Newer
Older
.expect("header already known to exist in DB because it is indicated in the tree route; qed");
telemetry!(SUBSTRATE_INFO; "notify.finalized";
"height" => format!("{}", header.number()),
"best" => ?finalized_hash,
);
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
let notification = FinalityNotification {
header,
hash: finalized_hash,
};
sinks.retain(|sink| sink.unbounded_send(notification.clone()).is_ok());
}
Ok(())
}
fn notify_imported(
&self,
notify_import: (Block::Hash, BlockOrigin, Block::Header, bool, Option<Vec<(Vec<u8>, Option<Vec<u8>>)>>),
) -> error::Result<()> {
let (hash, origin, header, is_new_best, storage_changes) = notify_import;
if let Some(storage_changes) = storage_changes {
// TODO [ToDr] How to handle re-orgs? Should we re-emit all storage changes?
self.storage_notifications.lock()
.trigger(&hash, storage_changes.into_iter());
}
let notification = BlockImportNotification::<Block> {
hash,
origin,
header,
is_new_best,
};
self.import_notification_sinks.lock()
.retain(|sink| sink.unbounded_send(notification.clone()).is_ok());
Ok(())
}
/// Apply auxiliary data insertion into an operation.
pub fn apply_aux<
'a,
'b: 'a,
'c: 'a,
I: IntoIterator<Item=&'a(&'c [u8], &'c [u8])>,
D: IntoIterator<Item=&'a &'b [u8]>,
>(
&self,
operation: &mut ClientImportOperation<Block, Blake2Hasher, B>,
insert: I,
delete: D
) -> error::Result<()> {
operation.op.insert_aux(
insert.into_iter()
.map(|(k, v)| (k.to_vec(), Some(v.to_vec())))
.chain(delete.into_iter().map(|k| (k.to_vec(), None)))
)
}
/// Mark all blocks up to given as finalized in operation. If a
/// justification is provided it is stored with the given finalized
/// block (any other finalized blocks are left unjustified).
pub fn apply_finality(
&self,
operation: &mut ClientImportOperation<Block, Blake2Hasher, B>,
id: BlockId<Block>,
justification: Option<Justification>,
notify: bool,
) -> error::Result<()> {
let last_best = self.backend.blockchain().info()?.best_hash;
let to_finalize_hash = self.backend.blockchain().expect_block_hash_from_id(&id)?;
self.apply_finality_with_block_hash(operation, to_finalize_hash, justification, last_best, notify)
}
/// Finalize a block. This will implicitly finalize all blocks up to it and
/// fire finality notifications.
///
/// Pass a flag to indicate whether finality notifications should be propagated.
/// This is usually tied to some synchronization state, where we don't send notifications
/// while performing major synchronization work.
pub fn finalize_block(&self, id: BlockId<Block>, justification: Option<Justification>, notify: bool) -> error::Result<()> {
self.lock_import_and_run(|operation| {
let last_best = self.backend.blockchain().info()?.best_hash;
let to_finalize_hash = self.backend.blockchain().expect_block_hash_from_id(&id)?;
self.apply_finality_with_block_hash(operation, to_finalize_hash, justification, last_best, notify)
})
/// Attempts to revert the chain by `n` blocks. Returns the number of blocks that were
/// successfully reverted.
pub fn revert(&self, n: NumberFor<Block>) -> error::Result<NumberFor<Block>> {
Ok(self.backend.revert(n)?)
}
pub fn info(&self) -> error::Result<ClientInfo<Block>> {
let info = self.backend.blockchain().info().map_err(|e| error::Error::from_blockchain(Box::new(e)))?;
Ok(ClientInfo {
chain: info,
best_queued_hash: None,
best_queued_number: None,
})
}
/// Get block status.
pub fn block_status(&self, id: &BlockId<Block>) -> error::Result<BlockStatus> {
// this can probably be implemented more efficiently
if let BlockId::Hash(ref h) = id {
if self.importing_block.read().as_ref().map_or(false, |importing| h == importing) {
return Ok(BlockStatus::Queued);
}
}
let hash_and_number = match id.clone() {
BlockId::Hash(hash) => self.backend.blockchain().number(hash)?.map(|n| (hash, n)),
BlockId::Number(n) => self.backend.blockchain().hash(n)?.map(|hash| (hash, n)),
};
match hash_and_number {
Some((hash, number)) => {
if self.backend.have_state_at(&hash, number) {
Ok(BlockStatus::InChainWithState)
} else {
Ok(BlockStatus::InChainPruned)
}
}
None => Ok(BlockStatus::Unknown),
}
}
/// Get block header by id.
