, mem: &RpcSession, request: &str) -> Box<dyn Future<Item = Option<String>, Error = ()> + Send>;
/// Get shared client instance.
fn client(&self) -> Arc<sc_client::Client<Self::Backend, Self::CallExecutor, Self::Block, Self::RuntimeApi>>;
/// Get clone of select chain.
fn select_chain(&self) -> Option<Self::SelectChain>;
/// Get shared network instance.
Bastian Köcher
committed
fn network(&self)
-> Arc<NetworkService<Self::Block, Self::NetworkSpecialization, <Self::Block as BlockT>::Hash>>;
/// Returns a receiver that periodically receives a status of the network.
fn network_status(&self, interval: Duration) -> mpsc::UnboundedReceiver<(NetworkStatus<Self::Block>, NetworkState)>;
/// Get shared transaction pool instance.
fn transaction_pool(&self) -> Arc<Self::TransactionPool>;
/// Get a handle to a future that will resolve on exit.
fn on_exit(&self) -> ::exit_future::Exit;
}
impl<TBl, TBackend, TExec, TRtApi, TSc, TNetSpec, TExPool, TOc> AbstractService for
Service<TBl, Client<TBackend, TExec, TBl, TRtApi>, TSc, NetworkStatus<TBl>,
Bastian Köcher
committed
NetworkService<TBl, TNetSpec, TBl::Hash>, TExPool, TOc>
Bastian Köcher
committed
TBl: BlockT,
TBackend: 'static + sc_client_api::backend::Backend<TBl>,
TExec: 'static + sc_client::CallExecutor<TBl> + Send + Sync + Clone,
TSc: sp_consensus::SelectChain<TBl> + 'static + Clone + Send,
TExPool: 'static + TransactionPool<Block = TBl>
+ TransactionPoolMaintainer<Block = TBl>,
TOc: 'static + Send + Sync,
TNetSpec: NetworkSpecialization<TBl>,
{
type Block = TBl;
type Backend = TBackend;
type CallExecutor = TExec;
type RuntimeApi = TRtApi;
type SelectChain = TSc;
type TransactionPool = TExPool;
type NetworkSpecialization = TNetSpec;
fn telemetry_on_connect_stream(&self) -> mpsc::UnboundedReceiver<()> {
let (sink, stream) = mpsc::unbounded();
self._telemetry_on_connect_sinks.lock().push(sink);
stream
}
fn telemetry(&self) -> Option<sc_telemetry::Telemetry> {
self._telemetry.as_ref().map(|t| t.clone())
}
fn keystore(&self) -> sc_keystore::KeyStorePtr {
fn spawn_task(&self, task: impl Future<Item = (), Error = ()> + Send + 'static) {
let exit = self.on_exit().map(Ok).compat();
let task = task.select(exit).then(|_| Ok(()));
let _ = self.to_spawn_tx.unbounded_send(Box::new(task));
}
fn spawn_essential_task(&self, task: impl Future<Item = (), Error = ()> + Send + 'static) {
let essential_failed = self.essential_failed_tx.clone();
let essential_task = std::panic::AssertUnwindSafe(task)
.catch_unwind()
.then(move |_| {
error!("Essential task failed. Shutting down service.");
let _ = essential_failed.send(());
let exit = self.on_exit().map(Ok::<_, ()>).compat();
let task = essential_task.select(exit).then(|_| Ok(()));
let _ = self.to_spawn_tx.unbounded_send(Box::new(task));
fn spawn_task_handle(&self) -> SpawnTaskHandle {
SpawnTaskHandle {
sender: self.to_spawn_tx.clone(),
on_exit: self.on_exit(),
fn rpc_query(&self, mem: &RpcSession, request: &str) -> Box<dyn Future<Item = Option<String>, Error = ()> + Send> {
Box::new(self.rpc_handlers.handle_request(request, mem.metadata.clone()))
fn client(&self) -> Arc<sc_client::Client<Self::Backend, Self::CallExecutor, Self::Block, Self::RuntimeApi>> {
fn select_chain(&self) -> Option<Self::SelectChain> {
self.select_chain.clone()
}
Bastian Köcher
committed
fn network(&self)
-> Arc<NetworkService<Self::Block, Self::NetworkSpecialization, <Self::Block as BlockT>::Hash>>
{
fn network_status(&self, interval: Duration) -> mpsc::UnboundedReceiver<(NetworkStatus<Self::Block>, NetworkState)> {
let (sink, stream) = mpsc::unbounded();
self.network_status_sinks.lock().push(interval, sink);
stream
}
fn transaction_pool(&self) -> Arc<Self::TransactionPool> {
fn on_exit(&self) -> exit_future::Exit {
impl<TBl, TCl, TSc, TNetStatus, TNet, TTxPool, TOc> Future for
Service<TBl, TCl, TSc, TNetStatus, TNet, TTxPool, TOc>
type Error = Error;
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
match self.essential_failed_rx.poll() {
Ok(Async::NotReady) => {},
Ok(Async::Ready(_)) | Err(_) => {
// Ready(None) should not be possible since we hold a live
// sender.
