Newer
Older
assert_eq!(enacted.last().map(|e| e.hash), Some(block));
operation.op.mark_finalized(BlockId::Hash(block), justification)?;
if notify {
// sometimes when syncing, tons of blocks can be finalized at once.
// we'll send notifications spuriously in that case.
const MAX_TO_NOTIFY: usize = 256;
let enacted = route_from_finalized.enacted();
let start = enacted.len() - ::std::cmp::min(enacted.len(), MAX_TO_NOTIFY);
for finalized in &enacted[start..] {
operation.notify_finalized.push(finalized.hash);
}
}
Ok(())
}
fn notify_finalized(
&self,
notify_finalized: Vec<Block::Hash>,
) -> error::Result<()> {
let mut sinks = self.finality_notification_sinks.lock();
for finalized_hash in notify_finalized {
let header = self.header(&BlockId::Hash(finalized_hash))?
.expect("header already known to exist in DB because it is indicated in the tree route; qed");
telemetry!(SUBSTRATE_INFO; "notify.finalized";
"height" => format!("{}", header.number()),
"best" => ?finalized_hash,
);
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
let notification = FinalityNotification {
header,
hash: finalized_hash,
};
sinks.retain(|sink| sink.unbounded_send(notification.clone()).is_ok());
}
Ok(())
}
fn notify_imported(
&self,
notify_import: (Block::Hash, BlockOrigin, Block::Header, bool, Option<Vec<(Vec<u8>, Option<Vec<u8>>)>>),
) -> error::Result<()> {
let (hash, origin, header, is_new_best, storage_changes) = notify_import;
if let Some(storage_changes) = storage_changes {
// TODO [ToDr] How to handle re-orgs? Should we re-emit all storage changes?
self.storage_notifications.lock()
.trigger(&hash, storage_changes.into_iter());
}
let notification = BlockImportNotification::<Block> {
hash,
origin,
header,
is_new_best,
};
self.import_notification_sinks.lock()
.retain(|sink| sink.unbounded_send(notification.clone()).is_ok());
Ok(())
}
/// Apply auxiliary data insertion into an operation.
pub fn apply_aux<
'a,
'b: 'a,
'c: 'a,
I: IntoIterator<Item=&'a(&'c [u8], &'c [u8])>,
D: IntoIterator<Item=&'a &'b [u8]>,
>(
&self,
operation: &mut ClientImportOperation<Block, Blake2Hasher, B>,
insert: I,
delete: D
) -> error::Result<()> {
operation.op.insert_aux(
insert.into_iter()
.map(|(k, v)| (k.to_vec(), Some(v.to_vec())))
.chain(delete.into_iter().map(|k| (k.to_vec(), None)))
)
}
/// Mark all blocks up to given as finalized in operation. If a
/// justification is provided it is stored with the given finalized
/// block (any other finalized blocks are left unjustified).
pub fn apply_finality(
&self,
operation: &mut ClientImportOperation<Block, Blake2Hasher, B>,
id: BlockId<Block>,
justification: Option<Justification>,
notify: bool,
) -> error::Result<()> {
let last_best = self.backend.blockchain().info()?.best_hash;
let to_finalize_hash = self.backend.blockchain().expect_block_hash_from_id(&id)?;
self.apply_finality_with_block_hash(operation, to_finalize_hash, justification, last_best, notify)
}
/// Finalize a block. This will implicitly finalize all blocks up to it and
/// fire finality notifications.
///
/// Pass a flag to indicate whether finality notifications should be propagated.
/// This is usually tied to some synchronization state, where we don't send notifications
/// while performing major synchronization work.
pub fn finalize_block(&self, id: BlockId<Block>, justification: Option<Justification>, notify: bool) -> error::Result<()> {
self.lock_import_and_run(|operation| {
let last_best = self.backend.blockchain().info()?.best_hash;
let to_finalize_hash = self.backend.blockchain().expect_block_hash_from_id(&id)?;
self.apply_finality_with_block_hash(operation, to_finalize_hash, justification, last_best, notify)
})
/// Attempts to revert the chain by `n` blocks. Returns the number of blocks that were
/// successfully reverted.
pub fn revert(&self, n: NumberFor<Block>) -> error::Result<NumberFor<Block>> {
Ok(self.backend.revert(n)?)
