parachains.rs 25.7 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
// Copyright 2019-2021 Parity Technologies (UK) Ltd.
// This file is part of Parity Bridges Common.

// Parity Bridges Common is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Parity Bridges Common is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Parity Bridges Common.  If not, see <http://www.gnu.org/licenses/>.

//! On-demand Substrate -> Substrate parachain finality relay.

use crate::{
	messages_source::best_finalized_peer_header_at_self,
	on_demand::OnDemandRelay,
	parachains::{
		source::ParachainsSource, target::ParachainsTarget, ParachainsPipelineAdapter,
		SubstrateParachainsPipeline,
	},
	TransactionParams,
};

use async_std::{
	channel::{unbounded, Receiver, Sender},
	sync::{Arc, Mutex},
};
use async_trait::async_trait;
use bp_polkadot_core::parachains::ParaHash;
use futures::{select, FutureExt};
use num_traits::Zero;
use pallet_bridge_parachains::{RelayBlockHash, RelayBlockHasher, RelayBlockNumber};
use parachains_relay::parachains_loop::{ParachainSyncParams, TargetClient};
use relay_substrate_client::{
	AccountIdOf, AccountKeyPairOf, BlockNumberOf, Chain, Client, Error as SubstrateError,
	TransactionSignScheme,
};
use relay_utils::{
	metrics::MetricsParams, relay_loop::Client as RelayClient, FailedClient, HeaderId,
};
use sp_runtime::traits::Header as HeaderT;
use std::{cmp::Ordering, collections::BTreeMap};

/// On-demand Substrate <-> Substrate parachain finality relay.
///
/// This relay may be requested to sync more parachain headers, whenever some other relay
/// (e.g. messages relay) needs it to continue its regular work. When enough parachain headers
/// are relayed, on-demand stops syncing headers.
#[derive(Clone)]
pub struct OnDemandParachainsRelay<SourceParachain: Chain> {
	/// Relay task name.
	relay_task_name: String,
	/// Channel used to communicate with background task and ask for relay of parachain heads.
	required_header_number_sender: Sender<BlockNumberOf<SourceParachain>>,
}

impl<SourceParachain: Chain> OnDemandParachainsRelay<SourceParachain> {
	/// Create new on-demand parachains relay.
	///
	/// Note that the argument is the source relay chain client, not the parachain client.
	/// That's because parachain finality is determined by the relay chain and we don't
	/// need to connect to the parachain itself here.
	pub fn new<P: SubstrateParachainsPipeline<SourceParachain = SourceParachain>>(
		source_relay_client: Client<P::SourceRelayChain>,
		target_client: Client<P::TargetChain>,
		target_transaction_params: TransactionParams<AccountKeyPairOf<P::TransactionSignScheme>>,
		on_demand_source_relay_to_target_headers: Arc<
			dyn OnDemandRelay<BlockNumberOf<P::SourceRelayChain>>,
		>,
	) -> Self
	where
		P::SourceParachain: Chain<Hash = ParaHash>,
		P::SourceRelayChain:
			Chain<BlockNumber = RelayBlockNumber, Hash = RelayBlockHash, Hasher = RelayBlockHasher>,
		AccountIdOf<P::TargetChain>:
			From<<AccountKeyPairOf<P::TransactionSignScheme> as sp_core::Pair>::Public>,
		P::TransactionSignScheme: TransactionSignScheme<Chain = P::TargetChain>,
	{
		let (required_header_number_sender, required_header_number_receiver) = unbounded();
		let this = OnDemandParachainsRelay {
			relay_task_name: on_demand_parachains_relay_name::<SourceParachain, P::TargetChain>(),
			required_header_number_sender,
		};
		async_std::task::spawn(async move {
			background_task::<P>(
				source_relay_client,
				target_client,
				target_transaction_params,
				on_demand_source_relay_to_target_headers,
				required_header_number_receiver,
			)
			.await;
		});

		this
	}
}

#[async_trait]
impl<SourceParachain> OnDemandRelay<BlockNumberOf<SourceParachain>>
	for OnDemandParachainsRelay<SourceParachain>
where
	SourceParachain: Chain,
{
	async fn require_more_headers(&self, required_header: BlockNumberOf<SourceParachain>) {
		if let Err(e) = self.required_header_number_sender.send(required_header).await {
			log::trace!(
				target: "bridge",
				"Failed to request {} header {:?} in {:?}: {:?}",
				SourceParachain::NAME,
				required_header,
				self.relay_task_name,
				e,
			);
		}
	}
}