return Err(Error::Other("Essential task failed.".into()));
}
while let Ok(Async::Ready(Some(task_to_spawn))) = self.to_spawn_rx.poll() {
let executor = tokio_executor::DefaultExecutor::current();
if let Err(err) = executor.execute(task_to_spawn) {
debug!(
target: "service",
"Failed to spawn background task: {:?}; falling back to manual polling",
err
);
self.to_poll.push(err.into_future());
}
}
// Polling all the `to_poll` futures.
while let Some(pos) = self.to_poll.iter_mut().position(|t| t.poll().map(|t| t.is_ready()).unwrap_or(true)) {
let _ = self.to_poll.remove(pos);
}
// The service future never ends.
Ok(Async::NotReady)
}
}
impl<TBl, TCl, TSc, TNetStatus, TNet, TTxPool, TOc> Executor<Box<dyn Future<Item = (), Error = ()> + Send>> for
Service<TBl, TCl, TSc, TNetStatus, TNet, TTxPool, TOc>
fn execute(
&self,
future: Box<dyn Future<Item = (), Error = ()> + Send>
) -> Result<(), futures::future::ExecuteError<Box<dyn Future<Item = (), Error = ()> + Send>>> {
if let Err(err) = self.to_spawn_tx.unbounded_send(future) {
let kind = futures::future::ExecuteErrorKind::Shutdown;
Err(futures::future::ExecuteError::new(kind, err.into_inner()))
} else {
Ok(())
}
}
}
/// Builds a never-ending future that continuously polls the network.
///
/// The `status_sink` contain a list of senders to send a periodic network status to.
C: sc_client::BlockchainEvents<B>,
S: sc_network::specialization::NetworkSpecialization<B>,
H: sc_network::ExHashT
mut network: sc_network::NetworkWorker<B, S, H>,
status_sinks: Arc<Mutex<status_sinks::StatusSinks<(NetworkStatus<B>, NetworkState)>>>,
rpc_rx: futures03::channel::mpsc::UnboundedReceiver<sc_rpc::system::Request<B>>,
) -> impl Future<Item = (), Error = ()> {
// Compatibility shim while we're transitioning to stable Futures.
// See https://github.com/paritytech/substrate/issues/3099
let mut rpc_rx = futures03::compat::Compat::new(rpc_rx.map(|v| Ok::<_, ()>(v)));
let mut imported_blocks_stream = client.import_notification_stream().fuse()
.map(|v| Ok::<_, ()>(v)).compat();
let mut finality_notification_stream = client.finality_notification_stream().fuse()
.map(|v| Ok::<_, ()>(v)).compat();
futures::future::poll_fn(move || {
let before_polling = Instant::now();
// We poll `imported_blocks_stream`.
while let Ok(Async::Ready(Some(notification))) = imported_blocks_stream.poll() {
network.on_block_imported(notification.hash, notification.header, Vec::new(), notification.is_new_best);
}
// We poll `finality_notification_stream`, but we only take the last event.
let mut last = None;
while let Ok(Async::Ready(Some(item))) = finality_notification_stream.poll() {
last = Some(item);
}
if let Some(notification) = last {
network.on_block_finalized(notification.hash, notification.header);
}
// Poll the RPC requests and answer them.
while let Ok(Async::Ready(Some(request))) = rpc_rx.poll() {
match request {
sc_rpc::system::Request::Health(sender) => {
let _ = sender.send(sc_rpc::system::Health {
peers: network.peers_debug_info().len(),
is_syncing: network.service().is_major_syncing(),
should_have_peers,
});
},
sc_rpc::system::Request::Peers(sender) => {
let _ = sender.send(network.peers_debug_info().into_iter().map(|(peer_id, p)|
sc_rpc::system::PeerInfo {
peer_id: peer_id.to_base58(),
roles: format!("{:?}", p.roles),
protocol_version: p.protocol_version,
best_hash: p.best_hash,
best_number: p.best_number,
}
).collect());
}
sc_rpc::system::Request::NetworkState(sender) => {
if let Some(network_state) = serde_json::to_value(&network.network_state()).ok() {
let _ = sender.send(network_state);
}
sc_rpc::system::Request::NetworkAddReservedPeer(peer_addr, sender) => {
let x = network.add_reserved_peer(peer_addr)
.map_err(sc_rpc::system::error::Error::MalformattedPeerArg);
let _ = sender.send(x);
}
sc_rpc::system::Request::NetworkRemoveReservedPeer(peer_id, sender) => {
let _ = match peer_id.parse::<PeerId>() {
Ok(peer_id) => {
network.remove_reserved_peer(peer_id);
sender.send(Ok(()))
}
Err(e) => sender.send(Err(sc_rpc::system::error::Error::MalformattedPeerArg(
e.to_string(),
))),
};
}
sc_rpc::system::Request::NodeRoles(sender) => {
use sc_rpc::system::NodeRole;
let node_roles = (0 .. 8)
.filter(|&bit_number| (roles.bits() >> bit_number) & 1 == 1)
.map(|bit_number| match Roles::from_bits(1 << bit_number) {
Some(Roles::AUTHORITY) => NodeRole::Authority,
Some(Roles::LIGHT) => NodeRole::LightClient,
Some(Roles::FULL) => NodeRole::Full,
_ => NodeRole::UnknownRole(bit_number),
})
.collect();
let _ = sender.send(node_roles);
}
};
}
// Interval report for the external API.