pub fn header(&self, id: &BlockId<Block>) -> error::Result<Option<<Block as BlockT>::Header>> {
self.backend.blockchain().header(*id)
}
/// Get block body by id.
pub fn body(&self, id: &BlockId<Block>) -> error::Result<Option<Vec<<Block as BlockT>::Extrinsic>>> {
self.backend.blockchain().body(*id)
}
/// Get block justification set by id.
pub fn justification(&self, id: &BlockId<Block>) -> error::Result<Option<Justification>> {
self.backend.blockchain().justification(*id)
}
pub fn block(&self, id: &BlockId<Block>)
-> error::Result<Option<SignedBlock<Block>>>
Ok(match (self.header(id)?, self.body(id)?, self.justification(id)?) {
(Some(header), Some(extrinsics), justification) =>
Some(SignedBlock { block: Block::new(header, extrinsics), justification }),
/// Gets the uncles of the block with `target_hash` going back `max_generation` ancestors.
pub fn uncles(&self, target_hash: Block::Hash, max_generation: NumberFor<Block>) -> error::Result<Vec<Block::Hash>> {
let load_header = |id: Block::Hash| -> error::Result<Block::Header> {
match self.backend.blockchain().header(BlockId::Hash(id))? {
Some(hdr) => Ok(hdr),
None => Err(Error::UnknownBlock(format!("Unknown block {:?}", id))),
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
}
};
let genesis_hash = self.backend.blockchain().info()?.genesis_hash;
if genesis_hash == target_hash { return Ok(Vec::new()); }
let mut current_hash = target_hash;
let mut current = load_header(current_hash)?;
let mut ancestor_hash = *current.parent_hash();
let mut ancestor = load_header(ancestor_hash)?;
let mut uncles = Vec::new();
for _generation in 0..max_generation.as_() {
let children = self.backend.blockchain().children(ancestor_hash)?;
uncles.extend(children.into_iter().filter(|h| h != ¤t_hash));
current_hash = ancestor_hash;
if genesis_hash == current_hash { break; }
current = ancestor;
ancestor_hash = *current.parent_hash();
ancestor = load_header(ancestor_hash)?;
}
Ok(uncles)
}
fn changes_trie_config(&self) -> Result<Option<ChangesTrieConfiguration>, Error> {
Ok(self.backend.state_at(BlockId::Number(self.backend.blockchain().info()?.best_number))?
.storage(well_known_keys::CHANGES_TRIE_CONFIG)
.map_err(|e| error::Error::from_state(Box::new(e)))?
.and_then(|c| Decode::decode(&mut &*c)))
}
/// Prepare in-memory header that is used in execution environment.
fn prepare_environment_block(&self, parent: &BlockId<Block>) -> error::Result<Block::Header> {
Ok(<<Block as BlockT>::Header as HeaderT>::new(
self.backend.blockchain().expect_block_number_from_id(parent)? + As::sa(1),
Default::default(),
Default::default(),
self.backend.blockchain().expect_block_hash_from_id(&parent)?,
Default::default(),
))
}
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
impl<B, E, Block, RA> ChainHeaderBackend<Block> for Client<B, E, Block, RA> where
B: backend::Backend<Block, Blake2Hasher>,
E: CallExecutor<Block, Blake2Hasher> + Send + Sync,
Block: BlockT<Hash=H256>,
RA: Send + Sync
{
fn header(&self, id: BlockId<Block>) -> error::Result<Option<Block::Header>> {
self.backend.blockchain().header(id)
}
fn info(&self) -> error::Result<blockchain::Info<Block>> {
self.backend.blockchain().info()
}
fn status(&self, id: BlockId<Block>) -> error::Result<blockchain::BlockStatus> {
self.backend.blockchain().status(id)
}
fn number(&self, hash: Block::Hash) -> error::Result<Option<<<Block as BlockT>::Header as HeaderT>::Number>> {
self.backend.blockchain().number(hash)
}