/// Background task that is responsible for starting parachain headers relay.
async fn background_task<P: SubstrateParachainsPipeline>(
	source_relay_client: Client<P::SourceRelayChain>,
	target_client: Client<P::TargetChain>,
	target_transaction_params: TransactionParams<AccountKeyPairOf<P::TransactionSignScheme>>,
	on_demand_source_relay_to_target_headers: Arc<
		dyn OnDemandRelay<BlockNumberOf<P::SourceRelayChain>>,
	>,
	required_parachain_header_number_receiver: Receiver<BlockNumberOf<P::SourceParachain>>,
) where
	P::SourceParachain: Chain<Hash = ParaHash>,
	P::SourceRelayChain:
		Chain<BlockNumber = RelayBlockNumber, Hash = RelayBlockHash, Hasher = RelayBlockHasher>,
	AccountIdOf<P::TargetChain>:
		From<<AccountKeyPairOf<P::TransactionSignScheme> as sp_core::Pair>::Public>,
	P::TransactionSignScheme: TransactionSignScheme<Chain = P::TargetChain>,
{
	let relay_task_name = on_demand_parachains_relay_name::<P::SourceParachain, P::TargetChain>();
	let target_transactions_mortality = target_transaction_params.mortality;

	let mut relay_state = RelayState::Idle;
	let mut headers_map_cache = BTreeMap::new();
	let mut required_parachain_header_number = Zero::zero();
	let required_para_header_number_ref = Arc::new(Mutex::new(required_parachain_header_number));

	let mut restart_relay = true;
	let parachains_relay_task = futures::future::Fuse::terminated();
	futures::pin_mut!(parachains_relay_task);

	let mut parachains_source = ParachainsSource::<P>::new(
		source_relay_client.clone(),
		Some(required_para_header_number_ref.clone()),
	);
	let mut parachains_target =
		ParachainsTarget::<P>::new(target_client.clone(), target_transaction_params.clone());

	loop {
		select! {
			new_required_parachain_header_number = required_parachain_header_number_receiver.recv().fuse() => {
				let new_required_parachain_header_number = match new_required_parachain_header_number {
					Ok(new_required_parachain_header_number) => new_required_parachain_header_number,
					Err(e) => {
						log::error!(
							target: "bridge",
							"Background task of {} has exited with error: {:?}",
							relay_task_name,
							e,
						);

						return;
					},
				};

				// keep in mind that we are not updating `required_para_header_number_ref` here, because
				// then we'll be submitting all previous headers as well (while required relay headers are
				// delivered) and we want to avoid that (to reduce cost)
				required_parachain_header_number = std::cmp::max(
					required_parachain_header_number,
					new_required_parachain_header_number,
				);
			},
			_ = parachains_relay_task => {
				// this should never happen in practice given the current code
				restart_relay = true;
			},
		}

		// the workflow of the on-demand parachains relay is:
		//
		// 1) message relay (or any other dependent relay) sees new message at parachain header
		// `PH`; 2) it sees that the target chain does not know `PH`;
		// 3) it asks on-demand parachains relay to relay `PH` to the target chain;
		//
		// Phase#1: relaying relay chain header
		//
		// 4) on-demand parachains relay waits for GRANDPA-finalized block of the source relay chain
		//    `RH` that is storing `PH` or its descendant. Let it be `PH'`;
		// 5) it asks on-demand headers relay to relay `RH` to the target chain;
		// 6) it waits until `RH` (or its descendant) is relayed to the target chain;
		//
		// Phase#2: relaying parachain header
		//
		// 7) on-demand parachains relay sets `ParachainsSource::maximal_header_number` to the
		// `PH'.number()`. 8) parachains finality relay sees that the parachain head has been
		// updated and relays `PH'` to    the target chain.

