lib.rs 44.8 KiB
Newer Older
	fn make_free_balance_be(who: &T::AccountId, balance: Self::Balance) -> (
		SignedImbalance<Self::Balance, Self::PositiveImbalance>,
		UpdateBalanceOutcome
	) {
		let original = Self::free_balance(who);
		if balance < T::ExistentialDeposit::get() && original.is_zero() {
			// If we're attempting to set an existing account to less than ED, then
			// bypass the entire operation. It's a no-op if you follow it through, but
			// since this is an instance where we might account for a negative imbalance
			// (in the dust cleaner of set_free_balance) before we account for its actual
			// equal and opposite cause (returned as an Imbalance), then in the
			// instance that there's no other accounts on the system at all, we might
			// underflow the issuance and our arithmetic will be off.
			return (
				SignedImbalance::Positive(Self::PositiveImbalance::zero()),
				UpdateBalanceOutcome::AccountKilled,
			)
		}
		let imbalance = if original <= balance {
			SignedImbalance::Positive(PositiveImbalance::new(balance - original))
			SignedImbalance::Negative(NegativeImbalance::new(original - balance))
		};
		// If the balance is too low, then the account is reaped.
		// NOTE: There are two balances for every account: `reserved_balance` and
		// `free_balance`. This contract subsystem only cares about the latter: whenever
		// the term "balance" is used *here* it should be assumed to mean "free balance"
		// in the rest of the module.
		// Free balance can never be less than ED. If that happens, it gets reduced to zero
		// and the account information relevant to this subsystem is deleted (i.e. the
		// account is reaped).
		let outcome = if balance < T::ExistentialDeposit::get() {
			Self::set_free_balance(who, balance);
			UpdateBalanceOutcome::AccountKilled
		} else {
			if !<FreeBalance<T, I>>::exists(who) {
				Self::new_account(&who, balance);
			}
			Self::set_free_balance(who, balance);
			UpdateBalanceOutcome::Updated
		};
		(imbalance, outcome)
}

impl<T: Trait<I>, I: Instance> ReservableCurrency<T::AccountId> for Module<T, I>
where
	T::Balance: MaybeSerializeDebug
{
	fn can_reserve(who: &T::AccountId, value: Self::Balance) -> bool {
		Self::free_balance(who)
			.checked_sub(&value)
			.map_or(false, |new_balance|
				Self::ensure_can_withdraw(who, value, WithdrawReason::Reserve, new_balance).is_ok()
			)
	}

	fn reserved_balance(who: &T::AccountId) -> Self::Balance {
		<ReservedBalance<T, I>>::get(who)
	}

	fn reserve(who: &T::AccountId, value: Self::Balance) -> result::Result<(), &'static str> {
		let b = Self::free_balance(who);
		if b < value {
			return Err("not enough free funds")
		}
		let new_balance = b - value;
		Self::ensure_can_withdraw(who, value, WithdrawReason::Reserve, new_balance)?;
		Self::set_reserved_balance(who, Self::reserved_balance(who) + value);
		Self::set_free_balance(who, new_balance);
	fn unreserve(who: &T::AccountId, value: Self::Balance) -> Self::Balance {
		let b = Self::reserved_balance(who);
		let actual = cmp::min(b, value);
		Self::set_free_balance(who, Self::free_balance(who) + actual);
		Self::set_reserved_balance(who, b - actual);
	fn slash_reserved(
		who: &T::AccountId,
		value: Self::Balance
	) -> (Self::NegativeImbalance, Self::Balance) {
		let b = Self::reserved_balance(who);
		let slash = cmp::min(b, value);
		// underflow should never happen, but it if does, there's nothing to be done here.
		Self::set_reserved_balance(who, b - slash);
		(NegativeImbalance::new(slash), value - slash)
	}

	fn repatriate_reserved(
		slashed: &T::AccountId,
		beneficiary: &T::AccountId,
		value: Self::Balance,
	) -> result::Result<Self::Balance, &'static str> {
		if Self::total_balance(beneficiary).is_zero() {
			return Err("beneficiary account must pre-exist");
		}
		let b = Self::reserved_balance(slashed);
		let slash = cmp::min(b, value);
		Self::set_free_balance(beneficiary, Self::free_balance(beneficiary) + slash);
		Self::set_reserved_balance(slashed, b - slash);
impl<T: Trait<I>, I: Instance> LockableCurrency<T::AccountId> for Module<T, I>
where
	T::Balance: MaybeSerializeDebug
{
	type Moment = T::BlockNumber;

	fn set_lock(
		id: LockIdentifier,
		who: &T::AccountId,
		amount: T::Balance,
		until: T::BlockNumber,
		reasons: WithdrawReasons,
	) {
		let now = <system::Module<T>>::block_number();
		let mut new_lock = Some(BalanceLock { id, amount, until, reasons });
		let mut locks = Self::locks(who).into_iter().filter_map(|l|
			if l.id == id {
				new_lock.take()
			} else if l.until > now {
				Some(l)
			} else {
				None
			}).collect::<Vec<_>>();
		if let Some(lock) = new_lock {
			locks.push(lock)
		}
		<Locks<T, I>>::insert(who, locks);
	}