fn hash(&self, number: NumberFor<Block>) -> error::Result<Option<Block::Hash>> {
self.backend.blockchain().hash(number)
}
}
impl<B, E, Block, RA> ProvideCache<Block> for Client<B, E, Block, RA> where
B: backend::Backend<Block, Blake2Hasher>,
Block: BlockT<Hash=H256>,
{
fn cache(&self) -> Option<Arc<Cache<Block>>> {
self.backend.blockchain().cache()
}
}
impl<B, E, Block, RA> ProvideRuntimeApi for Client<B, E, Block, RA> where
B: backend::Backend<Block, Blake2Hasher>,
E: CallExecutor<Block, Blake2Hasher> + Clone + Send + Sync,
RA: ConstructRuntimeApi<Block, Self>
type Api = <RA as ConstructRuntimeApi<Block, Self>>::RuntimeApi;
fn runtime_api<'a>(&'a self) -> ApiRef<'a, Self::Api> {
RA::construct_runtime_api(self)
}
}
impl<B, E, Block, RA> CallRuntimeAt<Block> for Client<B, E, Block, RA> where
B: backend::Backend<Block, Blake2Hasher>,
E: CallExecutor<Block, Blake2Hasher> + Clone + Send + Sync,
Bastian Köcher
committed
fn call_api_at<
R: Encode + Decode + PartialEq,
NC: FnOnce() -> result::Result<R, &'static str> + UnwindSafe,
Bastian Köcher
committed
>(
&self,
at: &BlockId<Block>,
function: &'static str,
args: Vec<u8>,
changes: &RefCell<OverlayedChanges>,
initialize_block: InitializeBlock<'a, Block>,
native_call: Option<NC>,
recorder: &Option<Rc<RefCell<ProofRecorder<Block>>>>,
) -> error::Result<NativeOrEncoded<R>> {
let manager = match context {
ExecutionContext::BlockConstruction =>
self.execution_strategies.block_construction.get_manager(),
ExecutionContext::Syncing =>
self.execution_strategies.syncing.get_manager(),
ExecutionContext::Importing =>
self.execution_strategies.importing.get_manager(),
ExecutionContext::OffchainWorker(_) =>
self.execution_strategies.offchain_worker.get_manager(),
ExecutionContext::Other =>
self.execution_strategies.other.get_manager(),
let mut offchain_extensions = match context {
ExecutionContext::OffchainWorker(ext) => Some(ext),
_ => None,
};
self.executor.contextual_call::<_, _, fn(_,_) -> _,_,_>(
|| core_api.initialize_block(at, &self.prepare_environment_block(at)?),
at,
function,
&args,
changes,
fn runtime_version_at(&self, at: &BlockId<Block>) -> error::Result<RuntimeVersion> {
self.runtime_version_at(at)
}
}
impl<B, E, Block, RA> consensus::BlockImport<Block> for Client<B, E, Block, RA> where
B: backend::Backend<Block, Blake2Hasher>,
E: CallExecutor<Block, Blake2Hasher> + Clone + Send + Sync,
Block: BlockT<Hash=H256>,
type Error = ConsensusError;
/// Import a checked and validated block. If a justification is provided in
/// `ImportBlock` then `finalized` *must* be true.
fn import_block(
&self,
import_block: ImportBlock<Block>,
new_cache: HashMap<CacheKeyId, Vec<u8>>,
) -> Result<ImportResult, Self::Error> {
self.lock_import_and_run(|operation| {
self.apply_block(operation, import_block, new_cache)
}).map_err(|e| ConsensusErrorKind::ClientImport(e.to_string()).into())
/// Check block preconditions.
fn check_block(
&self,
hash: Block::Hash,
parent_hash: Block::Hash,
) -> Result<ImportResult, Self::Error> {
match self.block_status(&BlockId::Hash(parent_hash))
.map_err(|e| ConsensusError::from(ConsensusErrorKind::ClientImport(e.to_string())))?
{
BlockStatus::InChainWithState | BlockStatus::Queued => {},
BlockStatus::Unknown | BlockStatus::InChainPruned => return Ok(ImportResult::UnknownParent),
BlockStatus::KnownBad => return Ok(ImportResult::KnownBad),
match self.block_status(&BlockId::Hash(hash))
.map_err(|e| ConsensusError::from(ConsensusErrorKind::ClientImport(e.to_string())))?