		// select headers to relay
		let relay_data = read_relay_data(
			&parachains_source,
			&parachains_target,
			required_parachain_header_number,
			&mut headers_map_cache,
		)
		.await;
		match relay_data {
			Ok(mut relay_data) => {
				let prev_relay_state = relay_state;
				relay_state = select_headers_to_relay(&mut relay_data, relay_state);
				log::trace!(
					target: "bridge",
					"Selected new relay state in {}: {:?} using old state {:?} and data {:?}",
					relay_task_name,
					relay_state,
					prev_relay_state,
					relay_data,
				);
			},
			Err(failed_client) => {
				relay_utils::relay_loop::reconnect_failed_client(
					failed_client,
					relay_utils::relay_loop::RECONNECT_DELAY,
					&mut parachains_source,
					&mut parachains_target,
				)
				.await;
				continue
			},
		}

		// we have selected our new 'state' => let's notify our source clients about our new
		// requirements
		match relay_state {
			RelayState::Idle => (),
			RelayState::RelayingRelayHeader(required_relay_header, _) => {
				on_demand_source_relay_to_target_headers
					.require_more_headers(required_relay_header)
					.await;
			},
			RelayState::RelayingParaHeader(required_para_header) => {
				*required_para_header_number_ref.lock().await = required_para_header;
			},
		}

		// start/restart relay
		if restart_relay {
			let stall_timeout = relay_substrate_client::transaction_stall_timeout(
				target_transactions_mortality,
				P::TargetChain::AVERAGE_BLOCK_INTERVAL,
				crate::STALL_TIMEOUT,
			);

			log::info!(
				target: "bridge",
				"Starting {} relay\n\t\
					Tx mortality: {:?} (~{}m)\n\t\
					Stall timeout: {:?}",
				relay_task_name,
				target_transactions_mortality,
				stall_timeout.as_secs_f64() / 60.0f64,
				stall_timeout,
			);

			parachains_relay_task.set(
				parachains_relay::parachains_loop::run(
					parachains_source.clone(),
					parachains_target.clone(),
					ParachainSyncParams {
						parachains: vec![P::SOURCE_PARACHAIN_PARA_ID.into()],
						stall_timeout: std::time::Duration::from_secs(60),
						strategy: parachains_relay::parachains_loop::ParachainSyncStrategy::Any,
					},
					MetricsParams::disabled(),
					futures::future::pending(),
				)
				.fuse(),
			);

			restart_relay = false;
		}
	}
}

/// On-demand parachains relay task name.
fn on_demand_parachains_relay_name<SourceChain: Chain, TargetChain: Chain>() -> String {
	format!("on-demand-{}-to-{}", SourceChain::NAME, TargetChain::NAME)
}

/// On-demand relay state.
#[derive(Clone, Copy, Debug, PartialEq)]
enum RelayState<SourceParaBlock, SourceRelayBlock> {
	/// On-demand relay is not doing anything.
	Idle,
	/// Relaying given relay header to relay given parachain header later.
	RelayingRelayHeader(SourceRelayBlock, SourceParaBlock),
	/// Relaying given parachain header.
	RelayingParaHeader(SourceParaBlock),
}

