Newer
Older
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! Provides glue code over the scheduler and inclusion modules, and accepting
//! one inherent per block that can include new para candidates and bitfields.
//!
//! Unlike other modules in this crate, it does not need to be initialized by the initializer,
//! as it has no initialization logic and its finalization logic depends only on the details of
//! this module.
use crate::{
disputes::DisputesHandler,
inclusion::CandidateCheckContext,
scheduler::{self, CoreAssignment, FreedReason},
};
use bitvec::prelude::BitVec;
use frame_support::{
dispatch::{DispatchErrorWithPostInfo, PostDispatchInfo},
inherent::{InherentData, InherentIdentifier, MakeFatalError, ProvideInherent},
pallet_prelude::*,
traits::Randomness,
};
use frame_system::pallet_prelude::*;
use pallet_babe::{self, ParentBlockRandomness};
BackedCandidate, CandidateHash, CandidateReceipt, CheckedDisputeStatementSet,
CheckedMultiDisputeStatementSet, CoreIndex, DisputeStatementSet,
InherentData as ParachainsInherentData, MultiDisputeStatementSet, ScrapedOnChainVotes,
SessionIndex, SignedAvailabilityBitfields, SigningContext, UncheckedSignedAvailabilityBitfield,
UncheckedSignedAvailabilityBitfields, ValidatorId, ValidatorIndex, ValidityAttestation,
PARACHAINS_INHERENT_IDENTIFIER,
};
use rand::{seq::SliceRandom, SeedableRng};
use scale_info::TypeInfo;
use sp_runtime::traits::{Header as HeaderT, One};
use sp_std::{
collections::{btree_map::BTreeMap, btree_set::BTreeSet},
prelude::*,
vec::Vec,
};
mod misc;
mod weights;
use self::weights::checked_multi_dispute_statement_sets_weight;
misc::{IndexedRetain, IsSortedBy},
backed_candidate_weight, backed_candidates_weight, dispute_statement_set_weight,
multi_dispute_statement_sets_weight, paras_inherent_total_weight, signed_bitfield_weight,
signed_bitfields_weight, TestWeightInfo, WeightInfo,
},
};
#[cfg(feature = "runtime-benchmarks")]
mod benchmarking;
#[cfg(test)]
mod tests;
const LOG_TARGET: &str = "runtime::inclusion-inherent";
/// A bitfield concerning concluded disputes for candidates
/// associated to the core index equivalent to the bit position.
#[derive(Default, PartialEq, Eq, Clone, Encode, Decode, RuntimeDebug, TypeInfo)]
pub(crate) struct DisputedBitfield(pub(crate) BitVec<u8, bitvec::order::Lsb0>);
impl From<BitVec<u8, bitvec::order::Lsb0>> for DisputedBitfield {
fn from(inner: BitVec<u8, bitvec::order::Lsb0>) -> Self {
Self(inner)
}
}
#[cfg(test)]
impl DisputedBitfield {
/// Create a new bitfield, where each bit is set to `false`.
pub fn zeros(n: usize) -> Self {
Self::from(BitVec::<u8, bitvec::order::Lsb0>::repeat(false, n))
/// The context in which the inherent data is checked or processed.
#[derive(PartialEq)]
pub enum ProcessInherentDataContext {
/// Enables filtering/limits weight of inherent up to maximum block weight.
/// Invariant: InherentWeight <= BlockWeight.
ProvideInherent,
/// Checks the InherentWeight invariant.
Enter,
}
pub use pallet::*;
#[frame_support::pallet]
pub mod pallet {
use super::*;
#[pallet::pallet]
#[pallet::without_storage_info]
pub struct Pallet<T>(_);
#[pallet::config]
#[pallet::disable_frame_system_supertrait_check]
pub trait Config:
inclusion::Config + scheduler::Config + initializer::Config + pallet_babe::Config
{
/// Weight information for extrinsics in this pallet.
type WeightInfo: WeightInfo;
}
#[pallet::error]
pub enum Error<T> {
/// Inclusion inherent called more than once per block.
TooManyInclusionInherents,
/// The hash of the submitted parent header doesn't correspond to the saved block hash of
/// the parent.
InvalidParentHeader,
/// Disputed candidate that was concluded invalid.
CandidateConcludedInvalid,
/// The data given to the inherent will result in an overweight block.
InherentOverweight,
/// The ordering of dispute statements was invalid.
DisputeStatementsUnsortedOrDuplicates,
/// A dispute statement was invalid.
DisputeInvalid,
}
/// Whether the paras inherent was included within this block.