{
BlockStatus::InChainWithState | BlockStatus::Queued => return Ok(ImportResult::AlreadyInChain),
BlockStatus::Unknown | BlockStatus::InChainPruned => {},
BlockStatus::KnownBad => return Ok(ImportResult::KnownBad),
Ok(ImportResult::imported())
impl<B, E, Block, RA> CurrentHeight for Client<B, E, Block, RA> where
B: backend::Backend<Block, Blake2Hasher>,
E: CallExecutor<Block, Blake2Hasher>,
{
type BlockNumber = <Block::Header as HeaderT>::Number;
fn current_height(&self) -> Self::BlockNumber {
self.backend.blockchain().info().map(|i| i.best_number).unwrap_or_else(|_| Zero::zero())
}
}
impl<B, E, Block, RA> BlockNumberToHash for Client<B, E, Block, RA> where
B: backend::Backend<Block, Blake2Hasher>,
E: CallExecutor<Block, Blake2Hasher>,
{
type BlockNumber = <Block::Header as HeaderT>::Number;
type Hash = Block::Hash;
fn block_number_to_hash(&self, n: Self::BlockNumber) -> Option<Self::Hash> {
self.block_hash(n).unwrap_or(None)
}
}
impl<B, E, Block, RA> BlockchainEvents<Block> for Client<B, E, Block, RA>
E: CallExecutor<Block, Blake2Hasher>,
fn import_notification_stream(&self) -> ImportNotifications<Block> {
let (sink, stream) = mpsc::unbounded();
self.import_notification_sinks.lock().push(sink);
stream
fn finality_notification_stream(&self) -> FinalityNotifications<Block> {
let (sink, stream) = mpsc::unbounded();
self.finality_notification_sinks.lock().push(sink);
stream
}
/// Get storage changes event stream.
fn storage_changes_notification_stream(&self, filter_keys: Option<&[StorageKey]>) -> error::Result<StorageEventStream<Block::Hash>> {
Ok(self.storage_notifications.lock().listen(filter_keys))
}
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
/// Implement Longest Chain Select implementation
/// where 'longest' is defined as the highest number of blocks
pub struct LongestChain<B, Block> {
backend: Arc<B>,
import_lock: Arc<Mutex<()>>,
_phantom: PhantomData<Block>
}
impl<B, Block> Clone for LongestChain<B, Block> {
fn clone(&self) -> Self {
let backend = self.backend.clone();
let import_lock = self.import_lock.clone();
LongestChain {
backend,
import_lock,
_phantom: Default::default()
}
}
}
impl<B, Block> LongestChain<B, Block>
B: backend::Backend<Block, Blake2Hasher>,
/// Instantiate a new LongestChain for Backend B
pub fn new(backend: Arc<B>, import_lock: Arc<Mutex<()>>) -> Self {
LongestChain {
backend,
import_lock,
_phantom: Default::default()
}
}
fn best_block_header(&self) -> error::Result<<Block as BlockT>::Header> {
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
let info : ChainInfo<Block> = match self.backend.blockchain().info() {
Ok(i) => i,
Err(e) => return Err(error::Error::from_blockchain(Box::new(e)))
};
Ok(self.backend.blockchain().header(BlockId::Hash(info.best_hash))?
.expect("Best block header must always exist"))
}
/// Get the most recent block hash of the best (longest) chains
/// that contain block with the given `target_hash`.
///
/// The search space is always limited to blocks which are in the finalized
/// chain or descendents of it.
///
/// If `maybe_max_block_number` is `Some(max_block_number)`
/// the search is limited to block `numbers <= max_block_number`.
/// in other words as if there were no blocks greater `max_block_number`.
/// Returns `Ok(None)` if `target_hash` is not found in search space.
/// TODO: document time complexity of this, see [#1444](https://github.com/paritytech/substrate/issues/1444)
fn best_containing(
&self,
target_hash: Block::Hash,
maybe_max_number: Option<NumberFor<Block>>
) -> error::Result<Option<Block::Hash>> {
let target_header = {
match self.backend.blockchain().header(BlockId::Hash(target_hash))? {
Some(x) => x,
// target not in blockchain
None => { return Ok(None); },
}
};
if let Some(max_number) = maybe_max_number {
// target outside search range
if target_header.number() > &max_number {
return Ok(None);
}
}
let (leaves, best_already_checked) = {
// ensure no blocks are imported during this code block.
// an import could trigger a reorg which could change the canonical chain.
// we depend on the canonical chain staying the same during this code block.
let _import_lock = self.import_lock.lock();
let info = self.backend.blockchain().info()?;
let canon_hash = self.backend.blockchain().hash(*target_header.number())?
