Newer
Older
// This file is part of Substrate.
// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Smaller traits used in FRAME which don't need their own file.
joe petrowski
committed
use crate::dispatch::{DispatchResult, Parameter};
use codec::{CompactLen, Decode, DecodeLimit, Encode, EncodeLike, Input, MaxEncodedLen};
use impl_trait_for_tuples::impl_for_tuples;
use scale_info::{build::Fields, meta_type, Path, Type, TypeInfo, TypeParameter};
use sp_arithmetic::traits::{CheckedAdd, CheckedMul, CheckedSub, One, Saturating};
use sp_core::bounded::bounded_vec::TruncateFrom;
#[doc(hidden)]
pub use sp_runtime::traits::{
ConstBool, ConstI128, ConstI16, ConstI32, ConstI64, ConstI8, ConstU128, ConstU16, ConstU32,
ConstU64, ConstU8, Get, GetDefault, TryCollect, TypedGet,
use sp_runtime::{traits::Block as BlockT, DispatchError};
use sp_std::{cmp::Ordering, prelude::*};
#[doc(hidden)]
pub const DEFENSIVE_OP_PUBLIC_ERROR: &str = "a defensive failure has been triggered; please report the block number at https://github.com/paritytech/substrate/issues";
#[doc(hidden)]
pub const DEFENSIVE_OP_INTERNAL_ERROR: &str = "Defensive failure has been triggered!";
/// Generic function to mark an execution path as ONLY defensive.
///
/// Similar to mark a match arm or `if/else` branch as `unreachable!`.
#[macro_export]
macro_rules! defensive {
() => {
frame_support::__private::log::error!(
target: "runtime",
"{}",
$crate::traits::DEFENSIVE_OP_PUBLIC_ERROR
debug_assert!(false, "{}", $crate::traits::DEFENSIVE_OP_INTERNAL_ERROR);
frame_support::__private::log::error!(
target: "runtime",
"{}: {:?}",
$crate::traits::DEFENSIVE_OP_PUBLIC_ERROR,
$error
);
debug_assert!(false, "{}: {:?}", $crate::traits::DEFENSIVE_OP_INTERNAL_ERROR, $error);
($error:expr, $proof:expr $(,)?) => {
frame_support::__private::log::error!(
target: "runtime",
"{}: {:?}: {:?}",
$crate::traits::DEFENSIVE_OP_PUBLIC_ERROR,
$error,
$proof,
);
debug_assert!(false, "{}: {:?}: {:?}", $crate::traits::DEFENSIVE_OP_INTERNAL_ERROR, $error, $proof);
/// Trigger a defensive failure if a condition is not met.
///
/// Similar to [`assert!`] but will print an error without `debug_assertions` instead of silently
/// ignoring it. Only accepts one instead of variable formatting arguments.
///
/// # Example
///
/// ```should_panic
/// frame_support::defensive_assert!(1 == 0, "Must fail")
/// ```
#[macro_export]
macro_rules! defensive_assert {
($cond:expr $(, $proof:expr )? $(,)?) => {
if !($cond) {
$crate::defensive!(::core::stringify!($cond) $(, $proof )?);
}
};
}
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/// Prelude module for all defensive traits to be imported at once.
pub mod defensive_prelude {
pub use super::{Defensive, DefensiveOption, DefensiveResult};
}
/// A trait to handle errors and options when you are really sure that a condition must hold, but
/// not brave enough to `expect` on it, or a default fallback value makes more sense.
///
/// This trait mostly focuses on methods that eventually unwrap the inner value. See
/// [`DefensiveResult`] and [`DefensiveOption`] for methods that specifically apply to the
/// respective types.
///
/// Each function in this trait will have two side effects, aside from behaving exactly as the name
/// would suggest:
///
/// 1. It panics on `#[debug_assertions]`, so if the infallible code is reached in any of the tests,
/// you realize.