///
/// The `Option<()>` is effectively a `bool`, but it never hits storage in the `None` variant
/// due to the guarantees of FRAME's storage APIs.
///
/// If this is `None` at the end of the block, we panic and render the block invalid.
#[pallet::storage]
pub(crate) type Included<T> = StorageValue<_, ()>;
/// Scraped on chain data for extracting resolved disputes as well as backing votes.
#[pallet::storage]
#[pallet::getter(fn on_chain_votes)]
pub(crate) type OnChainVotes<T: Config> = StorageValue<_, ScrapedOnChainVotes<T::Hash>>;
/// Update the disputes statements set part of the on-chain votes.
pub(crate) fn set_scrapable_on_chain_disputes<T: Config>(
session: SessionIndex,
checked_disputes: CheckedMultiDisputeStatementSet,
) {
crate::paras_inherent::OnChainVotes::<T>::mutate(move |value| {
let disputes =
checked_disputes.into_iter().map(DisputeStatementSet::from).collect::<Vec<_>>();
let backing_validators_per_candidate = match value.take() {
Some(v) => v.backing_validators_per_candidate,
None => Vec::new(),
};
*value = Some(ScrapedOnChainVotes::<T::Hash> {
backing_validators_per_candidate,
disputes,
session,
});
})
}
/// Update the backing votes including part of the on-chain votes.
pub(crate) fn set_scrapable_on_chain_backings<T: Config>(
session: SessionIndex,
backing_validators_per_candidate: Vec<(
CandidateReceipt<T::Hash>,
Vec<(ValidatorIndex, ValidityAttestation)>,
)>,
) {
crate::paras_inherent::OnChainVotes::<T>::mutate(move |value| {
let disputes = match value.take() {
Some(v) => v.disputes,
None => MultiDisputeStatementSet::default(),
};
*value = Some(ScrapedOnChainVotes::<T::Hash> {
backing_validators_per_candidate,
disputes,
session,
});
#[pallet::hooks]
impl<T: Config> Hooks<BlockNumberFor<T>> for Pallet<T> {
fn on_initialize(_: BlockNumberFor<T>) -> Weight {
T::DbWeight::get().reads_writes(1, 1) // in `on_finalize`.
fn on_finalize(_: BlockNumberFor<T>) {
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
if Included::<T>::take().is_none() {
panic!("Bitfields and heads must be included every block");
}
}
}
#[pallet::inherent]
impl<T: Config> ProvideInherent for Pallet<T> {
type Call = Call<T>;
type Error = MakeFatalError<()>;
const INHERENT_IDENTIFIER: InherentIdentifier = PARACHAINS_INHERENT_IDENTIFIER;
fn create_inherent(data: &InherentData) -> Option<Self::Call> {
let inherent_data = Self::create_inherent_inner(data)?;
Some(Call::enter { data: inherent_data })
}
fn is_inherent(call: &Self::Call) -> bool {
matches!(call, Call::enter { .. })
}
}
/// Collect all freed cores based on storage data. (i.e. append cores freed from timeouts to
/// the given `freed_concluded`).
///
/// The parameter `freed_concluded` contains all core indicies that became
/// free due to candidate that became available.
pub(crate) fn collect_all_freed_cores<T, I>(
freed_concluded: I,
) -> BTreeMap<CoreIndex, FreedReason>
where
I: core::iter::IntoIterator<Item = (CoreIndex, CandidateHash)>,
T: Config,
{
// Handle timeouts for any availability core work.
let availability_pred = <scheduler::Pallet<T>>::availability_timeout_predicate();
let freed_timeout = if let Some(pred) = availability_pred {
<inclusion::Pallet<T>>::collect_pending(pred)
} else {
Vec::new()
};
// Schedule paras again, given freed cores, and reasons for freeing.
let freed = freed_concluded
.into_iter()
.map(|(c, _hash)| (c, FreedReason::Concluded))
.chain(freed_timeout.into_iter().map(|c| (c, FreedReason::TimedOut)))
.collect::<BTreeMap<CoreIndex, FreedReason>>();
freed
}
#[pallet::call]
impl<T: Config> Pallet<T> {
/// Enter the paras inherent. This will process bitfields and backed candidates.
#[pallet::weight((
paras_inherent_total_weight::<T>(
data.backed_candidates.as_slice(),
&data.bitfields,
&data.disputes,
),
DispatchClass::Mandatory,
))]
pub fn enter(
origin: OriginFor<T>,
data: ParachainsInherentData<HeaderFor<T>>,
) -> DispatchResultWithPostInfo {
ensure_none(origin)?;
ensure!(!Included::<T>::exists(), Error::<T>::TooManyInclusionInherents);
Included::<T>::set(Some(()));
Self::process_inherent_data(data, ProcessInherentDataContext::Enter)
.map(|(_processed, post_info)| post_info)
}
}
}
impl<T: Config> Pallet<T> {
/// Create the `ParachainsInherentData` that gets passed to [`Self::enter`] in [`Self::create_inherent`].