}
pub fn info(&self) -> error::Result<ClientInfo<Block>> {
let info = self.backend.blockchain().info().map_err(|e| error::Error::from_blockchain(Box::new(e)))?;
Ok(ClientInfo {
chain: info,
best_queued_hash: None,
best_queued_number: None,
})
}
/// Get block status.
pub fn block_status(&self, id: &BlockId<Block>) -> error::Result<BlockStatus> {
// this can probably be implemented more efficiently
if let BlockId::Hash(ref h) = id {
if self.importing_block.read().as_ref().map_or(false, |importing| h == importing) {
return Ok(BlockStatus::Queued);
}
}
let hash_and_number = match id.clone() {
BlockId::Hash(hash) => self.backend.blockchain().number(hash)?.map(|n| (hash, n)),
BlockId::Number(n) => self.backend.blockchain().hash(n)?.map(|hash| (hash, n)),
};
match hash_and_number {
Some((hash, number)) => {
if self.backend.have_state_at(&hash, number) {
Ok(BlockStatus::InChainWithState)
} else {
Ok(BlockStatus::InChainPruned)
}
}
None => Ok(BlockStatus::Unknown),
}
}
/// Get block header by id.
pub fn header(&self, id: &BlockId<Block>) -> error::Result<Option<<Block as BlockT>::Header>> {
self.backend.blockchain().header(*id)
}
/// Get block body by id.
pub fn body(&self, id: &BlockId<Block>) -> error::Result<Option<Vec<<Block as BlockT>::Extrinsic>>> {
self.backend.blockchain().body(*id)
}
/// Get block justification set by id.
pub fn justification(&self, id: &BlockId<Block>) -> error::Result<Option<Justification>> {
self.backend.blockchain().justification(*id)
}
pub fn block(&self, id: &BlockId<Block>)
-> error::Result<Option<SignedBlock<Block>>>
Ok(match (self.header(id)?, self.body(id)?, self.justification(id)?) {
(Some(header), Some(extrinsics), justification) =>
Some(SignedBlock { block: Block::new(header, extrinsics), justification }),
/// Gets the uncles of the block with `target_hash` going back `max_generation` ancestors.
pub fn uncles(&self, target_hash: Block::Hash, max_generation: NumberFor<Block>) -> error::Result<Vec<Block::Hash>> {
let load_header = |id: Block::Hash| -> error::Result<Block::Header> {
match self.backend.blockchain().header(BlockId::Hash(id))? {
Some(hdr) => Ok(hdr),
None => Err(Error::UnknownBlock(format!("Unknown block {:?}", id))),
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
}
};
let genesis_hash = self.backend.blockchain().info()?.genesis_hash;
if genesis_hash == target_hash { return Ok(Vec::new()); }
let mut current_hash = target_hash;
let mut current = load_header(current_hash)?;
let mut ancestor_hash = *current.parent_hash();
let mut ancestor = load_header(ancestor_hash)?;
let mut uncles = Vec::new();
for _generation in 0..max_generation.as_() {
let children = self.backend.blockchain().children(ancestor_hash)?;
uncles.extend(children.into_iter().filter(|h| h != ¤t_hash));
current_hash = ancestor_hash;
if genesis_hash == current_hash { break; }
current = ancestor;
ancestor_hash = *current.parent_hash();
ancestor = load_header(ancestor_hash)?;
}
Ok(uncles)
}
fn changes_trie_config(&self) -> Result<Option<ChangesTrieConfiguration>, Error> {
Ok(self.backend.state_at(BlockId::Number(self.backend.blockchain().info()?.best_number))?
.storage(well_known_keys::CHANGES_TRIE_CONFIG)
.map_err(|e| error::Error::from_state(Box::new(e)))?
.and_then(|c| Decode::decode(&mut &*c)))
}
/// Prepare in-memory header that is used in execution environment.