/// 2. It will log an error using the runtime logging system. This might help you detect such bugs
/// in production as well. Note that the log message, as of now, are not super expressive. Your
/// best shot of fully diagnosing the error would be to infer the block number of which the log
/// message was emitted, then re-execute that block using `check-block` or `try-runtime`
/// subcommands in substrate client.
pub trait Defensive<T> {
/// Exactly the same as `unwrap_or`, but it does the defensive warnings explained in the trait
/// docs.
fn defensive_unwrap_or(self, other: T) -> T;
/// Exactly the same as `unwrap_or_else`, but it does the defensive warnings explained in the
/// trait docs.
fn defensive_unwrap_or_else<F: FnOnce() -> T>(self, f: F) -> T;
/// Exactly the same as `unwrap_or_default`, but it does the defensive warnings explained in the
/// trait docs.
fn defensive_unwrap_or_default(self) -> T
where
T: Default;
/// Does not alter the inner value at all, but it will log warnings if the inner value is `None`
/// or `Err`.
///
/// In some ways, this is like `.defensive_map(|x| x)`.
///
/// This is useful as:
/// ```nocompile
/// if let Some(inner) = maybe_value().defensive() {
/// ..
/// }
/// ```
fn defensive(self) -> Self;
/// Same as [`Defensive::defensive`], but it takes a proof as input, and displays it if the
/// defensive operation has been triggered.
fn defensive_proof(self, proof: &'static str) -> Self;
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
}
/// Subset of methods similar to [`Defensive`] that can only work for a `Result`.
pub trait DefensiveResult<T, E> {
/// Defensively map the error into another return type, but you are really sure that this
/// conversion should never be needed.
fn defensive_map_err<F, O: FnOnce(E) -> F>(self, o: O) -> Result<T, F>;
/// Defensively map and unpack the value to something else (`U`), or call the default callback
/// if `Err`, which should never happen.
fn defensive_map_or_else<U, D: FnOnce(E) -> U, F: FnOnce(T) -> U>(self, default: D, f: F) -> U;
/// Defensively transform this result into an option, discarding the `Err` variant if it
/// happens, which should never happen.
fn defensive_ok(self) -> Option<T>;
/// Exactly the same as `map`, but it prints the appropriate warnings if the value being mapped
/// is `Err`.
fn defensive_map<U, F: FnOnce(T) -> U>(self, f: F) -> Result<U, E>;
}
/// Subset of methods similar to [`Defensive`] that can only work for a `Option`.
pub trait DefensiveOption<T> {
/// Potentially map and unpack the value to something else (`U`), or call the default callback
/// if `None`, which should never happen.
fn defensive_map_or_else<U, D: FnOnce() -> U, F: FnOnce(T) -> U>(self, default: D, f: F) -> U;
/// Defensively transform this option to a result, mapping `None` to the return value of an
/// error closure.
fn defensive_ok_or_else<E: sp_std::fmt::Debug, F: FnOnce() -> E>(self, err: F) -> Result<T, E>;
/// Defensively transform this option to a result, mapping `None` to a default value.
fn defensive_ok_or<E: sp_std::fmt::Debug>(self, err: E) -> Result<T, E>;
/// Exactly the same as `map`, but it prints the appropriate warnings if the value being mapped
/// is `None`.