/// This code is pulled out of [`Self::create_inherent`] so it can be unit tested.
fn create_inherent_inner(data: &InherentData) -> Option<ParachainsInherentData<HeaderFor<T>>> {
let parachains_inherent_data = match data.get_data(&Self::INHERENT_IDENTIFIER) {
Ok(Some(d)) => d,
Ok(None) => return None,
Err(_) => {
log::warn!(target: LOG_TARGET, "ParachainsInherentData failed to decode");
return None
},
};
match Self::process_inherent_data(
parachains_inherent_data,
ProcessInherentDataContext::ProvideInherent,
) {
Ok((processed, _)) => Some(processed),
Err(err) => {
log::warn!(target: LOG_TARGET, "Processing inherent data failed: {:?}", err);
None
},
}
}
/// Process inherent data.
///
/// The given inherent data is processed and state is altered accordingly. If any data could
/// not be applied (inconsitencies, weight limit, ...) it is removed.
///
/// When called from `create_inherent` the `context` must be set to `ProcessInherentDataContext::ProvideInherent`
/// so it guarantees the invariant that inherent is not overweight.
///
/// It is **mandatory** that calls from `enter` set `context` to `ProcessInherentDataContext::Enter` to ensure
/// the weight invariant is checked.
///
/// Returns: Result containing processed inherent data and weight, the processed inherent would
/// consume.
fn process_inherent_data(
data: ParachainsInherentData<HeaderFor<T>>,
context: ProcessInherentDataContext,
) -> sp_std::result::Result<
(ParachainsInherentData<HeaderFor<T>>, PostDispatchInfo),
DispatchErrorWithPostInfo,
> {
#[cfg(feature = "runtime-metrics")]
sp_io::init_tracing();
let ParachainsInherentData {
mut backed_candidates,
parent_header,
mut disputes,
} = data;
log::debug!(
target: LOG_TARGET,
"[process_inherent_data] bitfields.len(): {}, backed_candidates.len(): {}, disputes.len() {}",
bitfields.len(),
backed_candidates.len(),
disputes.len()
);
let parent_hash = <frame_system::Pallet<T>>::parent_hash();
parent_header.hash().as_ref() == parent_hash.as_ref(),
Error::<T>::InvalidParentHeader,
);
let now = <frame_system::Pallet<T>>::block_number();
let candidates_weight = backed_candidates_weight::<T>(&backed_candidates);
let bitfields_weight = signed_bitfields_weight::<T>(&bitfields);
let disputes_weight = multi_dispute_statement_sets_weight::<T>(&disputes);
let all_weight_before = candidates_weight + bitfields_weight + disputes_weight;
METRICS.on_before_filter(all_weight_before.ref_time());
log::debug!(target: LOG_TARGET, "Size before filter: {}, candidates + bitfields: {}, disputes: {}", all_weight_before.proof_size(), candidates_weight.proof_size() + bitfields_weight.proof_size(), disputes_weight.proof_size());
log::debug!(target: LOG_TARGET, "Time weight before filter: {}, candidates + bitfields: {}, disputes: {}", all_weight_before.ref_time(), candidates_weight.ref_time() + bitfields_weight.ref_time(), disputes_weight.ref_time());
let current_session = <shared::Pallet<T>>::session_index();
let expected_bits = <scheduler::Pallet<T>>::availability_cores().len();
let validator_public = shared::Pallet::<T>::active_validator_keys();
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
// We are assuming (incorrectly) to have all the weight (for the mandatory class or even
// full block) available to us. This can lead to slightly overweight blocks, which still
// works as the dispatch class for `enter` is `Mandatory`. By using the `Mandatory`
// dispatch class, the upper layers impose no limit on the weight of this inherent, instead
// we limit ourselves and make sure to stay within reasonable bounds. It might make sense
// to subtract BlockWeights::base_block to reduce chances of becoming overweight.
let max_block_weight = {
let dispatch_class = DispatchClass::Mandatory;
let max_block_weight_full = <T as frame_system::Config>::BlockWeights::get();
log::debug!(target: LOG_TARGET, "Max block weight: {}", max_block_weight_full.max_block);
// Get max block weight for the mandatory class if defined, otherwise total max weight of
// the block.