fn prepare_environment_block(&self, parent: &BlockId<Block>) -> error::Result<Block::Header> {
Ok(<<Block as BlockT>::Header as HeaderT>::new(
self.backend.blockchain().expect_block_number_from_id(parent)? + As::sa(1),
Default::default(),
Default::default(),
self.backend.blockchain().expect_block_hash_from_id(&parent)?,
Default::default(),
))
}
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
impl<B, E, Block, RA> ChainHeaderBackend<Block> for Client<B, E, Block, RA> where
B: backend::Backend<Block, Blake2Hasher>,
E: CallExecutor<Block, Blake2Hasher> + Send + Sync,
Block: BlockT<Hash=H256>,
RA: Send + Sync
{
fn header(&self, id: BlockId<Block>) -> error::Result<Option<Block::Header>> {
self.backend.blockchain().header(id)
}
fn info(&self) -> error::Result<blockchain::Info<Block>> {
self.backend.blockchain().info()
}
fn status(&self, id: BlockId<Block>) -> error::Result<blockchain::BlockStatus> {
self.backend.blockchain().status(id)
}
fn number(&self, hash: Block::Hash) -> error::Result<Option<<<Block as BlockT>::Header as HeaderT>::Number>> {
self.backend.blockchain().number(hash)
}
fn hash(&self, number: NumberFor<Block>) -> error::Result<Option<Block::Hash>> {
self.backend.blockchain().hash(number)
}
}
impl<B, E, Block, RA> ProvideCache<Block> for Client<B, E, Block, RA> where
B: backend::Backend<Block, Blake2Hasher>,
Block: BlockT<Hash=H256>,
{
fn cache(&self) -> Option<Arc<Cache<Block>>> {
self.backend.blockchain().cache()
}
}
impl<B, E, Block, RA> ProvideRuntimeApi for Client<B, E, Block, RA> where
B: backend::Backend<Block, Blake2Hasher>,
E: CallExecutor<Block, Blake2Hasher> + Clone + Send + Sync,
RA: ConstructRuntimeApi<Block, Self>
type Api = <RA as ConstructRuntimeApi<Block, Self>>::RuntimeApi;
fn runtime_api<'a>(&'a self) -> ApiRef<'a, Self::Api> {
RA::construct_runtime_api(self)
}
}
impl<B, E, Block, RA> CallRuntimeAt<Block> for Client<B, E, Block, RA> where
B: backend::Backend<Block, Blake2Hasher>,
E: CallExecutor<Block, Blake2Hasher> + Clone + Send + Sync,
Bastian Köcher
committed
fn call_api_at<
R: Encode + Decode + PartialEq,
NC: FnOnce() -> result::Result<R, &'static str> + UnwindSafe,
Bastian Köcher
committed
>(
&self,
at: &BlockId<Block>,
function: &'static str,
args: Vec<u8>,
changes: &RefCell<OverlayedChanges>,
initialize_block: InitializeBlock<'a, Block>,
native_call: Option<NC>,
recorder: &Option<Rc<RefCell<ProofRecorder<Block>>>>,
) -> error::Result<NativeOrEncoded<R>> {
let manager = match context {
ExecutionContext::BlockConstruction =>
self.execution_strategies.block_construction.get_manager(),
ExecutionContext::Syncing =>
self.execution_strategies.syncing.get_manager(),
ExecutionContext::Importing =>
self.execution_strategies.importing.get_manager(),
ExecutionContext::OffchainWorker(_) =>
self.execution_strategies.offchain_worker.get_manager(),
ExecutionContext::Other =>
self.execution_strategies.other.get_manager(),
let mut offchain_extensions = match context {
ExecutionContext::OffchainWorker(ext) => Some(ext),
_ => None,
};
self.executor.contextual_call::<_, _, fn(_,_) -> _,_,_>(
|| core_api.initialize_block(at, &self.prepare_environment_block(at)?),
at,
function,
&args,
changes,
fn runtime_version_at(&self, at: &BlockId<Block>) -> error::Result<RuntimeVersion> {
self.runtime_version_at(at)
}
}
impl<B, E, Block, RA> consensus::BlockImport<Block> for Client<B, E, Block, RA> where
B: backend::Backend<Block, Blake2Hasher>,
E: CallExecutor<Block, Blake2Hasher> + Clone + Send + Sync,
Block: BlockT<Hash=H256>,
type Error = ConsensusError;
/// Import a checked and validated block. If a justification is provided in
/// `ImportBlock` then `finalized` *must* be true.
fn import_block(
&self,
import_block: ImportBlock<Block>,
new_cache: HashMap<CacheKeyId, Vec<u8>>,
) -> Result<ImportResult, Self::Error> {
self.lock_import_and_run(|operation| {
self.apply_block(operation, import_block, new_cache)
}).map_err(|e| ConsensusErrorKind::ClientImport(e.to_string()).into())
/// Check block preconditions.
fn check_block(
&self,
hash: Block::Hash,
parent_hash: Block::Hash,
) -> Result<ImportResult, Self::Error> {
match self.block_status(&BlockId::Hash(parent_hash))
.map_err(|e| ConsensusError::from(ConsensusErrorKind::ClientImport(e.to_string())))?