fn defensive_map<U, F: FnOnce(T) -> U>(self, f: F) -> Option<U>;
}
impl<T> Defensive<T> for Option<T> {
fn defensive_unwrap_or(self, or: T) -> T {
match self {
Some(inner) => inner,
None => {
defensive!();
or
},
}
}
fn defensive_unwrap_or_else<F: FnOnce() -> T>(self, f: F) -> T {
match self {
Some(inner) => inner,
None => {
defensive!();
f()
},
}
}
fn defensive_unwrap_or_default(self) -> T
where
T: Default,
{
match self {
Some(inner) => inner,
None => {
defensive!();
Default::default()
},
}
}
fn defensive(self) -> Self {
match self {
Some(inner) => Some(inner),
None => {
defensive!();
None
},
}
}
fn defensive_proof(self, proof: &'static str) -> Self {
if self.is_none() {
defensive!(proof);
}
self
}
}
impl<T, E: sp_std::fmt::Debug> Defensive<T> for Result<T, E> {
fn defensive_unwrap_or(self, or: T) -> T {
match self {
Ok(inner) => inner,
Err(e) => {
defensive!(e);
or
},
}
}
fn defensive_unwrap_or_else<F: FnOnce() -> T>(self, f: F) -> T {
match self {
Ok(inner) => inner,
Err(e) => {
defensive!(e);
f()
},
}
}
fn defensive_unwrap_or_default(self) -> T
where
T: Default,
{
match self {
Ok(inner) => inner,
Err(e) => {
defensive!(e);
Default::default()
},
}
}
fn defensive(self) -> Self {
match self {
Ok(inner) => Ok(inner),
Err(e) => {
defensive!(e);
Err(e)
},
}
}
fn defensive_proof(self, proof: &'static str) -> Self {
match self {
Ok(inner) => Ok(inner),
Err(e) => {
defensive!(e, proof);
Err(e)
},
}
}
}
impl<T, E: sp_std::fmt::Debug> DefensiveResult<T, E> for Result<T, E> {
fn defensive_map_err<F, O: FnOnce(E) -> F>(self, o: O) -> Result<T, F> {
self.map_err(|e| {
defensive!(e);
o(e)
})
}
fn defensive_map_or_else<U, D: FnOnce(E) -> U, F: FnOnce(T) -> U>(self, default: D, f: F) -> U {
self.map_or_else(
|e| {
defensive!(e);
default(e)
},
f,
)
}
fn defensive_ok(self) -> Option<T> {
match self {
Ok(inner) => Some(inner),
Err(e) => {
defensive!(e);
None
},
}
}
fn defensive_map<U, F: FnOnce(T) -> U>(self, f: F) -> Result<U, E> {
match self {
Ok(inner) => Ok(f(inner)),
Err(e) => {
defensive!(e);
Err(e)
},
}
}
}
impl<T> DefensiveOption<T> for Option<T> {
fn defensive_map_or_else<U, D: FnOnce() -> U, F: FnOnce(T) -> U>(self, default: D, f: F) -> U {
self.map_or_else(
|| {
defensive!();
default()
},
f,
)
}
fn defensive_ok_or_else<E: sp_std::fmt::Debug, F: FnOnce() -> E>(self, err: F) -> Result<T, E> {
self.ok_or_else(|| {
let err_value = err();
defensive!(err_value);
err_value
})
}
fn defensive_ok_or<E: sp_std::fmt::Debug>(self, err: E) -> Result<T, E> {
fn defensive_map<U, F: FnOnce(T) -> U>(self, f: F) -> Option<U> {
match self {
Some(inner) => Some(f(inner)),
None => {
defensive!();
None
},
}
}
}
/// A variant of [`Defensive`] with the same rationale, for the arithmetic operations where in
/// case an infallible operation fails, it saturates.
pub trait DefensiveSaturating {
/// Return `self` plus `other` defensively.
fn defensive_saturating_add(self, other: Self) -> Self;
/// Return `self` minus `other` defensively.
fn defensive_saturating_sub(self, other: Self) -> Self;
/// Return the product of `self` and `other` defensively.
fn defensive_saturating_mul(self, other: Self) -> Self;
/// Increase `self` by `other` defensively.
fn defensive_saturating_accrue(&mut self, other: Self);
/// Reduce `self` by `other` defensively.
fn defensive_saturating_reduce(&mut self, other: Self);
/// Increment `self` by one defensively.
fn defensive_saturating_inc(&mut self);
/// Decrement `self` by one defensively.
fn defensive_saturating_dec(&mut self);
}
// NOTE: A bit unfortunate, since T has to be bound by all the traits needed. Could make it
// `DefensiveSaturating<T>` to mitigate.