/// Data gathered from source and target clients, used by on-demand relay.
#[derive(Debug)]
struct RelayData<'a, SourceParaBlock, SourceRelayBlock> {
	/// Parachain header number that is required at the target chain.
	pub required_para_header: SourceParaBlock,
	/// Parachain header number, known to the target chain.
	pub para_header_at_target: SourceParaBlock,
	/// Parachain header number, known to the source (relay) chain.
	pub para_header_at_source: Option<SourceParaBlock>,
	/// Relay header number at the source chain.
	pub relay_header_at_source: SourceRelayBlock,
	/// Relay header number at the target chain.
	pub relay_header_at_target: SourceRelayBlock,
	/// Map of relay to para header block numbers for recent relay headers.
	///
	/// Even if we have been trying to relay relay header #100 to relay parachain header #50
	/// afterwards, it may happen that the relay header #200 may be relayed instead - either
	/// by us (e.g. if GRANDPA justification is generated for #200, or if we are only syncing
	/// mandatory headers), or by other relayer. Then, instead of parachain header #50 we may
	/// relay parachain header #70.
	///
	/// This cache is especially important, given that we assume that the nodes we're connected
	/// to are not necessarily archive nodes. Then, if current relay chain block is #210 and #200
	/// has been delivered to the target chain, we have more chances to generate storage proof
	/// at relay block #200 than on relay block #100, which is most likely has pruned state
	/// already.
	pub headers_map_cache: &'a mut BTreeMap<SourceRelayBlock, SourceParaBlock>,
}

/// Read required data from source and target clients.
async fn read_relay_data<'a, P: SubstrateParachainsPipeline>(
	source: &ParachainsSource<P>,
	target: &ParachainsTarget<P>,
	required_header_number: BlockNumberOf<P::SourceParachain>,
	headers_map_cache: &'a mut BTreeMap<
		BlockNumberOf<P::SourceRelayChain>,
		BlockNumberOf<P::SourceParachain>,
	>,
) -> Result<
	RelayData<'a, BlockNumberOf<P::SourceParachain>, BlockNumberOf<P::SourceRelayChain>>,
	FailedClient,
>
where
	ParachainsTarget<P>:
		TargetClient<ParachainsPipelineAdapter<P>> + RelayClient<Error = SubstrateError>,
{
	let map_target_err = |e| {
		log::error!(
			target: "bridge",
			"Failed to read {} relay data from {} client: {:?}",
			on_demand_parachains_relay_name::<P::SourceParachain, P::TargetChain>(),
			P::TargetChain::NAME,
			e,
		);
		FailedClient::Target
	};
	let map_source_err = |e| {
		log::error!(
			target: "bridge",
			"Failed to read {} relay data from {} client: {:?}",
			on_demand_parachains_relay_name::<P::SourceParachain, P::TargetChain>(),
			P::SourceRelayChain::NAME,
			e,
		);
		FailedClient::Source
	};

	let best_target_block_hash = target.best_block().await.map_err(map_target_err)?.1;
	let para_header_at_target =
		best_finalized_peer_header_at_self::<P::TargetChain, P::SourceParachain>(
			target.client(),
			best_target_block_hash,
			P::SourceParachain::BEST_FINALIZED_HEADER_ID_METHOD,
		)
		.await
		.map_err(map_target_err)?
		.0;

	let best_finalized_relay_header =
		source.client().best_finalized_header().await.map_err(map_source_err)?;
	let best_finalized_relay_block_id =
		HeaderId(*best_finalized_relay_header.number(), best_finalized_relay_header.hash());
	let para_header_at_source = source
		.on_chain_parachain_header(
			best_finalized_relay_block_id,
			P::SOURCE_PARACHAIN_PARA_ID.into(),
		)
		.await
		.map_err(map_source_err)?
		.map(|h| *h.number());

	let relay_header_at_source = best_finalized_relay_block_id.0;
	let relay_header_at_target =
		best_finalized_peer_header_at_self::<P::TargetChain, P::SourceRelayChain>(
			target.client(),
			best_target_block_hash,
			P::SourceRelayChain::BEST_FINALIZED_HEADER_ID_METHOD,
		)
		.await
		.map_err(map_target_err)?
		.0;

	Ok(RelayData {
		required_para_header: required_header_number,
		para_header_at_target,
		para_header_at_source,
		relay_header_at_source,
		relay_header_at_target,
		headers_map_cache,
	})
}

// This number is bigger than the session length of any well-known Substrate-based relay
// chain. We expect that the underlying on-demand relay will submit at least 1 header per
// session.
const MAX_HEADERS_MAP_CACHE_ENTRIES: usize = 4096;