let max_weight = max_block_weight_full
.per_class
.get(dispatch_class)
.max_total
.unwrap_or(max_block_weight_full.max_block);
log::debug!(target: LOG_TARGET, "Used max block time weight: {}", max_weight);
let max_block_size_full = <T as frame_system::Config>::BlockLength::get();
let max_block_size = max_block_size_full.max.get(dispatch_class);
log::debug!(target: LOG_TARGET, "Used max block size: {}", max_block_size);
// Adjust proof size to max block size as we are tracking tx size.
max_weight.set_proof_size(*max_block_size as u64)
};
log::debug!(target: LOG_TARGET, "Used max block weight: {}", max_block_weight);
let entropy = compute_entropy::<T>(parent_hash);
let mut rng = rand_chacha::ChaChaRng::from_seed(entropy.into());
// Filter out duplicates and continue.
if let Err(()) = T::DisputesHandler::deduplicate_and_sort_dispute_data(&mut disputes) {
log::debug!(target: LOG_TARGET, "Found duplicate statement sets, retaining the first");
}
let config = <configuration::Pallet<T>>::config();
let post_conclusion_acceptance_period = config.dispute_post_conclusion_acceptance_period;
let dispute_statement_set_valid = move |set: DisputeStatementSet| {
T::DisputesHandler::filter_dispute_data(set, post_conclusion_acceptance_period)
};
// Limit the disputes first, since the following statements depend on the votes include here.
let (checked_disputes_sets, checked_disputes_sets_consumed_weight) =
limit_and_sanitize_disputes::<T, _>(
dispute_statement_set_valid,
max_block_weight,
);
let all_weight_after = if context == ProcessInherentDataContext::ProvideInherent {
// Assure the maximum block weight is adhered, by limiting bitfields and backed
// candidates. Dispute statement sets were already limited before.
let non_disputes_weight = apply_weight_limit::<T>(
&mut backed_candidates,
&mut bitfields,
max_block_weight.saturating_sub(checked_disputes_sets_consumed_weight),
&mut rng,
);
let all_weight_after =
non_disputes_weight.saturating_add(checked_disputes_sets_consumed_weight);
METRICS.on_after_filter(all_weight_after.ref_time());
log::debug!(
target: LOG_TARGET,
"[process_inherent_data] after filter: bitfields.len(): {}, backed_candidates.len(): {}, checked_disputes_sets.len() {}",
bitfields.len(),
backed_candidates.len(),
checked_disputes_sets.len()
);
log::debug!(target: LOG_TARGET, "Size after filter: {}, candidates + bitfields: {}, disputes: {}", all_weight_after.proof_size(), non_disputes_weight.proof_size(), checked_disputes_sets_consumed_weight.proof_size());
log::debug!(target: LOG_TARGET, "Time weight after filter: {}, candidates + bitfields: {}, disputes: {}", all_weight_after.ref_time(), non_disputes_weight.ref_time(), checked_disputes_sets_consumed_weight.ref_time());
if all_weight_after.any_gt(max_block_weight) {
log::warn!(target: LOG_TARGET, "Post weight limiting weight is still too large, time: {}, size: {}", all_weight_after.ref_time(), all_weight_after.proof_size());
}
} else {
// This check is performed in the context of block execution. Ensures inherent weight invariants guaranteed
// by `create_inherent_data` for block authorship.
if all_weight_before.any_gt(max_block_weight) {
log::error!(
"Overweight para inherent data reached the runtime {:?}: {} > {}",
parent_hash,
max_block_weight
);
}
ensure!(all_weight_before.all_lte(max_block_weight), Error::<T>::InherentOverweight);
all_weight_before
};
// Note that `process_checked_multi_dispute_data` will iterate and import each
// dispute; so the input here must be reasonably bounded,
// which is guaranteed by the checks and weight limitation above.
// We don't care about fresh or not disputes
// this writes them to storage, so let's query it via those means
// if this fails for whatever reason, that's ok.
if let Err(e) =
T::DisputesHandler::process_checked_multi_dispute_data(&checked_disputes_sets)
{
log::warn!(target: LOG_TARGET, "MultiDisputesData failed to update: {:?}", e);
};
METRICS.on_disputes_imported(checked_disputes_sets.len() as u64);
set_scrapable_on_chain_disputes::<T>(current_session, checked_disputes_sets.clone());
if T::DisputesHandler::is_frozen() {
// Relay chain freeze, at this point we will not include any parachain blocks.