{
BlockStatus::InChainWithState | BlockStatus::Queued => {},
BlockStatus::Unknown | BlockStatus::InChainPruned => return Ok(ImportResult::UnknownParent),
BlockStatus::KnownBad => return Ok(ImportResult::KnownBad),
match self.block_status(&BlockId::Hash(hash))
.map_err(|e| ConsensusError::from(ConsensusErrorKind::ClientImport(e.to_string())))?
{
BlockStatus::InChainWithState | BlockStatus::Queued => return Ok(ImportResult::AlreadyInChain),
BlockStatus::Unknown | BlockStatus::InChainPruned => {},
BlockStatus::KnownBad => return Ok(ImportResult::KnownBad),
Ok(ImportResult::imported())
impl<B, E, Block, RA> CurrentHeight for Client<B, E, Block, RA> where
B: backend::Backend<Block, Blake2Hasher>,
E: CallExecutor<Block, Blake2Hasher>,
{
type BlockNumber = <Block::Header as HeaderT>::Number;
fn current_height(&self) -> Self::BlockNumber {
self.backend.blockchain().info().map(|i| i.best_number).unwrap_or_else(|_| Zero::zero())
}
}
impl<B, E, Block, RA> BlockNumberToHash for Client<B, E, Block, RA> where
B: backend::Backend<Block, Blake2Hasher>,
E: CallExecutor<Block, Blake2Hasher>,
{
type BlockNumber = <Block::Header as HeaderT>::Number;
type Hash = Block::Hash;
fn block_number_to_hash(&self, n: Self::BlockNumber) -> Option<Self::Hash> {
self.block_hash(n).unwrap_or(None)
}
}
impl<B, E, Block, RA> BlockchainEvents<Block> for Client<B, E, Block, RA>
E: CallExecutor<Block, Blake2Hasher>,
fn import_notification_stream(&self) -> ImportNotifications<Block> {
let (sink, stream) = mpsc::unbounded();
self.import_notification_sinks.lock().push(sink);
stream
fn finality_notification_stream(&self) -> FinalityNotifications<Block> {
let (sink, stream) = mpsc::unbounded();
self.finality_notification_sinks.lock().push(sink);
stream
}
/// Get storage changes event stream.
fn storage_changes_notification_stream(&self, filter_keys: Option<&[StorageKey]>) -> error::Result<StorageEventStream<Block::Hash>> {
Ok(self.storage_notifications.lock().listen(filter_keys))
}
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
/// Implement Longest Chain Select implementation
/// where 'longest' is defined as the highest number of blocks
pub struct LongestChain<B, Block> {
backend: Arc<B>,
import_lock: Arc<Mutex<()>>,
_phantom: PhantomData<Block>
}
impl<B, Block> Clone for LongestChain<B, Block> {
fn clone(&self) -> Self {
let backend = self.backend.clone();
let import_lock = self.import_lock.clone();
LongestChain {
backend,
import_lock,
_phantom: Default::default()
}
}
}
impl<B, Block> LongestChain<B, Block>
B: backend::Backend<Block, Blake2Hasher>,
/// Instantiate a new LongestChain for Backend B
pub fn new(backend: Arc<B>, import_lock: Arc<Mutex<()>>) -> Self {
LongestChain {
backend,
import_lock,
_phantom: Default::default()
}
}
fn best_block_header(&self) -> error::Result<<Block as BlockT>::Header> {
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
let info : ChainInfo<Block> = match self.backend.blockchain().info() {
Ok(i) => i,
Err(e) => return Err(error::Error::from_blockchain(Box::new(e)))
};
Ok(self.backend.blockchain().header(BlockId::Hash(info.best_hash))?
.expect("Best block header must always exist"))
}
/// Get the most recent block hash of the best (longest) chains
/// that contain block with the given `target_hash`.
///
/// The search space is always limited to blocks which are in the finalized
/// chain or descendents of it.
///
/// If `maybe_max_block_number` is `Some(max_block_number)`
/// the search is limited to block `numbers <= max_block_number`.
/// in other words as if there were no blocks greater `max_block_number`.
/// Returns `Ok(None)` if `target_hash` is not found in search space.