.ok_or_else(|| error::Error::from(format!("failed to get hash for block number {}", target_header.number())))?;
if canon_hash == target_hash {
// if no block at the given max depth exists fallback to the best block
if let Some(max_number) = maybe_max_number {
if let Some(header) = self.backend.blockchain().hash(max_number)? {
return Ok(Some(header));
}
}
return Ok(Some(info.best_hash));
} else if info.finalized_number >= *target_header.number() {
// header is on a dead fork.
return Ok(None);
}
(self.backend.blockchain().leaves()?, info.best_hash)
};
// for each chain. longest chain first. shortest last
for leaf_hash in leaves {
// ignore canonical chain which we already checked above
if leaf_hash == best_already_checked {
continue;
}
// start at the leaf
let mut current_hash = leaf_hash;
// if search is not restricted then the leaf is the best
let mut best_hash = leaf_hash;
// go backwards entering the search space
// waiting until we are <= max_number
if let Some(max_number) = maybe_max_number {
loop {
let current_header = self.backend.blockchain().header(BlockId::Hash(current_hash.clone()))?
.ok_or_else(|| error::Error::from(format!("failed to get header for hash {}", current_hash)))?;
if current_header.number() <= &max_number {
best_hash = current_header.hash();
break;
}
current_hash = *current_header.parent_hash();
}
}
// go backwards through the chain (via parent links)
loop {
// until we find target
if current_hash == target_hash {
return Ok(Some(best_hash));
}
let current_header = self.backend.blockchain().header(BlockId::Hash(current_hash.clone()))?
.ok_or_else(|| error::Error::from(format!("failed to get header for hash {}", current_hash)))?;
// stop search in this chain once we go below the target's block number
if current_header.number() < target_header.number() {
break;
}
current_hash = *current_header.parent_hash();
}
}
// header may be on a dead fork -- the only leaves that are considered are
// those which can still be finalized.
//
// FIXME #1558 only issue this warning when not on a dead fork
warn!(
"Block {:?} exists in chain but not found when following all \
leaves backwards. Number limit = {:?}",
target_hash,
maybe_max_number,
);
Ok(None)
fn leaves(&self) -> Result<Vec<<Block as BlockT>::Hash>, error::Error> {
self.backend.blockchain().leaves()
}
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
impl<B, Block> SelectChain<Block> for LongestChain<B, Block>
where
B: backend::Backend<Block, Blake2Hasher>,
Block: BlockT<Hash=H256>,
{
fn leaves(&self) -> Result<Vec<<Block as BlockT>::Hash>, ConsensusError> {
LongestChain::leaves(self)
.map_err(|e| ConsensusErrorKind::ChainLookup(e.to_string()).into())
}
fn best_chain(&self)
-> Result<<Block as BlockT>::Header, ConsensusError>
{
LongestChain::best_block_header(&self)
.map_err(|e| ConsensusErrorKind::ChainLookup(e.to_string()).into())
}
fn finality_target(
&self,
target_hash: Block::Hash,
maybe_max_number: Option<NumberFor<Block>>
) -> Result<Option<Block::Hash>, ConsensusError> {
LongestChain::best_containing(self, target_hash, maybe_max_number)
.map_err(|e| ConsensusErrorKind::ChainLookup(e.to_string()).into())
}
}
impl<B, E, Block, RA> BlockBody<Block> for Client<B, E, Block, RA>
where
B: backend::Backend<Block, Blake2Hasher>,
E: CallExecutor<Block, Blake2Hasher>,
Block: BlockT<Hash=H256>,
{
fn block_body(&self, id: &BlockId<Block>) -> error::Result<Option<Vec<<Block as BlockT>::Extrinsic>>> {
self.body(id)
}
}
impl<B, E, Block, RA> backend::AuxStore for Client<B, E, Block, RA>
where
B: backend::Backend<Block, Blake2Hasher>,
E: CallExecutor<Block, Blake2Hasher>,
Block: BlockT<Hash=H256>,
{
/// Insert auxiliary data into key-value store.
fn insert_aux<
'a,
'b: 'a,
'c: 'a,
I: IntoIterator<Item=&'a(&'c [u8], &'c [u8])>,
D: IntoIterator<Item=&'a &'b [u8]>,
>(&self, insert: I, delete: D) -> error::Result<()> {
// Import is locked here because we may have other block import
// operations that tries to set aux data. Note that for consensus
// layer, one can always use atomic operations to make sure
// import is only locked once.
self.lock_import_and_run(|operation| {
self.apply_aux(operation, insert, delete)
})
}
/// Query auxiliary data from key-value store.