status_sinks.lock().poll(|| {
let status = NetworkStatus {
sync_state: network.sync_state(),
best_seen_block: network.best_seen_block(),
num_sync_peers: network.num_sync_peers(),
num_connected_peers: network.num_connected_peers(),
num_active_peers: network.num_active_peers(),
average_download_per_sec: network.average_download_per_sec(),
average_upload_per_sec: network.average_upload_per_sec(),
};
(status, state)
});
let mut net_poll = futures03::future::poll_fn(|cx| futures03::future::Future::poll(Pin::new(&mut network), cx))
.compat();
if let Ok(Async::Ready(())) = net_poll.poll().map_err(|err| {
warn!(target: "service", "Error in network: {:?}", err);
}) {
return Ok(Async::Ready(()));
}
// Now some diagnostic for performances.
let polling_dur = before_polling.elapsed();
log!(
target: "service",
if polling_dur >= Duration::from_secs(1) { Level::Warn } else { Level::Trace },
"Polling the network future took {:?}",
polling_dur
);
})
}
/// Overview status of the network.
#[derive(Clone)]
pub struct NetworkStatus<B: BlockT> {
/// Current global sync state.
pub sync_state: sc_network::SyncState,
/// Target sync block number.
pub best_seen_block: Option<NumberFor<B>>,
/// Number of peers participating in syncing.
pub num_sync_peers: u32,
/// Total number of connected peers
pub num_connected_peers: usize,
/// Total number of active peers.
pub num_active_peers: usize,
/// Downloaded bytes per second averaged over the past few seconds.
pub average_download_per_sec: u64,
/// Uploaded bytes per second averaged over the past few seconds.
pub average_upload_per_sec: u64,
}
impl<TBl, TCl, TSc, TNetStatus, TNet, TTxPool, TOc> Drop for
Service<TBl, TCl, TSc, TNetStatus, TNet, TTxPool, TOc>
fn drop(&mut self) {
debug!(target: "service", "Substrate service shutdown");
if let Some(signal) = self.signal.take() {
let _ = signal.fire();
/// Starts RPC servers that run in their own thread, and returns an opaque object that keeps them alive.
#[cfg(not(target_os = "unknown"))]
fn start_rpc_servers<C, G, E, H: FnMut() -> sc_rpc_server::RpcHandler<sc_rpc::Metadata>>(
mut gen_handler: H
) -> Result<Box<dyn std::any::Any + Send + Sync>, error::Error> {
fn maybe_start_server<T, F>(address: Option<SocketAddr>, mut start: F) -> Result<Option<T>, io::Error>
where F: FnMut(&SocketAddr) -> Result<T, io::Error>,
{
Ok(match address {
Some(mut address) => Some(start(&address)
.or_else(|e| match e.kind() {
io::ErrorKind::AddrInUse |
io::ErrorKind::PermissionDenied => {
warn!("Unable to bind RPC server to {}. Trying random port.", address);
address.set_port(0);
start(&address)
},
_ => Err(e),
})?),
None => None,
})
}
Ok(Box::new((
maybe_start_server(
config.rpc_http,
|address| sc_rpc_server::start_http(address, config.rpc_cors.as_ref(), gen_handler()),
)?,
maybe_start_server(
config.rpc_ws,
|address| sc_rpc_server::start_ws(
address,
config.rpc_ws_max_connections,
config.rpc_cors.as_ref(),
gen_handler(),
),
)?.map(Mutex::new),
)))
}
/// Starts RPC servers that run in their own thread, and returns an opaque object that keeps them alive.
#[cfg(target_os = "unknown")]
fn start_rpc_servers<C, G, E, H: FnMut() -> sc_rpc_server::RpcHandler<sc_rpc::Metadata>>(
) -> Result<Box<dyn std::any::Any + Send + Sync>, error::Error> {
Ok(Box::new(()))
}
/// An RPC session. Used to perform in-memory RPC queries (ie. RPC queries that don't go through
/// the HTTP or WebSockets server).