/// TODO: document time complexity of this, see [#1444](https://github.com/paritytech/substrate/issues/1444)
fn best_containing(
&self,
target_hash: Block::Hash,
maybe_max_number: Option<NumberFor<Block>>
) -> error::Result<Option<Block::Hash>> {
let target_header = {
match self.backend.blockchain().header(BlockId::Hash(target_hash))? {
Some(x) => x,
// target not in blockchain
None => { return Ok(None); },
}
};
if let Some(max_number) = maybe_max_number {
// target outside search range
if target_header.number() > &max_number {
return Ok(None);
}
}
let (leaves, best_already_checked) = {
// ensure no blocks are imported during this code block.
// an import could trigger a reorg which could change the canonical chain.
// we depend on the canonical chain staying the same during this code block.
let _import_lock = self.import_lock.lock();
let info = self.backend.blockchain().info()?;
let canon_hash = self.backend.blockchain().hash(*target_header.number())?
.ok_or_else(|| error::Error::from(format!("failed to get hash for block number {}", target_header.number())))?;
if canon_hash == target_hash {
// if no block at the given max depth exists fallback to the best block
if let Some(max_number) = maybe_max_number {
if let Some(header) = self.backend.blockchain().hash(max_number)? {
return Ok(Some(header));
}
}
return Ok(Some(info.best_hash));
} else if info.finalized_number >= *target_header.number() {
// header is on a dead fork.
return Ok(None);
}
(self.backend.blockchain().leaves()?, info.best_hash)
};
// for each chain. longest chain first. shortest last
for leaf_hash in leaves {
// ignore canonical chain which we already checked above
if leaf_hash == best_already_checked {
continue;
}
// start at the leaf
let mut current_hash = leaf_hash;
// if search is not restricted then the leaf is the best
let mut best_hash = leaf_hash;
// go backwards entering the search space
// waiting until we are <= max_number
if let Some(max_number) = maybe_max_number {
loop {
let current_header = self.backend.blockchain().header(BlockId::Hash(current_hash.clone()))?
.ok_or_else(|| error::Error::from(format!("failed to get header for hash {}", current_hash)))?;
if current_header.number() <= &max_number {
best_hash = current_header.hash();
break;
}
current_hash = *current_header.parent_hash();
}
}
// go backwards through the chain (via parent links)
loop {
// until we find target
if current_hash == target_hash {
return Ok(Some(best_hash));
}
let current_header = self.backend.blockchain().header(BlockId::Hash(current_hash.clone()))?
.ok_or_else(|| error::Error::from(format!("failed to get header for hash {}", current_hash)))?;
// stop search in this chain once we go below the target's block number
if current_header.number() < target_header.number() {
break;
}
current_hash = *current_header.parent_hash();
}
}
// header may be on a dead fork -- the only leaves that are considered are
// those which can still be finalized.
//
// FIXME #1558 only issue this warning when not on a dead fork
warn!(
"Block {:?} exists in chain but not found when following all \
leaves backwards. Number limit = {:?}",
target_hash,
maybe_max_number,
);
Ok(None)
fn leaves(&self) -> Result<Vec<<Block as BlockT>::Hash>, error::Error> {
self.backend.blockchain().leaves()
}
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
impl<B, Block> SelectChain<Block> for LongestChain<B, Block>
where
B: backend::Backend<Block, Blake2Hasher>,
Block: BlockT<Hash=H256>,
{
fn leaves(&self) -> Result<Vec<<Block as BlockT>::Hash>, ConsensusError> {
LongestChain::leaves(self)
.map_err(|e| ConsensusErrorKind::ChainLookup(e.to_string()).into())
}
fn best_chain(&self)
-> Result<<Block as BlockT>::Header, ConsensusError>
{
LongestChain::best_block_header(&self)
.map_err(|e| ConsensusErrorKind::ChainLookup(e.to_string()).into())
}
fn finality_target(
&self,
target_hash: Block::Hash,
maybe_max_number: Option<NumberFor<Block>>
) -> Result<Option<Block::Hash>, ConsensusError> {
LongestChain::best_containing(self, target_hash, maybe_max_number)
.map_err(|e| ConsensusErrorKind::ChainLookup(e.to_string()).into())
}
}
impl<B, E, Block, RA> BlockBody<Block> for Client<B, E, Block, RA>
where
B: backend::Backend<Block, Blake2Hasher>,
E: CallExecutor<Block, Blake2Hasher>,
Block: BlockT<Hash=H256>,
{
fn block_body(&self, id: &BlockId<Block>) -> error::Result<Option<Vec<<Block as BlockT>::Extrinsic>>> {
self.body(id)
}
}
impl<B, E, Block, RA> backend::AuxStore for Client<B, E, Block, RA>
where
B: backend::Backend<Block, Blake2Hasher>,
E: CallExecutor<Block, Blake2Hasher>,
Block: BlockT<Hash=H256>,
{
/// Insert auxiliary data into key-value store.