fn get_aux(&self, key: &[u8]) -> error::Result<Option<Vec<u8>>> {
crate::backend::AuxStore::get_aux(&*self.backend, key)
pub(crate) mod tests {
use std::collections::HashMap;
use primitives::blake2_256;
use runtime_primitives::traits::DigestItem as DigestItemT;
use runtime_primitives::generic::DigestItem;
use test_client::{self, TestClient, AccountKeyring};
use consensus::{BlockOrigin, SelectChain};
use test_client::client::backend::Backend as TestBackend;
use test_client::runtime::{self, Block, Transfer, RuntimeApi, TestAPI};
/// Returns tuple, consisting of:
/// 1) test client pre-filled with blocks changing balances;
/// 2) roots of changes tries for these blocks
/// 3) test cases in form (begin, end, key, vec![(block, extrinsic)]) that are required to pass
pub fn prepare_client_with_key_changes() -> (
Bastian Köcher
committed
test_client::client::Client<test_client::Backend, test_client::Executor, Block, RuntimeApi>,
Vec<H256>,
Vec<(u64, u64, Vec<u8>, Vec<(u64, u32)>)>,
) {
// prepare block structure
let blocks_transfers = vec![
vec![(AccountKeyring::Alice, AccountKeyring::Dave), (AccountKeyring::Bob, AccountKeyring::Dave)],
vec![(AccountKeyring::Charlie, AccountKeyring::Eve)],
vec![(AccountKeyring::Alice, AccountKeyring::Dave)],
];
// prepare client ang import blocks
let mut local_roots = Vec::new();
let remote_client = test_client::new_with_changes_trie();
let mut nonces: HashMap<_, u64> = Default::default();
for (i, block_transfers) in blocks_transfers.into_iter().enumerate() {
let mut builder = remote_client.new_block().unwrap();
for (from, to) in block_transfers {
builder.push_transfer(Transfer {
from: from.into(),
to: to.into(),
amount: 1,
nonce: *nonces.entry(from).and_modify(|n| { *n = *n + 1 }).or_default(),
}).unwrap();
}
remote_client.import(BlockOrigin::Own, builder.bake().unwrap()).unwrap();
let header = remote_client.header(&BlockId::Number(i as u64 + 1)).unwrap().unwrap();
let trie_root = header.digest().log(DigestItem::as_changes_trie_root)
.map(|root| H256::from_slice(root.as_ref()))
.unwrap();
local_roots.push(trie_root);
}
// prepare test cases
let alice = blake2_256(&runtime::system::balance_of_key(AccountKeyring::Alice.into())).to_vec();
let bob = blake2_256(&runtime::system::balance_of_key(AccountKeyring::Bob.into())).to_vec();
let charlie = blake2_256(&runtime::system::balance_of_key(AccountKeyring::Charlie.into())).to_vec();
let dave = blake2_256(&runtime::system::balance_of_key(AccountKeyring::Dave.into())).to_vec();
let eve = blake2_256(&runtime::system::balance_of_key(AccountKeyring::Eve.into())).to_vec();
let ferdie = blake2_256(&runtime::system::balance_of_key(AccountKeyring::Ferdie.into())).to_vec();
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
let test_cases = vec![
(1, 4, alice.clone(), vec![(4, 0), (1, 0)]),
(1, 3, alice.clone(), vec![(1, 0)]),
(2, 4, alice.clone(), vec![(4, 0)]),
(2, 3, alice.clone(), vec![]),
(1, 4, bob.clone(), vec![(1, 1)]),
(1, 1, bob.clone(), vec![(1, 1)]),
(2, 4, bob.clone(), vec![]),
(1, 4, charlie.clone(), vec![(2, 0)]),
(1, 4, dave.clone(), vec![(4, 0), (1, 1), (1, 0)]),
(1, 1, dave.clone(), vec![(1, 1), (1, 0)]),
(3, 4, dave.clone(), vec![(4, 0)]),
(1, 4, eve.clone(), vec![(2, 0)]),
(1, 1, eve.clone(), vec![]),
(3, 4, eve.clone(), vec![]),
(1, 4, ferdie.clone(), vec![]),
];
(remote_client, local_roots, test_cases)
}
fn client_initializes_from_genesis_ok() {
let client = test_client::new();
assert_eq!(
client.runtime_api().balance_of(
&BlockId::Number(client.info().unwrap().chain.best_number),
AccountKeyring::Alice.into()
).unwrap(),
1000
);
assert_eq!(