/// Select relay and parachain headers that need to be relayed.
fn select_headers_to_relay<'a, SourceParaBlock, SourceRelayBlock>(
	data: &mut RelayData<'a, SourceParaBlock, SourceRelayBlock>,
	mut state: RelayState<SourceParaBlock, SourceRelayBlock>,
) -> RelayState<SourceParaBlock, SourceRelayBlock>
where
	RelayData<'a, SourceParaBlock, SourceRelayBlock>: std::fmt::Debug, // TODO: remove
	SourceParaBlock: Copy + PartialOrd,
	SourceRelayBlock: Copy + Ord,
{
	// despite of our current state, we want to update the headers map cache
	if let Some(para_header_at_source) = data.para_header_at_source {
		data.headers_map_cache
			.insert(data.relay_header_at_source, para_header_at_source);
		if data.headers_map_cache.len() > MAX_HEADERS_MAP_CACHE_ENTRIES {
			let first_key = *data.headers_map_cache.keys().next().expect("map is not empty; qed");
			data.headers_map_cache.remove(&first_key);
		}
	}

	// this switch is responsible for processing `RelayingRelayHeader` state
	match state {
		RelayState::Idle | RelayState::RelayingParaHeader(_) => (),
		RelayState::RelayingRelayHeader(relay_header_number, para_header_number) => {
			match data.relay_header_at_target.cmp(&relay_header_number) {
				Ordering::Less => {
					// relay header hasn't yet been relayed
					return RelayState::RelayingRelayHeader(relay_header_number, para_header_number)
				},
				Ordering::Equal => {
					// relay header has been realyed and we may continue with parachain header
					state = RelayState::RelayingParaHeader(para_header_number);
				},
				Ordering::Greater => {
					// relay header descendant has been relayed and we may need to change parachain
					// header that we want to relay
					let next_para_header_number = data
						.headers_map_cache
						.range(..=data.relay_header_at_target)
						.next_back()
						.map(|(_, next_para_header_number)| *next_para_header_number)
						.unwrap_or_else(|| para_header_number);
					state = RelayState::RelayingParaHeader(next_para_header_number);
				},
			}
		},
	}

	// this switch is responsible for processing `RelayingParaHeader` state
	match state {
		RelayState::Idle => (),
		RelayState::RelayingRelayHeader(_, _) => unreachable!("processed by previous match; qed"),
		RelayState::RelayingParaHeader(para_header_number) => {
			if data.para_header_at_target < para_header_number {
				// parachain header hasn't yet been relayed
				return RelayState::RelayingParaHeader(para_header_number)
			}
		},
	}

	// if we have already satisfied our "customer", do nothing
	if data.required_para_header <= data.para_header_at_target {
		return RelayState::Idle
	}

	// if required header is not available even at the source chain, let's wait
	if Some(data.required_para_header) > data.para_header_at_source {
		return RelayState::Idle
	}

	// we will always try to sync latest parachain/relay header, even if we've been asked for some
	// its ancestor

	// we need relay chain header first
	if data.relay_header_at_target < data.relay_header_at_source {
		return RelayState::RelayingRelayHeader(
			data.relay_header_at_source,
			data.required_para_header,
		)
	}

	// if all relay headers synced, we may start directly with parachain header
	RelayState::RelayingParaHeader(data.required_para_header)
}

#[cfg(test)]
mod tests {
	use super::*;

	#[test]
	fn relay_waits_for_relay_header_to_be_delivered() {
		assert_eq!(
			select_headers_to_relay(
				&mut RelayData {
					required_para_header: 100,
					para_header_at_target: 50,
					para_header_at_source: Some(110),
					relay_header_at_source: 800,
					relay_header_at_target: 700,
					headers_map_cache: &mut BTreeMap::new(),
				},
				RelayState::RelayingRelayHeader(750, 100),
			),
			RelayState::RelayingRelayHeader(750, 100),
		);
	}

	#[test]
	fn relay_starts_relaying_requested_para_header_after_relay_header_is_delivered() {
		assert_eq!(
			select_headers_to_relay(
				&mut RelayData {
					required_para_header: 100,
					para_header_at_target: 50,
					para_header_at_source: Some(110),
					relay_header_at_source: 800,
					relay_header_at_target: 750,
					headers_map_cache: &mut BTreeMap::new(),
				},
				RelayState::RelayingRelayHeader(750, 100),
			),
			RelayState::RelayingParaHeader(100),
		);
	}