fn insert_aux<
'a,
'b: 'a,
'c: 'a,
I: IntoIterator<Item=&'a(&'c [u8], &'c [u8])>,
D: IntoIterator<Item=&'a &'b [u8]>,
>(&self, insert: I, delete: D) -> error::Result<()> {
// Import is locked here because we may have other block import
// operations that tries to set aux data. Note that for consensus
// layer, one can always use atomic operations to make sure
// import is only locked once.
self.lock_import_and_run(|operation| {
self.apply_aux(operation, insert, delete)
})
}
/// Query auxiliary data from key-value store.
fn get_aux(&self, key: &[u8]) -> error::Result<Option<Vec<u8>>> {
crate::backend::AuxStore::get_aux(&*self.backend, key)
pub(crate) mod tests {
use std::collections::HashMap;
use primitives::blake2_256;
use runtime_primitives::traits::DigestItem as DigestItemT;
use runtime_primitives::generic::DigestItem;
use test_client::{self, TestClient, AccountKeyring};
use consensus::{BlockOrigin, SelectChain};
use test_client::client::backend::Backend as TestBackend;
use test_client::runtime::{self, Block, Transfer, RuntimeApi, TestAPI};
/// Returns tuple, consisting of:
/// 1) test client pre-filled with blocks changing balances;
/// 2) roots of changes tries for these blocks
/// 3) test cases in form (begin, end, key, vec![(block, extrinsic)]) that are required to pass
pub fn prepare_client_with_key_changes() -> (
Bastian Köcher
committed
test_client::client::Client<test_client::Backend, test_client::Executor, Block, RuntimeApi>,
Vec<H256>,
Vec<(u64, u64, Vec<u8>, Vec<(u64, u32)>)>,
) {
// prepare block structure
let blocks_transfers = vec![
vec![(AccountKeyring::Alice, AccountKeyring::Dave), (AccountKeyring::Bob, AccountKeyring::Dave)],
vec![(AccountKeyring::Charlie, AccountKeyring::Eve)],
vec![(AccountKeyring::Alice, AccountKeyring::Dave)],
];
// prepare client ang import blocks
let mut local_roots = Vec::new();
let remote_client = test_client::new_with_changes_trie();
let mut nonces: HashMap<_, u64> = Default::default();
for (i, block_transfers) in blocks_transfers.into_iter().enumerate() {
let mut builder = remote_client.new_block().unwrap();
for (from, to) in block_transfers {
builder.push_transfer(Transfer {
from: from.into(),
to: to.into(),
amount: 1,
nonce: *nonces.entry(from).and_modify(|n| { *n = *n + 1 }).or_default(),
}).unwrap();
}
remote_client.import(BlockOrigin::Own, builder.bake().unwrap()).unwrap();
let header = remote_client.header(&BlockId::Number(i as u64 + 1)).unwrap().unwrap();
let trie_root = header.digest().log(DigestItem::as_changes_trie_root)
.map(|root| H256::from_slice(root.as_ref()))
.unwrap();
local_roots.push(trie_root);
}
// prepare test cases
let alice = blake2_256(&runtime::system::balance_of_key(AccountKeyring::Alice.into())).to_vec();
let bob = blake2_256(&runtime::system::balance_of_key(AccountKeyring::Bob.into())).to_vec();
let charlie = blake2_256(&runtime::system::balance_of_key(AccountKeyring::Charlie.into())).to_vec();
let dave = blake2_256(&runtime::system::balance_of_key(AccountKeyring::Dave.into())).to_vec();
let eve = blake2_256(&runtime::system::balance_of_key(AccountKeyring::Eve.into())).to_vec();
let ferdie = blake2_256(&runtime::system::balance_of_key(AccountKeyring::Ferdie.into())).to_vec();
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
let test_cases = vec![
(1, 4, alice.clone(), vec![(4, 0), (1, 0)]),
(1, 3, alice.clone(), vec![(1, 0)]),
(2, 4, alice.clone(), vec![(4, 0)]),
(2, 3, alice.clone(), vec![]),
(1, 4, bob.clone(), vec![(1, 1)]),