client.runtime_api().balance_of(
&BlockId::Number(client.info().unwrap().chain.best_number),
AccountKeyring::Ferdie.into()
).unwrap(),
0
);
}
#[test]
fn block_builder_works_with_no_transactions() {
let client = test_client::new();
let builder = client.new_block().unwrap();
client.import(BlockOrigin::Own, builder.bake().unwrap()).unwrap();
assert_eq!(client.info().unwrap().chain.best_number, 1);
}
#[test]
fn block_builder_works_with_transactions() {
let client = test_client::new();
let mut builder = client.new_block().unwrap();
builder.push_transfer(Transfer {
from: AccountKeyring::Alice.into(),
to: AccountKeyring::Ferdie.into(),
client.import(BlockOrigin::Own, builder.bake().unwrap()).unwrap();
assert_eq!(client.info().unwrap().chain.best_number, 1);
assert!(client.state_at(&BlockId::Number(1)).unwrap().pairs() != client.state_at(&BlockId::Number(0)).unwrap().pairs());
assert_eq!(
client.runtime_api().balance_of(
&BlockId::Number(client.info().unwrap().chain.best_number),
AccountKeyring::Alice.into()
).unwrap(),
958
);
assert_eq!(
client.runtime_api().balance_of(
&BlockId::Number(client.info().unwrap().chain.best_number),
AccountKeyring::Ferdie.into()
).unwrap(),
42
);
#[test]
fn block_builder_does_not_include_invalid() {
let client = test_client::new();
let mut builder = client.new_block().unwrap();
builder.push_transfer(Transfer {
from: AccountKeyring::Alice.into(),
to: AccountKeyring::Ferdie.into(),
assert!(builder.push_transfer(Transfer {
from: AccountKeyring::Eve.into(),
to: AccountKeyring::Alice.into(),
client.import(BlockOrigin::Own, builder.bake().unwrap()).unwrap();
assert_eq!(client.info().unwrap().chain.best_number, 1);
assert!(client.state_at(&BlockId::Number(1)).unwrap().pairs() != client.state_at(&BlockId::Number(0)).unwrap().pairs());
assert_eq!(client.body(&BlockId::Number(1)).unwrap().unwrap().len(), 1)
}
#[test]
fn best_containing_with_genesis_block() {
// block tree:
// G
let client = test_client::new();
let genesis_hash = client.info().unwrap().chain.genesis_hash;
let longest_chain_select = test_client::client::LongestChain::new(
client.backend().clone(),
client.import_lock()
);
assert_eq!(genesis_hash.clone(), longest_chain_select.finality_target(
genesis_hash.clone(), None).unwrap().unwrap());
}
#[test]
fn best_containing_with_hash_not_found() {
// block tree:
// G
let client = test_client::new();
let uninserted_block = client.new_block().unwrap().bake().unwrap();
let backend = client.backend().as_in_memory();
let longest_chain_select = test_client::client::LongestChain::new(
Arc::new(backend),
client.import_lock());
assert_eq!(None, longest_chain_select.finality_target(
uninserted_block.hash().clone(), None).unwrap());
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
#[test]
fn uncles_with_only_ancestors() {
// block tree:
// G -> A1 -> A2
let client = test_client::new();
// G -> A1
let a1 = client.new_block().unwrap().bake().unwrap();
client.import(BlockOrigin::Own, a1.clone()).unwrap();
// A1 -> A2
let a2 = client.new_block().unwrap().bake().unwrap();
client.import(BlockOrigin::Own, a2.clone()).unwrap();
let v: Vec<H256> = Vec::new();
assert_eq!(v, client.uncles(a2.hash(), 3).unwrap());
}
#[test]
fn uncles_with_multiple_forks() {
// block tree:
// G -> A1 -> A2 -> A3 -> A4 -> A5
// A1 -> B2 -> B3 -> B4
// B2 -> C3
// A1 -> D2
let client = test_client::new();
// G -> A1
let a1 = client.new_block().unwrap().bake().unwrap();
client.import(BlockOrigin::Own, a1.clone()).unwrap();
// A1 -> A2
let a2 = client.new_block_at(&BlockId::Hash(a1.hash())).unwrap().bake().unwrap();
client.import(BlockOrigin::Own, a2.clone()).unwrap();