	#[test]
	fn relay_selects_same_para_header_after_better_relay_header_is_delivered_1() {
		assert_eq!(
			select_headers_to_relay(
				&mut RelayData {
					required_para_header: 100,
					para_header_at_target: 50,
					para_header_at_source: Some(110),
					relay_header_at_source: 800,
					relay_header_at_target: 780,
					headers_map_cache: &mut vec![(700, 90), (750, 100)].into_iter().collect(),
				},
				RelayState::RelayingRelayHeader(750, 100),
			),
			RelayState::RelayingParaHeader(100),
		);
	}

	#[test]
	fn relay_selects_same_para_header_after_better_relay_header_is_delivered_2() {
		assert_eq!(
			select_headers_to_relay(
				&mut RelayData {
					required_para_header: 100,
					para_header_at_target: 50,
					para_header_at_source: Some(110),
					relay_header_at_source: 800,
					relay_header_at_target: 780,
					headers_map_cache: &mut BTreeMap::new(),
				},
				RelayState::RelayingRelayHeader(750, 100),
			),
			RelayState::RelayingParaHeader(100),
		);
	}

	#[test]
	fn relay_selects_better_para_header_after_better_relay_header_is_delivered() {
		assert_eq!(
			select_headers_to_relay(
				&mut RelayData {
					required_para_header: 100,
					para_header_at_target: 50,
					para_header_at_source: Some(120),
					relay_header_at_source: 800,
					relay_header_at_target: 780,
					headers_map_cache: &mut vec![(700, 90), (750, 100), (780, 110), (790, 120)]
						.into_iter()
						.collect(),
				},
				RelayState::RelayingRelayHeader(750, 100),
			),
			RelayState::RelayingParaHeader(110),
		);
	}

	#[test]
	fn relay_waits_for_para_header_to_be_delivered() {
		assert_eq!(
			select_headers_to_relay(
				&mut RelayData {
					required_para_header: 100,
					para_header_at_target: 50,
					para_header_at_source: Some(110),
					relay_header_at_source: 800,
					relay_header_at_target: 700,
					headers_map_cache: &mut BTreeMap::new(),
				},
				RelayState::RelayingParaHeader(100),
			),
			RelayState::RelayingParaHeader(100),
		);
	}

	#[test]
	fn relay_stays_idle_if_required_para_header_is_already_delivered() {
		assert_eq!(
			select_headers_to_relay(
				&mut RelayData {
					required_para_header: 100,
					para_header_at_target: 100,
					para_header_at_source: Some(110),
					relay_header_at_source: 800,
					relay_header_at_target: 700,
					headers_map_cache: &mut BTreeMap::new(),
				},
				RelayState::Idle,
			),
			RelayState::Idle,
		);
	}

	#[test]
	fn relay_waits_for_required_para_header_to_appear_at_source_1() {
		assert_eq!(
			select_headers_to_relay(
				&mut RelayData {
					required_para_header: 110,
					para_header_at_target: 100,
					para_header_at_source: None,
					relay_header_at_source: 800,
					relay_header_at_target: 700,
					headers_map_cache: &mut BTreeMap::new(),
				},
				RelayState::Idle,
			),
			RelayState::Idle,
		);
	}

	#[test]
	fn relay_waits_for_required_para_header_to_appear_at_source_2() {
		assert_eq!(
			select_headers_to_relay(
				&mut RelayData {
					required_para_header: 110,
					para_header_at_target: 100,
					para_header_at_source: Some(100),
					relay_header_at_source: 800,
					relay_header_at_target: 700,
					headers_map_cache: &mut BTreeMap::new(),
				},
				RelayState::Idle,
			),
			RelayState::Idle,
		);
	}