(1, 1, bob.clone(), vec![(1, 1)]),
(2, 4, bob.clone(), vec![]),
(1, 4, charlie.clone(), vec![(2, 0)]),
(1, 4, dave.clone(), vec![(4, 0), (1, 1), (1, 0)]),
(1, 1, dave.clone(), vec![(1, 1), (1, 0)]),
(3, 4, dave.clone(), vec![(4, 0)]),
(1, 4, eve.clone(), vec![(2, 0)]),
(1, 1, eve.clone(), vec![]),
(3, 4, eve.clone(), vec![]),
(1, 4, ferdie.clone(), vec![]),
];
(remote_client, local_roots, test_cases)
}
fn client_initializes_from_genesis_ok() {
let client = test_client::new();
assert_eq!(
client.runtime_api().balance_of(
&BlockId::Number(client.info().unwrap().chain.best_number),
AccountKeyring::Alice.into()
).unwrap(),
1000
);
assert_eq!(
client.runtime_api().balance_of(
&BlockId::Number(client.info().unwrap().chain.best_number),
AccountKeyring::Ferdie.into()
).unwrap(),
0
);
}
#[test]
fn block_builder_works_with_no_transactions() {
let client = test_client::new();
let builder = client.new_block().unwrap();
client.import(BlockOrigin::Own, builder.bake().unwrap()).unwrap();
assert_eq!(client.info().unwrap().chain.best_number, 1);
}
#[test]
fn block_builder_works_with_transactions() {
let client = test_client::new();
let mut builder = client.new_block().unwrap();
builder.push_transfer(Transfer {
from: AccountKeyring::Alice.into(),
to: AccountKeyring::Ferdie.into(),
client.import(BlockOrigin::Own, builder.bake().unwrap()).unwrap();
assert_eq!(client.info().unwrap().chain.best_number, 1);
assert!(client.state_at(&BlockId::Number(1)).unwrap().pairs() != client.state_at(&BlockId::Number(0)).unwrap().pairs());
assert_eq!(
client.runtime_api().balance_of(
&BlockId::Number(client.info().unwrap().chain.best_number),
AccountKeyring::Alice.into()
).unwrap(),
958
);
assert_eq!(
client.runtime_api().balance_of(
&BlockId::Number(client.info().unwrap().chain.best_number),
AccountKeyring::Ferdie.into()
).unwrap(),
42
);
#[test]
fn block_builder_does_not_include_invalid() {
let client = test_client::new();
let mut builder = client.new_block().unwrap();
builder.push_transfer(Transfer {
from: AccountKeyring::Alice.into(),
to: AccountKeyring::Ferdie.into(),
assert!(builder.push_transfer(Transfer {
from: AccountKeyring::Eve.into(),
to: AccountKeyring::Alice.into(),
client.import(BlockOrigin::Own, builder.bake().unwrap()).unwrap();
assert_eq!(client.info().unwrap().chain.best_number, 1);
assert!(client.state_at(&BlockId::Number(1)).unwrap().pairs() != client.state_at(&BlockId::Number(0)).unwrap().pairs());
assert_eq!(client.body(&BlockId::Number(1)).unwrap().unwrap().len(), 1)
}
#[test]
fn best_containing_with_genesis_block() {
// block tree:
// G
let client = test_client::new();
let genesis_hash = client.info().unwrap().chain.genesis_hash;
let longest_chain_select = test_client::client::LongestChain::new(
client.backend().clone(),
client.import_lock()
);
assert_eq!(genesis_hash.clone(), longest_chain_select.finality_target(
genesis_hash.clone(), None).unwrap().unwrap());
}
#[test]
fn best_containing_with_hash_not_found() {
// block tree:
// G
let client = test_client::new();
let uninserted_block = client.new_block().unwrap().bake().unwrap();
let backend = client.backend().as_in_memory();
let longest_chain_select = test_client::client::LongestChain::new(
Arc::new(backend),
client.import_lock());
assert_eq!(None, longest_chain_select.finality_target(
uninserted_block.hash().clone(), None).unwrap());
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
#[test]
fn uncles_with_only_ancestors() {
// block tree:
// G -> A1 -> A2