	fn extend_lock(
		id: LockIdentifier,
		who: &T::AccountId,
		amount: T::Balance,
		until: T::BlockNumber,
		reasons: WithdrawReasons,
	) {
		let now = <system::Module<T>>::block_number();
		let mut new_lock = Some(BalanceLock { id, amount, until, reasons });
		let mut locks = Self::locks(who).into_iter().filter_map(|l|
			if l.id == id {
				new_lock.take().map(|nl| {
					BalanceLock {
						id: l.id,
						amount: l.amount.max(nl.amount),
						until: l.until.max(nl.until),
						reasons: l.reasons | nl.reasons,
					}
				})
			} else if l.until > now {
				Some(l)
			} else {
				None
			}).collect::<Vec<_>>();
		if let Some(lock) = new_lock {
			locks.push(lock)
		}
		<Locks<T, I>>::insert(who, locks);
	}

	fn remove_lock(
		id: LockIdentifier,
		who: &T::AccountId,
	) {
		let now = <system::Module<T>>::block_number();
		let locks = Self::locks(who).into_iter().filter_map(|l|
			if l.until > now && l.id != id {
				Some(l)
			} else {
				None
			}).collect::<Vec<_>>();
		<Locks<T, I>>::insert(who, locks);
/// Require the transactor pay for themselves and maybe include a tip to gain additional priority
/// in the queue.
#[derive(Encode, Decode, Clone, Eq, PartialEq)]
pub struct TakeFees<T: Trait<I>, I: Instance = DefaultInstance>(#[codec(compact)] T::Balance);

impl<T: Trait<I>, I: Instance> TakeFees<T, I> {
	/// utility constructor. Used only in client/factory code.
	pub fn from(fee: T::Balance) -> Self {
		Self(fee)
	}

	/// Compute the final fee value for a particular transaction.
	///
	/// The final fee is composed of:
	///   - _length-fee_: This is the amount paid merely to pay for size of the transaction.
	///   - _weight-fee_: This amount is computed based on the weight of the transaction. Unlike
	///      size-fee, this is not input dependent and reflects the _complexity_ of the execution
	///      and the time it consumes.
	///   - (optional) _tip_: if included in the transaction, it will be added on top. Only signed
	///      transactions can have a tip.
	fn compute_fee(len: usize, info: DispatchInfo, tip: T::Balance) -> T::Balance {
		let len_fee = if info.pay_length_fee() {
			let len = T::Balance::from(len as u32);
			let base = T::TransactionBaseFee::get();
Kian Peymani's avatar
Kian Peymani committed
			let per_byte = T::TransactionByteFee::get();
			base.saturating_add(per_byte.saturating_mul(len))
Kian Peymani's avatar
Kian Peymani committed
		let weight_fee = {
			// cap the weight to the maximum defined in runtime, otherwise it will be the `Bounded`
			// maximum of its data type, which is not desired.
			let capped_weight = info.weight.min(<T as system::Trait>::MaximumBlockWeight::get());
			let weight_update = <system::Module<T>>::next_weight_multiplier();
			let adjusted_weight = weight_update.apply_to(capped_weight);
			T::WeightToFee::convert(adjusted_weight)
		};

		len_fee.saturating_add(weight_fee).saturating_add(tip)
	}
}

#[cfg(feature = "std")]
impl<T: Trait<I>, I: Instance> rstd::fmt::Debug for TakeFees<T, I> {
	fn fmt(&self, f: &mut rstd::fmt::Formatter) -> rstd::fmt::Result {
		self.0.fmt(f)
	}
}

impl<T: Trait<I>, I: Instance + Clone + Eq> SignedExtension for TakeFees<T, I> {
	type AccountId = T::AccountId;
	type Call = T::Call;
	type AdditionalSigned = ();
Xiliang Chen's avatar
Xiliang Chen committed
	type Pre = ();
	fn additional_signed(&self) -> rstd::result::Result<(), &'static str> { Ok(()) }

	fn validate(
		&self,
		who: &Self::AccountId,
		_call: &Self::Call,
		info: DispatchInfo,
		len: usize,
	) -> rstd::result::Result<ValidTransaction, DispatchError> {
		// pay any fees.
		let fee = Self::compute_fee(len, info, self.0);
		let imbalance = <Module<T, I>>::withdraw(
			who,
			fee,
			WithdrawReason::TransactionPayment,
			ExistenceRequirement::KeepAlive,
		).map_err(|_| DispatchError::Payment)?;
		T::TransactionPayment::on_unbalanced(imbalance);

		let mut r = ValidTransaction::default();
		// NOTE: we probably want to maximize the _fee (of any type) per weight unit_ here, which
		// will be a bit more than setting the priority to tip. For now, this is enough.
		r.priority = fee.saturated_into::<TransactionPriority>();
		Ok(r)
impl<T: Trait<I>, I: Instance> IsDeadAccount<T::AccountId> for Module<T, I>
where
	T::Balance: MaybeSerializeDebug
{
	fn is_dead_account(who: &T::AccountId) -> bool {
		Self::total_balance(who).is_zero()
	}
}