impl<T: Saturating + CheckedAdd + CheckedMul + CheckedSub + One> DefensiveSaturating for T {
fn defensive_saturating_add(self, other: Self) -> Self {
self.checked_add(&other).defensive_unwrap_or_else(|| self.saturating_add(other))
}
fn defensive_saturating_sub(self, other: Self) -> Self {
self.checked_sub(&other).defensive_unwrap_or_else(|| self.saturating_sub(other))
}
fn defensive_saturating_mul(self, other: Self) -> Self {
self.checked_mul(&other).defensive_unwrap_or_else(|| self.saturating_mul(other))
}
fn defensive_saturating_accrue(&mut self, other: Self) {
// Use `replace` here since `take` would require `T: Default`.
*self = sp_std::mem::replace(self, One::one()).defensive_saturating_add(other);
}
fn defensive_saturating_reduce(&mut self, other: Self) {
// Use `replace` here since `take` would require `T: Default`.
*self = sp_std::mem::replace(self, One::one()).defensive_saturating_sub(other);
}
fn defensive_saturating_inc(&mut self) {
self.defensive_saturating_accrue(One::one());
}
fn defensive_saturating_dec(&mut self) {
self.defensive_saturating_reduce(One::one());
}
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
/// Construct an object by defensively truncating an input if the `TryFrom` conversion fails.
pub trait DefensiveTruncateFrom<T> {
/// Use `TryFrom` first and defensively fall back to truncating otherwise.
///
/// # Example
///
/// ```
/// use frame_support::{BoundedVec, traits::DefensiveTruncateFrom};
/// use sp_runtime::traits::ConstU32;
///
/// let unbound = vec![1, 2];
/// let bound = BoundedVec::<u8, ConstU32<2>>::defensive_truncate_from(unbound);
///
/// assert_eq!(bound, vec![1, 2]);
/// ```
fn defensive_truncate_from(unbound: T) -> Self;
}
impl<T, U> DefensiveTruncateFrom<U> for T
where
// NOTE: We use the fact that `BoundedVec` and
// `BoundedSlice` use `Self` as error type. We could also
// require a `Clone` bound and use `unbound.clone()` in the
// error case.
T: TruncateFrom<U> + TryFrom<U, Error = U>,
{
fn defensive_truncate_from(unbound: U) -> Self {
unbound.try_into().map_or_else(
|err| {
defensive!("DefensiveTruncateFrom truncating");
T::truncate_from(err)
},
|bound| bound,
)
}
}
/// Defensively calculates the minimum of two values.
///
/// Can be used in contexts where we assume the receiver value to be (strictly) smaller.
pub trait DefensiveMin<T> {
/// Returns the minimum and defensively checks that `self` is not larger than `other`.
///
/// # Example
///
/// ```
/// use frame_support::traits::DefensiveMin;
/// // min(3, 4) is 3.
/// assert_eq!(3, 3_u32.defensive_min(4_u32));
/// // min(4, 4) is 4.
/// assert_eq!(4, 4_u32.defensive_min(4_u32));
/// ```
///
Bastian Köcher
committed
/// ```#[cfg_attr(debug_assertions, should_panic)]
/// use frame_support::traits::DefensiveMin;
/// // min(4, 3) panics.
/// 4_u32.defensive_min(3_u32);
/// ```
fn defensive_min(self, other: T) -> Self;
/// Returns the minimum and defensively checks that `self` is smaller than `other`.
///
/// # Example
///
/// ```
/// use frame_support::traits::DefensiveMin;
/// // min(3, 4) is 3.
/// assert_eq!(3, 3_u32.defensive_strict_min(4_u32));
/// ```
///
Bastian Köcher
committed
/// ```#[cfg_attr(debug_assertions, should_panic)]
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
/// use frame_support::traits::DefensiveMin;
/// // min(4, 4) panics.