METRICS.on_relay_chain_freeze();
let disputes = checked_disputes_sets
.into_iter()
.map(|checked| checked.into())
.collect::<Vec<_>>();
let processed = ParachainsInherentData {
bitfields: Vec::new(),
backed_candidates: Vec::new(),
disputes,
parent_header,
// The relay chain we are currently on is invalid. Proceed no further on parachains.
return Ok((processed, Some(checked_disputes_sets_consumed_weight).into()))
}
// Contains the disputes that are concluded in the current session only,
// since these are the only ones that are relevant for the occupied cores
// and lightens the load on `collect_disputed` significantly.
// Cores can't be occupied with candidates of the previous sessions, and only
// things with new votes can have just concluded. We only need to collect
// cores with disputes that conclude just now, because disputes that
// concluded longer ago have already had any corresponding cores cleaned up.
let current_concluded_invalid_disputes = checked_disputes_sets
.iter()
.map(AsRef::as_ref)
.filter(|dss| dss.session == current_session)
.map(|dss| (dss.session, dss.candidate_hash))
.filter(|(session, candidate)| {
<T>::DisputesHandler::concluded_invalid(*session, *candidate)
})
.map(|(_session, candidate)| candidate)
.collect::<BTreeSet<CandidateHash>>();
let mut freed_disputed: Vec<_> =
<inclusion::Pallet<T>>::collect_disputed(¤t_concluded_invalid_disputes)
.into_iter()
.map(|core| (core, FreedReason::Concluded))
.collect();
// Create a bit index from the set of core indices where each index corresponds to
// a core index that was freed due to a dispute.
//
// I.e. 010100 would indicate, the candidates on Core 1 and 3 would be disputed.
let disputed_bitfield = create_disputed_bitfield(
expected_bits,
freed_disputed.iter().map(|(core_index, _)| core_index),
);
if !freed_disputed.is_empty() {
// unstable sort is fine, because core indices are unique
// i.e. the same candidate can't occupy 2 cores at once.
freed_disputed.sort_unstable_by_key(|pair| pair.0); // sort by core index
<scheduler::Pallet<T>>::free_cores(freed_disputed.clone());
}
let bitfields = sanitize_bitfields::<T>(
bitfields,
disputed_bitfield,
expected_bits,
parent_hash,
current_session,
&validator_public[..],
);
METRICS.on_bitfields_processed(bitfields.len() as u64);
// Process new availability bitfields, yielding any availability cores whose
// work has now concluded.
let freed_concluded =
<inclusion::Pallet<T>>::update_pending_availability_and_get_freed_cores::<_>(
expected_bits,
&validator_public[..],
bitfields.clone(),
<scheduler::Pallet<T>>::core_para,
);
// Inform the disputes module of all included candidates.
for (_, candidate_hash) in &freed_concluded {
T::DisputesHandler::note_included(current_session, *candidate_hash, now);
}
METRICS.on_candidates_included(freed_concluded.len() as u64);
let freed = collect_all_freed_cores::<T, _>(freed_concluded.iter().cloned());
<scheduler::Pallet<T>>::clear();
<scheduler::Pallet<T>>::schedule(freed, now);
let scheduled = <scheduler::Pallet<T>>::scheduled();
let relay_parent_number = now - One::one();
let parent_storage_root = *parent_header.state_root();
let check_ctx = CandidateCheckContext::<T>::new(now, relay_parent_number);
METRICS.on_candidates_processed_total(backed_candidates.len() as u64);
let backed_candidates = sanitize_backed_candidates::<T, _>(
backed_candidates,
move |candidate_idx: usize,
backed_candidate: &BackedCandidate<<T as frame_system::Config>::Hash>|
-> bool {
// never include a concluded-invalid candidate
current_concluded_invalid_disputes.contains(&backed_candidate.hash()) ||
// Instead of checking the candidates with code upgrades twice
// move the checking up here and skip it in the training wheels fallback.
// That way we avoid possible duplicate checks while assuring all
// backed candidates fine to pass on.
check_ctx
.verify_backed_candidate(parent_hash, parent_storage_root, candidate_idx, backed_candidate)
.is_err()
METRICS.on_candidates_sanitized(backed_candidates.len() as u64);
// Process backed candidates according to scheduled cores.
let inclusion::ProcessedCandidates::<<HeaderFor<T> as HeaderT>::Hash> {
core_indices: occupied,
candidate_receipt_with_backing_validator_indices,
} = <inclusion::Pallet<T>>::process_candidates(
parent_storage_root,
backed_candidates.clone(),
scheduled,
<scheduler::Pallet<T>>::group_validators,
)?;
// Note which of the scheduled cores were actually occupied by a backed candidate.