#[derive(Clone)]
pub struct RpcSession {
metadata: sc_rpc::Metadata,
}
impl RpcSession {
/// Creates an RPC session.
///
/// The `sender` is stored inside the `RpcSession` and is used to communicate spontaneous JSON
/// messages.
///
/// The `RpcSession` must be kept alive in order to receive messages on the sender.
pub fn new(sender: mpsc::Sender<String>) -> RpcSession {
RpcSession {
pub struct TransactionPoolAdapter<C, P> {
imports_external_transactions: bool,
executor: TaskExecutor,
/// Get transactions for propagation.
///
/// Function extracted to simplify the test and prevent creating `ServiceFactory`.
fn transactions_to_propagate<Pool, B, H, E>(pool: &Pool)
-> Vec<(H, B::Extrinsic)>
where
Pool: TransactionPool<Block=B, Hash=H, Error=E>,
B: BlockT,
H: std::hash::Hash + Eq + sp_runtime::traits::Member + sp_runtime::traits::MaybeSerialize,
E: IntoPoolError + From<sp_transaction_pool::error::Error>,
{
pool.ready()
.filter(|t| t.is_propagateable())
.map(|t| {
let hash = t.hash().clone();
let ex: B::Extrinsic = t.data().clone();
(hash, ex)
})
.collect()
}
impl<B, H, C, Pool, E> sc_network::TransactionPool<H, B> for
TransactionPoolAdapter<C, Pool>
C: sc_network::ClientHandle<B> + Send + Sync,
Pool: 'static + TransactionPool<Block=B, Hash=H, Error=E>,
H: std::hash::Hash + Eq + sp_runtime::traits::Member + sp_runtime::traits::MaybeSerialize,
E: 'static + IntoPoolError + From<sp_transaction_pool::error::Error>,
fn transactions(&self) -> Vec<(H, <B as BlockT>::Extrinsic)> {
transactions_to_propagate(&*self.pool)
fn hash_of(&self, transaction: &B::Extrinsic) -> H {
self.pool.hash_of(transaction)
}
fn import(
&self,
report_handle: ReportHandle,
who: PeerId,
reputation_change_good: sc_network::ReputationChange,
reputation_change_bad: sc_network::ReputationChange,
transaction: B::Extrinsic
) {
if !self.imports_external_transactions {
return;
}
let encoded = transaction.encode();
match Decode::decode(&mut &encoded[..]) {
Ok(uxt) => {
let best_block_id = BlockId::hash(self.client.info().best_hash);
let import_future = self.pool.submit_one(&best_block_id, uxt);
let import_future = import_future
.then(move |import_result| {
match import_result {
Ok(_) => report_handle.report_peer(who, reputation_change_good),
Err(e) => match e.into_pool_error() {
Ok(sp_transaction_pool::error::Error::AlreadyImported(_)) => (),
Ok(e) => {
report_handle.report_peer(who, reputation_change_bad);
debug!("Error adding transaction to the pool: {:?}", e)
}
Err(e) => debug!("Error converting pool error: {:?}", e),
}
}
ready(Ok(()))
})
.compat();
if let Err(e) = self.executor.execute(Box::new(import_future)) {
warn!("Error scheduling extrinsic import: {:?}", e);
Err(e) => debug!("Error decoding transaction {}", e),
fn on_broadcasted(&self, propagations: HashMap<H, Vec<String>>) {
self.pool.on_broadcasted(propagations)
}
#[cfg(test)]
mod tests {
use super::*;
use futures03::executor::block_on;
use sp_consensus::SelectChain;
use substrate_test_runtime_client::{prelude::*, runtime::{Extrinsic, Transfer}};
use sc_transaction_pool::{BasicPool, FullChainApi};
#[test]
fn should_not_propagate_transactions_that_are_marked_as_such() {
// given
let (client, longest_chain) = TestClientBuilder::new().build_with_longest_chain();
let client = Arc::new(client);
let pool = Arc::new(BasicPool::new(Default::default(), FullChainApi::new(client.clone())));
let best = longest_chain.best_chain().unwrap();
let transaction = Transfer {
amount: 5,
nonce: 0,
from: AccountKeyring::Alice.into(),
to: Default::default(),
}.into_signed_tx();
block_on(pool.submit_one(&BlockId::hash(best.hash()), transaction.clone())).unwrap();
block_on(pool.submit_one(&BlockId::hash(best.hash()), Extrinsic::IncludeData(vec![1]))).unwrap();
assert_eq!(pool.status().ready, 2);
// when
let transactions = transactions_to_propagate(&*pool);
// then
assert_eq!(transactions.len(), 1);
assert!(transactions[0].1.clone().check().is_ok());
// this should not panic
let _ = transactions[0].1.transfer();
}
}