/// 4_u32.defensive_strict_min(4_u32);
/// ```
fn defensive_strict_min(self, other: T) -> Self;
}
impl<T> DefensiveMin<T> for T
where
T: sp_std::cmp::PartialOrd<T>,
{
fn defensive_min(self, other: T) -> Self {
if self <= other {
self
} else {
defensive!("DefensiveMin");
other
}
}
fn defensive_strict_min(self, other: T) -> Self {
if self < other {
self
} else {
defensive!("DefensiveMin strict");
other
}
}
}
/// Defensively calculates the maximum of two values.
///
/// Can be used in contexts where we assume the receiver value to be (strictly) larger.
pub trait DefensiveMax<T> {
/// Returns the maximum and defensively asserts that `other` is not larger than `self`.
///
/// # Example
///
/// ```
/// use frame_support::traits::DefensiveMax;
/// // max(4, 3) is 4.
/// assert_eq!(4, 4_u32.defensive_max(3_u32));
/// // max(4, 4) is 4.
/// assert_eq!(4, 4_u32.defensive_max(4_u32));
/// ```
///
Bastian Köcher
committed
/// ```#[cfg_attr(debug_assertions, should_panic)]
/// use frame_support::traits::DefensiveMax;
/// // max(4, 5) panics.
/// 4_u32.defensive_max(5_u32);
/// ```
fn defensive_max(self, other: T) -> Self;
/// Returns the maximum and defensively asserts that `other` is smaller than `self`.
///
/// # Example
///
/// ```
/// use frame_support::traits::DefensiveMax;
/// // y(4, 3) is 4.
/// assert_eq!(4, 4_u32.defensive_strict_max(3_u32));
/// ```
///
Bastian Köcher
committed
/// ```#[cfg_attr(debug_assertions, should_panic)]
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
/// use frame_support::traits::DefensiveMax;
/// // max(4, 4) panics.
/// 4_u32.defensive_strict_max(4_u32);
/// ```
fn defensive_strict_max(self, other: T) -> Self;
}
impl<T> DefensiveMax<T> for T
where
T: sp_std::cmp::PartialOrd<T>,
{
fn defensive_max(self, other: T) -> Self {
if self >= other {
self
} else {
defensive!("DefensiveMax");
other
}
}
fn defensive_strict_max(self, other: T) -> Self {
if self > other {
self
} else {
defensive!("DefensiveMax strict");
other
}
}
}
/// Anything that can have a `::len()` method.
pub trait Len {
/// Return the length of data type.
fn len(&self) -> usize;
}
impl<T: IntoIterator + Clone> Len for T
where
<T as IntoIterator>::IntoIter: ExactSizeIterator,
{
fn len(&self) -> usize {
self.clone().into_iter().len()
}
}
/// A type for which some values make sense to be able to drop without further consideration.
pub trait TryDrop: Sized {
/// Drop an instance cleanly. Only works if its value represents "no-operation".
fn try_drop(self) -> Result<(), Self>;
}
impl TryDrop for () {
fn try_drop(self) -> Result<(), Self> {
Ok(())
}
}
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
/// Return type used when we need to return one of two items, each of the opposite direction or
/// sign, with one (`Same`) being of the same type as the `self` or primary argument of the function
/// that returned it.
pub enum SameOrOther<A, B> {
/// No item.
None,
/// An item of the same type as the `Self` on which the return function was called.
Same(A),
/// An item of the opposite type to the `Self` on which the return function was called.
Other(B),
}
impl<A, B> TryDrop for SameOrOther<A, B> {
fn try_drop(self) -> Result<(), Self> {
if let SameOrOther::None = self {
Ok(())
} else {
Err(self)
}
}
}
impl<A, B> SameOrOther<A, B> {
/// Returns `Ok` with the inner value of `Same` if `self` is that, otherwise returns `Err` with
/// `self`.
pub fn try_same(self) -> Result<A, Self> {
match self {
SameOrOther::Same(a) => Ok(a),
x => Err(x),
}
}
/// Returns `Ok` with the inner value of `Other` if `self` is that, otherwise returns `Err` with
/// `self`.