<scheduler::Pallet<T>>::occupied(&occupied);
set_scrapable_on_chain_backings::<T>(
current_session,
candidate_receipt_with_backing_validator_indices,
);
let disputes = checked_disputes_sets
.into_iter()
.map(|checked| checked.into())
.collect::<Vec<_>>();
let bitfields = bitfields.into_iter().map(|v| v.into_unchecked()).collect();
let processed =
ParachainsInherentData { bitfields, backed_candidates, disputes, parent_header };
Ok((processed, Some(all_weight_after).into()))
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
}
}
/// Derive a bitfield from dispute
pub(super) fn create_disputed_bitfield<'a, I>(
expected_bits: usize,
freed_cores: I,
) -> DisputedBitfield
where
I: 'a + IntoIterator<Item = &'a CoreIndex>,
{
let mut bitvec = BitVec::repeat(false, expected_bits);
for core_idx in freed_cores {
let core_idx = core_idx.0 as usize;
if core_idx < expected_bits {
bitvec.set(core_idx, true);
}
}
DisputedBitfield::from(bitvec)
}
/// Select a random subset, with preference for certain indices.
///
/// Adds random items to the set until all candidates
/// are tried or the remaining weight is depleted.
///
/// Returns the weight of all selected items from `selectables`
/// as well as their indices in ascending order.
fn random_sel<X, F: Fn(&X) -> Weight>(
rng: &mut rand_chacha::ChaChaRng,
mut preferred_indices: Vec<usize>,
weight_fn: F,
weight_limit: Weight,
) -> (Weight, Vec<usize>) {
if selectables.is_empty() {
}
// all indices that are not part of the preferred set
let mut indices = (0..selectables.len())
.into_iter()
.filter(|idx| !preferred_indices.contains(idx))
.collect::<Vec<_>>();
let mut picked_indices = Vec::with_capacity(selectables.len().saturating_sub(1));
preferred_indices.shuffle(rng);
for preferred_idx in preferred_indices {
// preferred indices originate from outside
if let Some(item) = selectables.get(preferred_idx) {
let updated = weight_acc.saturating_add(weight_fn(item));
if updated.any_gt(weight_limit) {
continue
}
weight_acc = updated;
picked_indices.push(preferred_idx);
}
}
indices.shuffle(rng);
for idx in indices {
let item = &selectables[idx];
let updated = weight_acc.saturating_add(weight_fn(item));
if updated.any_gt(weight_limit) {
continue
}
weight_acc = updated;
picked_indices.push(idx);
}
// sorting indices, so the ordering is retained
// unstable sorting is fine, since there are no duplicates in indices
// and even if there were, they don't have an identity
picked_indices.sort_unstable();
(weight_acc, picked_indices)
}
/// Considers an upper threshold that the inherent data must not exceed.
///
/// If there is sufficient space, all bitfields and all candidates
/// will be included.
///
/// Otherwise tries to include all disputes, and then tries to fill the remaining space with bitfields and then candidates.
///
/// The selection process is random. For candidates, there is an exception for code upgrades as they are preferred.
/// And for disputes, local and older disputes are preferred (see `limit_and_sanitize_disputes`).
/// for backed candidates, since with a increasing number of parachains their chances of
/// inclusion become slim. All backed candidates are checked beforehands in `fn create_inherent_inner`
/// which guarantees sanity.
///
/// Assumes disputes are already filtered by the time this is called.
///
/// Returns the total weight consumed by `bitfields` and `candidates`.
fn apply_weight_limit<T: Config + inclusion::Config>(
candidates: &mut Vec<BackedCandidate<<T>::Hash>>,
bitfields: &mut UncheckedSignedAvailabilityBitfields,
max_consumable_weight: Weight,
rng: &mut rand_chacha::ChaChaRng,
) -> Weight {
let total_candidates_weight = backed_candidates_weight::<T>(candidates.as_slice());
let total_bitfields_weight = signed_bitfields_weight::<T>(&bitfields);
let total = total_bitfields_weight.saturating_add(total_candidates_weight);
// candidates + bitfields fit into the block
if max_consumable_weight.all_gte(total) {
return total
}
// Prefer code upgrades, they tend to be large and hence stand no chance to be picked
// late while maintaining the weight bounds.
let preferred_indices = candidates
.iter()
.enumerate()
.filter_map(|(idx, candidate)| {
candidate.candidate.commitments.new_validation_code.as_ref().map(|_code| idx)
})
.collect::<Vec<usize>>();
// There is weight remaining to be consumed by a subset of candidates
// which are going to be picked now.