	#[test]
	fn relay_starts_relaying_relay_header_when_new_para_header_is_requested() {
		assert_eq!(
			select_headers_to_relay(
				&mut RelayData {
					required_para_header: 110,
					para_header_at_target: 100,
					para_header_at_source: Some(110),
					relay_header_at_source: 800,
					relay_header_at_target: 700,
					headers_map_cache: &mut BTreeMap::new(),
				},
				RelayState::Idle,
			),
			RelayState::RelayingRelayHeader(800, 110),
		);
	}

	#[test]
	fn relay_starts_relaying_para_header_when_new_para_header_is_requested() {
		assert_eq!(
			select_headers_to_relay(
				&mut RelayData {
					required_para_header: 110,
					para_header_at_target: 100,
					para_header_at_source: Some(110),
					relay_header_at_source: 800,
					relay_header_at_target: 800,
					headers_map_cache: &mut BTreeMap::new(),
				},
				RelayState::Idle,
			),
			RelayState::RelayingParaHeader(110),
		);
	}

	#[test]
	fn headers_map_cache_is_updated() {
		let mut headers_map_cache = BTreeMap::new();

		// when parachain header is known, map is updated
		select_headers_to_relay(
			&mut RelayData {
				required_para_header: 0,
				para_header_at_target: 50,
				para_header_at_source: Some(110),
				relay_header_at_source: 800,
				relay_header_at_target: 700,
				headers_map_cache: &mut headers_map_cache,
			},
			RelayState::RelayingRelayHeader(750, 100),
		);
		assert_eq!(headers_map_cache.clone().into_iter().collect::<Vec<_>>(), vec![(800, 110)],);

		// when parachain header is not known, map is NOT updated
		select_headers_to_relay(
			&mut RelayData {
				required_para_header: 0,
				para_header_at_target: 50,
				para_header_at_source: None,
				relay_header_at_source: 800,
				relay_header_at_target: 700,
				headers_map_cache: &mut headers_map_cache,
			},
			RelayState::RelayingRelayHeader(750, 100),
		);
		assert_eq!(headers_map_cache.clone().into_iter().collect::<Vec<_>>(), vec![(800, 110)],);

		// map auto-deduplicates equal entries
		select_headers_to_relay(
			&mut RelayData {
				required_para_header: 0,
				para_header_at_target: 50,
				para_header_at_source: Some(110),
				relay_header_at_source: 800,
				relay_header_at_target: 700,
				headers_map_cache: &mut headers_map_cache,
			},
			RelayState::RelayingRelayHeader(750, 100),
		);
		assert_eq!(headers_map_cache.clone().into_iter().collect::<Vec<_>>(), vec![(800, 110)],);

		// nothing is pruned if number of map entries is < MAX_HEADERS_MAP_CACHE_ENTRIES
		for i in 1..MAX_HEADERS_MAP_CACHE_ENTRIES {
			select_headers_to_relay(
				&mut RelayData {
					required_para_header: 0,
					para_header_at_target: 50,
					para_header_at_source: Some(110 + i),
					relay_header_at_source: 800 + i,
					relay_header_at_target: 700,
					headers_map_cache: &mut headers_map_cache,
				},
				RelayState::RelayingRelayHeader(750, 100),
			);
			assert_eq!(headers_map_cache.len(), i + 1);
		}

		// when we add next entry, the oldest one is pruned
		assert!(headers_map_cache.contains_key(&800));
		assert_eq!(headers_map_cache.len(), MAX_HEADERS_MAP_CACHE_ENTRIES);
		select_headers_to_relay(
			&mut RelayData {
				required_para_header: 0,
				para_header_at_target: 50,
				para_header_at_source: Some(110 + MAX_HEADERS_MAP_CACHE_ENTRIES),
				relay_header_at_source: 800 + MAX_HEADERS_MAP_CACHE_ENTRIES,
				relay_header_at_target: 700,
				headers_map_cache: &mut headers_map_cache,
			},
			RelayState::RelayingRelayHeader(750, 100),
		);
		assert!(!headers_map_cache.contains_key(&800));
		assert_eq!(headers_map_cache.len(), MAX_HEADERS_MAP_CACHE_ENTRIES);
	}
}