pub fn try_other(self) -> Result<B, Self> {
match self {
SameOrOther::Other(b) => Ok(b),
x => Err(x),
}
}
/// Returns `Ok` if `self` is `None`, otherwise returns `Err` with `self`.
pub fn try_none(self) -> Result<(), Self> {
match self {
SameOrOther::None => Ok(()),
x => Err(x),
}
}
pub fn same(self) -> Result<A, B>
where
A: Default,
{
match self {
SameOrOther::Same(a) => Ok(a),
SameOrOther::None => Ok(A::default()),
SameOrOther::Other(b) => Err(b),
}
}
pub fn other(self) -> Result<B, A>
where
B: Default,
{
match self {
SameOrOther::Same(a) => Err(a),
SameOrOther::None => Ok(B::default()),
SameOrOther::Other(b) => Ok(b),
}
}
}
/// Handler for when a new account has been created.
#[cfg_attr(all(not(feature = "tuples-96"), not(feature = "tuples-128")), impl_for_tuples(64))]
#[cfg_attr(all(feature = "tuples-96", not(feature = "tuples-128")), impl_for_tuples(96))]
#[cfg_attr(feature = "tuples-128", impl_for_tuples(128))]
pub trait OnNewAccount<AccountId> {
/// A new account `who` has been registered.
fn on_new_account(who: &AccountId);
}
/// The account with the given id was reaped.
#[cfg_attr(all(not(feature = "tuples-96"), not(feature = "tuples-128")), impl_for_tuples(64))]
#[cfg_attr(all(feature = "tuples-96", not(feature = "tuples-128")), impl_for_tuples(96))]
#[cfg_attr(feature = "tuples-128", impl_for_tuples(128))]
pub trait OnKilledAccount<AccountId> {
/// The account with the given id was reaped.
fn on_killed_account(who: &AccountId);
}
/// A simple, generic one-parameter event notifier/handler.
pub trait HandleLifetime<T> {
/// An account was created.
fn created(_t: &T) -> Result<(), DispatchError> {
Ok(())
}
/// An account was killed.
fn killed(_t: &T) -> Result<(), DispatchError> {
Ok(())
}
}
impl<T> HandleLifetime<T> for () {}
pub trait Time {
type Moment: sp_arithmetic::traits::AtLeast32Bit + Parameter + Default + Copy + MaxEncodedLen;
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
fn now() -> Self::Moment;
}
/// Trait to deal with unix time.
pub trait UnixTime {
/// Return duration since `SystemTime::UNIX_EPOCH`.
fn now() -> core::time::Duration;
}
/// Trait to be used when types are exactly same.
///
/// This allow to convert back and forth from type, a reference and a mutable reference.
pub trait IsType<T>: Into<T> + From<T> {
/// Cast reference.
fn from_ref(t: &T) -> &Self;
/// Cast reference.
fn into_ref(&self) -> &T;
/// Cast mutable reference.
fn from_mut(t: &mut T) -> &mut Self;
/// Cast mutable reference.
fn into_mut(&mut self) -> &mut T;
}
impl<T> IsType<T> for T {
fn from_ref(t: &T) -> &Self {
t
}
fn into_ref(&self) -> &T {
self
}
fn from_mut(t: &mut T) -> &mut Self {
t
}
fn into_mut(&mut self) -> &mut T {
self
}
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
}
/// Something that can be checked to be a of sub type `T`.
///
/// This is useful for enums where each variant encapsulates a different sub type, and
/// you need access to these sub types.
///
/// For example, in FRAME, this trait is implemented for the runtime `Call` enum. Pallets use this
/// to check if a certain call is an instance of the local pallet's `Call` enum.