// A2 -> A3
let a3 = client.new_block_at(&BlockId::Hash(a2.hash())).unwrap().bake().unwrap();
client.import(BlockOrigin::Own, a3.clone()).unwrap();
// A3 -> A4
let a4 = client.new_block_at(&BlockId::Hash(a3.hash())).unwrap().bake().unwrap();
client.import(BlockOrigin::Own, a4.clone()).unwrap();
// A4 -> A5
let a5 = client.new_block_at(&BlockId::Hash(a4.hash())).unwrap().bake().unwrap();
client.import(BlockOrigin::Own, a5.clone()).unwrap();
// A1 -> B2
let mut builder = client.new_block_at(&BlockId::Hash(a1.hash())).unwrap();
// this push is required as otherwise B2 has the same hash as A2 and won't get imported
builder.push_transfer(Transfer {
from: AccountKeyring::Alice.into(),
to: AccountKeyring::Ferdie.into(),
amount: 41,
nonce: 0,
}).unwrap();
let b2 = builder.bake().unwrap();
client.import(BlockOrigin::Own, b2.clone()).unwrap();
// B2 -> B3
let b3 = client.new_block_at(&BlockId::Hash(b2.hash())).unwrap().bake().unwrap();
client.import(BlockOrigin::Own, b3.clone()).unwrap();
// B3 -> B4
let b4 = client.new_block_at(&BlockId::Hash(b3.hash())).unwrap().bake().unwrap();
client.import(BlockOrigin::Own, b4.clone()).unwrap();
// // B2 -> C3
let mut builder = client.new_block_at(&BlockId::Hash(b2.hash())).unwrap();
// this push is required as otherwise C3 has the same hash as B3 and won't get imported
builder.push_transfer(Transfer {
from: AccountKeyring::Alice.into(),
to: AccountKeyring::Ferdie.into(),
amount: 1,
nonce: 1,
}).unwrap();
let c3 = builder.bake().unwrap();
client.import(BlockOrigin::Own, c3.clone()).unwrap();
// A1 -> D2
let mut builder = client.new_block_at(&BlockId::Hash(a1.hash())).unwrap();
// this push is required as otherwise D2 has the same hash as B2 and won't get imported
builder.push_transfer(Transfer {
from: AccountKeyring::Alice.into(),
to: AccountKeyring::Ferdie.into(),
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
amount: 1,
nonce: 0,
}).unwrap();
let d2 = builder.bake().unwrap();
client.import(BlockOrigin::Own, d2.clone()).unwrap();
let genesis_hash = client.info().unwrap().chain.genesis_hash;
let uncles1 = client.uncles(a4.hash(), 10).unwrap();
assert_eq!(vec![b2.hash(), d2.hash()], uncles1);
let uncles2 = client.uncles(a4.hash(), 0).unwrap();
assert_eq!(0, uncles2.len());
let uncles3 = client.uncles(a1.hash(), 10).unwrap();
assert_eq!(0, uncles3.len());
let uncles4 = client.uncles(genesis_hash, 10).unwrap();
assert_eq!(0, uncles4.len());
let uncles5 = client.uncles(d2.hash(), 10).unwrap();
assert_eq!(vec![a2.hash(), b2.hash()], uncles5);
let uncles6 = client.uncles(b3.hash(), 1).unwrap();
assert_eq!(vec![c3.hash()], uncles6);
}
fn best_containing_on_longest_chain_with_single_chain_3_blocks() {
// block tree:
// G -> A1 -> A2
let client = test_client::new();
// G -> A1
let a1 = client.new_block().unwrap().bake().unwrap();
client.import(BlockOrigin::Own, a1.clone()).unwrap();
// A1 -> A2
let a2 = client.new_block().unwrap().bake().unwrap();
client.import(BlockOrigin::Own, a2.clone()).unwrap();
let genesis_hash = client.info().unwrap().chain.genesis_hash;
let longest_chain_select = test_client::client::LongestChain::new(
Arc::new(client.backend().as_in_memory()),
client.import_lock());
assert_eq!(a2.hash(), longest_chain_select.finality_target(
genesis_hash, None).unwrap().unwrap());
assert_eq!(a2.hash(), longest_chain_select.finality_target(
a1.hash(), None).unwrap().unwrap());
assert_eq!(a2.hash(), longest_chain_select.finality_target(
a2.hash(), None).unwrap().unwrap());
fn best_containing_on_longest_chain_with_multiple_forks() {
// block tree:
// G -> A1 -> A2 -> A3 -> A4 -> A5