if let Some(max_consumable_by_candidates) =
max_consumable_weight.checked_sub(&total_bitfields_weight)
let (acc_candidate_weight, indices) =
random_sel::<BackedCandidate<<T as frame_system::Config>::Hash>, _>(
rng,
preferred_indices,
|c| backed_candidate_weight::<T>(c),
max_consumable_by_candidates,
log::debug!(target: LOG_TARGET, "Indices Candidates: {:?}, size: {}", indices, candidates.len());
candidates.indexed_retain(|idx, _backed_candidate| indices.binary_search(&idx).is_ok());
// pick all bitfields, and
// fill the remaining space with candidates
let total_consumed = acc_candidate_weight.saturating_add(total_bitfields_weight);
return total_consumed
}
candidates.clear();
// insufficient space for even the bitfields alone, so only try to fit as many of those
// into the block and skip the candidates entirely
let (total_consumed, indices) = random_sel::<UncheckedSignedAvailabilityBitfield, _>(
|bitfield| signed_bitfield_weight::<T>(&bitfield),
max_consumable_weight,
log::debug!(target: LOG_TARGET, "Indices Bitfields: {:?}, size: {}", indices, bitfields.len());
bitfields.indexed_retain(|idx, _bitfield| indices.binary_search(&idx).is_ok());
}
/// Filter bitfields based on freed core indices, validity, and other sanity checks.
///
/// Do sanity checks on the bitfields:
///
/// 1. no more than one bitfield per validator
/// 2. bitfields are ascending by validator index.
/// 3. each bitfield has exactly `expected_bits`
/// 4. signature is valid
/// 5. remove any disputed core indices
///
/// If any of those is not passed, the bitfield is dropped.
pub(crate) fn sanitize_bitfields<T: crate::inclusion::Config>(
unchecked_bitfields: UncheckedSignedAvailabilityBitfields,
disputed_bitfield: DisputedBitfield,
expected_bits: usize,
parent_hash: T::Hash,
session_index: SessionIndex,
validators: &[ValidatorId],
) -> SignedAvailabilityBitfields {
let mut bitfields = Vec::with_capacity(unchecked_bitfields.len());
let mut last_index: Option<ValidatorIndex> = None;
if disputed_bitfield.0.len() != expected_bits {
// This is a system logic error that should never occur, but we want to handle it gracefully
// so we just drop all bitfields
log::error!(target: LOG_TARGET, "BUG: disputed_bitfield != expected_bits");
return vec![]
}
let all_zeros = BitVec::<u8, bitvec::order::Lsb0>::repeat(false, expected_bits);
let signing_context = SigningContext { parent_hash, session_index };
for unchecked_bitfield in unchecked_bitfields {
// Find and skip invalid bitfields.
if unchecked_bitfield.unchecked_payload().0.len() != expected_bits {
log::trace!(
target: LOG_TARGET,
"bad bitfield length: {} != {:?}",
unchecked_bitfield.unchecked_payload().0.len(),
expected_bits,
);
continue
}
if unchecked_bitfield.unchecked_payload().0.clone() & disputed_bitfield.0.clone() !=
all_zeros
{
log::trace!(
target: LOG_TARGET,
"bitfield contains disputed cores: {:?}",
unchecked_bitfield.unchecked_payload().0.clone() & disputed_bitfield.0.clone()
);
continue
}
let validator_index = unchecked_bitfield.unchecked_validator_index();
if !last_index.map_or(true, |last_index: ValidatorIndex| last_index < validator_index) {
log::trace!(
target: LOG_TARGET,
"bitfield validator index is not greater than last: !({:?} < {})",
last_index.as_ref().map(|x| x.0),
validator_index.0
);
continue
}
if unchecked_bitfield.unchecked_validator_index().0 as usize >= validators.len() {
log::trace!(
target: LOG_TARGET,
"bitfield validator index is out of bounds: {} >= {}",
validator_index.0,
validators.len(),
);
continue
}
let validator_public = &validators[validator_index.0 as usize];
// Validate bitfield signature.
if let Ok(signed_bitfield) =
unchecked_bitfield.try_into_checked(&signing_context, validator_public)
{
bitfields.push(signed_bitfield);
METRICS.on_valid_bitfield_signature();
log::warn!(target: LOG_TARGET, "Invalid bitfield signature");
METRICS.on_invalid_bitfield_signature();
};
last_index = Some(validator_index);
}
bitfields
}
/// Filter out any candidates that have a concluded invalid dispute.
///
/// `scheduled` follows the same naming scheme as provided in the
/// guide: Currently `free` but might become `occupied`.
/// For the filtering here the relevant part is only the current `free`
/// state.
///
/// `candidate_has_concluded_invalid_dispute` must return `true` if the candidate
/// is disputed, false otherwise. The passed `usize` is the candidate index.