///
/// # Example
///
/// ```
/// # use frame_support::traits::IsSubType;
///
/// enum Test {
/// String(String),
/// U32(u32),
/// }
///
/// impl IsSubType<String> for Test {
/// fn is_sub_type(&self) -> Option<&String> {
/// match self {
/// Self::String(ref r) => Some(r),
/// _ => None,
/// }
/// }
/// }
///
/// impl IsSubType<u32> for Test {
/// fn is_sub_type(&self) -> Option<&u32> {
/// match self {
/// Self::U32(ref r) => Some(r),
/// _ => None,
/// }
/// }
/// }
///
/// fn main() {
/// let data = Test::String("test".into());
///
/// assert_eq!("test", IsSubType::<String>::is_sub_type(&data).unwrap().as_str());
/// }
/// ```
pub trait IsSubType<T> {
/// Returns `Some(_)` if `self` is an instance of sub type `T`.
fn is_sub_type(&self) -> Option<&T>;
}
/// Something that can execute a given block.
///
/// Executing a block means that all extrinsics in a given block will be executed and the resulting
/// header will be checked against the header of the given block.
pub trait ExecuteBlock<Block: BlockT> {
/// Execute the given `block`.
///
/// This will execute all extrinsics in the block and check that the resulting header is
/// correct.
///
/// # Panic
///
/// Panics when an extrinsics panics or the resulting header doesn't match the expected header.
fn execute_block(block: Block);
}
/// Something that can compare privileges of two origins.
pub trait PrivilegeCmp<Origin> {
/// Compare the `left` to the `right` origin.
///
/// The returned ordering should be from the pov of the `left` origin.
///
/// Should return `None` when it can not compare the given origins.
fn cmp_privilege(left: &Origin, right: &Origin) -> Option<Ordering>;
}
/// Implementation of [`PrivilegeCmp`] that only checks for equal origins.
///
/// This means it will either return [`Ordering::Equal`] or `None`.
pub struct EqualPrivilegeOnly;
impl<Origin: PartialEq> PrivilegeCmp<Origin> for EqualPrivilegeOnly {
fn cmp_privilege(left: &Origin, right: &Origin) -> Option<Ordering> {
(left == right).then(|| Ordering::Equal)
}
}
/// Off-chain computation trait.
///
/// Implementing this trait on a module allows you to perform long-running tasks
/// that make (by default) validators generate transactions that feed results
/// of those long-running computations back on chain.
///
/// NOTE: This function runs off-chain, so it can access the block state,
/// but cannot preform any alterations. More specifically alterations are
/// not forbidden, but they are not persisted in any way after the worker
/// has finished.
#[cfg_attr(all(not(feature = "tuples-96"), not(feature = "tuples-128")), impl_for_tuples(64))]
#[cfg_attr(all(feature = "tuples-96", not(feature = "tuples-128")), impl_for_tuples(96))]
#[cfg_attr(feature = "tuples-128", impl_for_tuples(128))]
pub trait OffchainWorker<BlockNumber> {
/// This function is being called after every block import (when fully synced).
///
/// Implement this and use any of the `Offchain` `sp_io` set of APIs
/// to perform off-chain computations, calls and submit transactions
/// with results to trigger any on-chain changes.
/// Any state alterations are lost and are not persisted.
fn offchain_worker(_n: BlockNumber) {}
}
/// Some amount of backing from a group. The precise definition of what it means to "back" something
/// is left flexible.
pub struct Backing {
/// The number of members of the group that back some motion.
pub approvals: u32,
/// The total count of group members.
pub eligible: u32,
}
/// Retrieve the backing from an object's ref.
pub trait GetBacking {
/// Returns `Some` `Backing` if `self` represents a fractional/groupwise backing of some
/// implicit motion. `None` if it does not.
fn get_backing(&self) -> Option<Backing>;
}
/// A trait to ensure the inherent are before non-inherent in a block.
///
/// This is typically implemented on runtime, through `construct_runtime!`.
pub trait EnsureInherentsAreFirst<Block> {
/// Ensure the position of inherent is correct, i.e. they are before non-inherents.