let client = test_client::new();
// G -> A1
let a1 = client.new_block().unwrap().bake().unwrap();
client.import(BlockOrigin::Own, a1.clone()).unwrap();
// A1 -> A2
let a2 = client.new_block().unwrap().bake().unwrap();
client.import(BlockOrigin::Own, a2.clone()).unwrap();
let v: Vec<H256> = Vec::new();
assert_eq!(v, client.uncles(a2.hash(), 3).unwrap());
}
#[test]
fn uncles_with_multiple_forks() {
// block tree:
// G -> A1 -> A2 -> A3 -> A4 -> A5
// A1 -> B2 -> B3 -> B4
// B2 -> C3
// A1 -> D2
let client = test_client::new();
// G -> A1
let a1 = client.new_block().unwrap().bake().unwrap();
client.import(BlockOrigin::Own, a1.clone()).unwrap();
// A1 -> A2
let a2 = client.new_block_at(&BlockId::Hash(a1.hash())).unwrap().bake().unwrap();
client.import(BlockOrigin::Own, a2.clone()).unwrap();
// A2 -> A3
let a3 = client.new_block_at(&BlockId::Hash(a2.hash())).unwrap().bake().unwrap();
client.import(BlockOrigin::Own, a3.clone()).unwrap();
// A3 -> A4
let a4 = client.new_block_at(&BlockId::Hash(a3.hash())).unwrap().bake().unwrap();
client.import(BlockOrigin::Own, a4.clone()).unwrap();
// A4 -> A5
let a5 = client.new_block_at(&BlockId::Hash(a4.hash())).unwrap().bake().unwrap();
client.import(BlockOrigin::Own, a5.clone()).unwrap();
// A1 -> B2
let mut builder = client.new_block_at(&BlockId::Hash(a1.hash())).unwrap();
// this push is required as otherwise B2 has the same hash as A2 and won't get imported
builder.push_transfer(Transfer {
from: AccountKeyring::Alice.into(),
to: AccountKeyring::Ferdie.into(),
amount: 41,
nonce: 0,
}).unwrap();
let b2 = builder.bake().unwrap();
client.import(BlockOrigin::Own, b2.clone()).unwrap();
// B2 -> B3
let b3 = client.new_block_at(&BlockId::Hash(b2.hash())).unwrap().bake().unwrap();
client.import(BlockOrigin::Own, b3.clone()).unwrap();
// B3 -> B4
let b4 = client.new_block_at(&BlockId::Hash(b3.hash())).unwrap().bake().unwrap();
client.import(BlockOrigin::Own, b4.clone()).unwrap();
// // B2 -> C3
let mut builder = client.new_block_at(&BlockId::Hash(b2.hash())).unwrap();
// this push is required as otherwise C3 has the same hash as B3 and won't get imported
builder.push_transfer(Transfer {
from: AccountKeyring::Alice.into(),
to: AccountKeyring::Ferdie.into(),
amount: 1,
nonce: 1,
}).unwrap();
let c3 = builder.bake().unwrap();
client.import(BlockOrigin::Own, c3.clone()).unwrap();
// A1 -> D2
let mut builder = client.new_block_at(&BlockId::Hash(a1.hash())).unwrap();
// this push is required as otherwise D2 has the same hash as B2 and won't get imported
builder.push_transfer(Transfer {
from: AccountKeyring::Alice.into(),
to: AccountKeyring::Ferdie.into(),
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
amount: 1,
nonce: 0,
}).unwrap();
let d2 = builder.bake().unwrap();
client.import(BlockOrigin::Own, d2.clone()).unwrap();
let genesis_hash = client.info().unwrap().chain.genesis_hash;
let uncles1 = client.uncles(a4.hash(), 10).unwrap();
assert_eq!(vec![b2.hash(), d2.hash()], uncles1);
let uncles2 = client.uncles(a4.hash(), 0).unwrap();
assert_eq!(0, uncles2.len());
let uncles3 = client.uncles(a1.hash(), 10).unwrap();
assert_eq!(0, uncles3.len());
let uncles4 = client.uncles(genesis_hash, 10).unwrap();
assert_eq!(0, uncles4.len());
let uncles5 = client.uncles(d2.hash(), 10).unwrap();
assert_eq!(vec![a2.hash(), b2.hash()], uncles5);
let uncles6 = client.uncles(b3.hash(), 1).unwrap();
assert_eq!(vec![c3.hash()], uncles6);
}
fn best_containing_on_longest_chain_with_single_chain_3_blocks() {