///
/// The returned `Vec` is sorted according to the occupied core index.
fn sanitize_backed_candidates<
T: crate::inclusion::Config,
F: FnMut(usize, &BackedCandidate<T::Hash>) -> bool,
>(
relay_parent: T::Hash,
mut backed_candidates: Vec<BackedCandidate<T::Hash>>,
mut candidate_has_concluded_invalid_dispute_or_is_invalid: F,
scheduled: &[CoreAssignment],
) -> Vec<BackedCandidate<T::Hash>> {
// Remove any candidates that were concluded invalid.
// This does not assume sorting.
backed_candidates.indexed_retain(move |candidate_idx, backed_candidate| {
!candidate_has_concluded_invalid_dispute_or_is_invalid(candidate_idx, backed_candidate)
let scheduled_paras_to_core_idx = scheduled
.into_iter()
.map(|core_assignment| (core_assignment.para_id, core_assignment.core))
.collect::<BTreeMap<ParaId, CoreIndex>>();
// Assure the backed candidate's `ParaId`'s core is free.
// This holds under the assumption that `Scheduler::schedule` is called _before_.
// Also checks the candidate references the correct relay parent.
backed_candidates.retain(|backed_candidate| {
let desc = backed_candidate.descriptor();
desc.relay_parent == relay_parent &&
scheduled_paras_to_core_idx.get(&desc.para_id).is_some()
});
// Sort the `Vec` last, once there is a guarantee that these
// `BackedCandidates` references the expected relay chain parent,
// but more importantly are scheduled for a free core.
// This both avoids extra work for obviously invalid candidates,
// but also allows this to be done in place.
backed_candidates.sort_by(|x, y| {
// Never panics, since we filtered all panic arguments out in the previous `fn retain`.
scheduled_paras_to_core_idx[&x.descriptor().para_id]
.cmp(&scheduled_paras_to_core_idx[&y.descriptor().para_id])
});
backed_candidates
}
/// Derive entropy from babe provided per block randomness.
///
/// In the odd case none is available, uses the `parent_hash` and
/// a const value, while emitting a warning.
fn compute_entropy<T: Config>(parent_hash: T::Hash) -> [u8; 32] {
const CANDIDATE_SEED_SUBJECT: [u8; 32] = *b"candidate-seed-selection-subject";
// NOTE: this is slightly gameable since this randomness was already public
// by the previous block, while for the block author this randomness was
// known 2 epochs ago. it is marginally better than using the parent block
// hash since it's harder to influence the VRF output than the block hash.
let vrf_random = ParentBlockRandomness::<T>::random(&CANDIDATE_SEED_SUBJECT[..]).0;
if let Some(vrf_random) = vrf_random {
entropy.as_mut().copy_from_slice(vrf_random.as_ref());
} else {
// in case there is no VRF randomness present, we utilize the relay parent
// as seed, it's better than a static value.
log::warn!(target: LOG_TARGET, "ParentBlockRandomness did not provide entropy");
entropy.as_mut().copy_from_slice(parent_hash.as_ref());
}
entropy
}
/// Limit disputes in place.
///
/// Assumes ordering of disputes, retains sorting of the statement.
///
/// Prime source of overload safety for dispute votes:
/// 1. Check accumulated weight does not exceed the maximum block weight.
/// 2. If exceeded:
/// 1. Check validity of all dispute statements sequentially
/// 2. If not exceeded:
/// 1. If weight is exceeded by locals, pick the older ones (lower indices)
/// until the weight limit is reached.
///
/// Returns the consumed weight amount, that is guaranteed to be less than the provided `max_consumable_weight`.
fn limit_and_sanitize_disputes<
T: Config,
CheckValidityFn: FnMut(DisputeStatementSet) -> Option<CheckedDisputeStatementSet>,
>(
disputes: MultiDisputeStatementSet,
mut dispute_statement_set_valid: CheckValidityFn,
max_consumable_weight: Weight,
) -> (Vec<CheckedDisputeStatementSet>, Weight) {
// The total weight if all disputes would be included
let disputes_weight = multi_dispute_statement_sets_weight::<T>(&disputes);
if disputes_weight.any_gt(max_consumable_weight) {
log::debug!(target: LOG_TARGET, "Above max consumable weight: {}/{}", disputes_weight, max_consumable_weight);
let mut checked_acc = Vec::<CheckedDisputeStatementSet>::with_capacity(disputes.len());
// Accumualated weight of all disputes picked, that passed the checks.
// Select disputes in-order until the remaining weight is attained
disputes.into_iter().for_each(|dss| {