///
/// On error return the index of the inherent with invalid position (counting from 0).
fn ensure_inherents_are_first(block: &Block) -> Result<(), u32>;
}
/// An extrinsic on which we can get access to call.
pub trait ExtrinsicCall: sp_runtime::traits::Extrinsic {
/// Get the call of the extrinsic.
fn call(&self) -> &Self::Call;
}
#[cfg(feature = "std")]
impl<Call, Extra> ExtrinsicCall for sp_runtime::testing::TestXt<Call, Extra>
where
Call: codec::Codec + Sync + Send + TypeInfo,
Extra: TypeInfo,
{
fn call(&self) -> &Self::Call {
&self.call
}
}
impl<Address, Call, Signature, Extra> ExtrinsicCall
for sp_runtime::generic::UncheckedExtrinsic<Address, Call, Signature, Extra>
Address: TypeInfo,
Call: TypeInfo,
Signature: TypeInfo,
Extra: sp_runtime::traits::SignedExtension + TypeInfo,
{
fn call(&self) -> &Self::Call {
&self.function
}
}
/// Something that can estimate the fee of a (frame-based) call.
///
/// Typically, the same pallet that will charge transaction fees will implement this.
pub trait EstimateCallFee<Call, Balance> {
/// Estimate the fee of this call.
///
/// The dispatch info and the length is deduced from the call. The post info can optionally be
/// provided.
fn estimate_call_fee(call: &Call, post_info: crate::dispatch::PostDispatchInfo) -> Balance;
}
// Useful for building mocks.
#[cfg(feature = "std")]
impl<Call, Balance: From<u32>, const T: u32> EstimateCallFee<Call, Balance> for ConstU32<T> {
fn estimate_call_fee(_: &Call, _: crate::dispatch::PostDispatchInfo) -> Balance {
/// A wrapper for any type `T` which implement encode/decode in a way compatible with `Vec<u8>`.
///
/// The encoding is the encoding of `T` prepended with the compact encoding of its size in bytes.
/// Thus the encoded value can be decoded as a `Vec<u8>`.
#[derive(Debug, Eq, PartialEq, Default, Clone)]
#[cfg_attr(feature = "std", derive(serde::Serialize, serde::Deserialize))]
pub struct WrapperOpaque<T>(pub T);
impl<T: Encode> EncodeLike for WrapperOpaque<T> {}
impl<T: Encode> EncodeLike<WrapperKeepOpaque<T>> for WrapperOpaque<T> {}
impl<T: Encode> Encode for WrapperOpaque<T> {
fn size_hint(&self) -> usize {
self.0.size_hint().saturating_add(<codec::Compact<u32>>::max_encoded_len())
}
fn encode_to<O: codec::Output + ?Sized>(&self, dest: &mut O) {
self.0.encode().encode_to(dest);
}
fn encode(&self) -> Vec<u8> {
self.0.encode().encode()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.0.encode().using_encoded(f)
}
}
impl<T: Decode> Decode for WrapperOpaque<T> {
fn decode<I: Input>(input: &mut I) -> Result<Self, codec::Error> {
Ok(Self(T::decode_all_with_depth_limit(
sp_api::MAX_EXTRINSIC_DEPTH,
&mut &<Vec<u8>>::decode(input)?[..],
)?))
}
fn skip<I: Input>(input: &mut I) -> Result<(), codec::Error> {
<Vec<u8>>::skip(input)
}
}
impl<T> From<T> for WrapperOpaque<T> {
fn from(t: T) -> Self {
Self(t)
}
}
impl<T: MaxEncodedLen> MaxEncodedLen for WrapperOpaque<T> {
fn max_encoded_len() -> usize {
let t_max_len = T::max_encoded_len();
// See scale encoding: https://docs.substrate.io/reference/scale-codec/
if t_max_len < 64 {
t_max_len + 1
} else if t_max_len < 2usize.pow(14) {
t_max_len + 2
} else if t_max_len < 2usize.pow(30) {
t_max_len + 4
} else {
<codec::Compact<u32>>::max_encoded_len().saturating_add(T::max_encoded_len())
}
}
}