// Copyright 2017-2020 Parity Technologies (UK) Ltd.
// This file is part of Substrate.
// Substrate is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Substrate is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Substrate. If not, see .
// tag::description[]
//! Cryptographic utilities.
// end::description[]
use sp_std::hash::Hash;
use sp_std::vec::Vec;
#[cfg(feature = "std")]
use sp_std::convert::TryInto;
use sp_std::convert::TryFrom;
#[cfg(feature = "std")]
use parking_lot::Mutex;
#[cfg(feature = "std")]
use rand::{RngCore, rngs::OsRng};
use codec::{Encode, Decode};
#[cfg(feature = "std")]
use regex::Regex;
#[cfg(feature = "std")]
use base58::{FromBase58, ToBase58};
use zeroize::Zeroize;
#[doc(hidden)]
pub use sp_std::ops::Deref;
use sp_runtime_interface::pass_by::PassByInner;
/// The root phrase for our publicly known keys.
pub const DEV_PHRASE: &str = "bottom drive obey lake curtain smoke basket hold race lonely fit walk";
/// The address of the associated root phrase for our publicly known keys.
pub const DEV_ADDRESS: &str = "5DfhGyQdFobKM8NsWvEeAKk5EQQgYe9AydgJ7rMB6E1EqRzV";
/// The infallible type.
#[derive(crate::RuntimeDebug)]
pub enum Infallible {}
/// The length of the junction identifier. Note that this is also referred to as the
/// `CHAIN_CODE_LENGTH` in the context of Schnorrkel.
#[cfg(feature = "full_crypto")]
pub const JUNCTION_ID_LEN: usize = 32;
/// Similar to `From`, except that the onus is on the part of the caller to ensure
/// that data passed in makes sense. Basically, you're not guaranteed to get anything
/// sensible out.
pub trait UncheckedFrom {
/// Convert from an instance of `T` to Self. This is not guaranteed to be
/// whatever counts as a valid instance of `T` and it's up to the caller to
/// ensure that it makes sense.
fn unchecked_from(t: T) -> Self;
}
/// The counterpart to `UncheckedFrom`.
pub trait UncheckedInto {
/// The counterpart to `unchecked_from`.
fn unchecked_into(self) -> T;
}
impl> UncheckedInto for S {
fn unchecked_into(self) -> T {
T::unchecked_from(self)
}
}
/// A store for sensitive data.
///
/// Calls `Zeroize::zeroize` upon `Drop`.
#[derive(Clone)]
pub struct Protected(T);
impl AsRef for Protected {
fn as_ref(&self) -> &T {
&self.0
}
}
impl sp_std::ops::Deref for Protected {
type Target = T;
fn deref(&self) -> &T {
&self.0
}
}
#[cfg(feature = "std")]
impl std::fmt::Debug for Protected {
fn fmt(&self, fmt: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(fmt, "")
}
}
impl From for Protected {
fn from(t: T) -> Self {
Protected(t)
}
}
impl Zeroize for Protected {
fn zeroize(&mut self) {
self.0.zeroize()
}
}
impl Drop for Protected {
fn drop(&mut self) {
self.zeroize()
}
}
/// An error with the interpretation of a secret.
#[derive(Debug, Clone, PartialEq, Eq)]
#[cfg(feature = "full_crypto")]
pub enum SecretStringError {
/// The overall format was invalid (e.g. the seed phrase contained symbols).
InvalidFormat,
/// The seed phrase provided is not a valid BIP39 phrase.
InvalidPhrase,
/// The supplied password was invalid.
InvalidPassword,
/// The seed is invalid (bad content).
InvalidSeed,
/// The seed has an invalid length.
InvalidSeedLength,
/// The derivation path was invalid (e.g. contains soft junctions when they are not supported).
InvalidPath,
}
/// A since derivation junction description. It is the single parameter used when creating
/// a new secret key from an existing secret key and, in the case of `SoftRaw` and `SoftIndex`
/// a new public key from an existing public key.
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug, Encode, Decode)]
#[cfg(feature = "full_crypto")]
pub enum DeriveJunction {
/// Soft (vanilla) derivation. Public keys have a correspondent derivation.
Soft([u8; JUNCTION_ID_LEN]),
/// Hard ("hardened") derivation. Public keys do not have a correspondent derivation.
Hard([u8; JUNCTION_ID_LEN]),
}
#[cfg(feature = "full_crypto")]
impl DeriveJunction {
/// Consume self to return a soft derive junction with the same chain code.
pub fn soften(self) -> Self { DeriveJunction::Soft(self.unwrap_inner()) }
/// Consume self to return a hard derive junction with the same chain code.
pub fn harden(self) -> Self { DeriveJunction::Hard(self.unwrap_inner()) }
/// Create a new soft (vanilla) DeriveJunction from a given, encodable, value.
///
/// If you need a hard junction, use `hard()`.
pub fn soft(index: T) -> Self {
let mut cc: [u8; JUNCTION_ID_LEN] = Default::default();
index.using_encoded(|data| if data.len() > JUNCTION_ID_LEN {
let hash_result = blake2_rfc::blake2b::blake2b(JUNCTION_ID_LEN, &[], data);
let hash = hash_result.as_bytes();
cc.copy_from_slice(hash);
} else {
cc[0..data.len()].copy_from_slice(data);
});
DeriveJunction::Soft(cc)
}
/// Create a new hard (hardened) DeriveJunction from a given, encodable, value.
///
/// If you need a soft junction, use `soft()`.
pub fn hard(index: T) -> Self {
Self::soft(index).harden()
}
/// Consume self to return the chain code.
pub fn unwrap_inner(self) -> [u8; JUNCTION_ID_LEN] {
match self {
DeriveJunction::Hard(c) | DeriveJunction::Soft(c) => c,
}
}
/// Get a reference to the inner junction id.
pub fn inner(&self) -> &[u8; JUNCTION_ID_LEN] {
match self {
DeriveJunction::Hard(ref c) | DeriveJunction::Soft(ref c) => c,
}
}
/// Return `true` if the junction is soft.
pub fn is_soft(&self) -> bool {
match *self {
DeriveJunction::Soft(_) => true,
_ => false,
}
}
/// Return `true` if the junction is hard.
pub fn is_hard(&self) -> bool {
match *self {
DeriveJunction::Hard(_) => true,
_ => false,
}
}
}
#[cfg(feature = "full_crypto")]
impl> From for DeriveJunction {
fn from(j: T) -> DeriveJunction {
let j = j.as_ref();
let (code, hard) = if j.starts_with("/") {
(&j[1..], true)
} else {
(j, false)
};
let res = if let Ok(n) = str::parse::(code) {
// number
DeriveJunction::soft(n)
} else {
// something else
DeriveJunction::soft(code)
};
if hard {
res.harden()
} else {
res
}
}
}
/// An error type for SS58 decoding.
#[cfg(feature = "full_crypto")]
#[derive(Clone, Copy, Eq, PartialEq, Debug)]
pub enum PublicError {
/// Bad alphabet.
BadBase58,
/// Bad length.
BadLength,
/// Unknown version.
UnknownVersion,
/// Invalid checksum.
InvalidChecksum,
/// Invalid format.
InvalidFormat,
/// Invalid derivation path.
InvalidPath,
}
/// Key that can be encoded to/from SS58.
#[cfg(feature = "full_crypto")]
pub trait Ss58Codec: Sized + AsMut<[u8]> + AsRef<[u8]> + Default {
/// Some if the string is a properly encoded SS58Check address.
#[cfg(feature = "std")]
fn from_ss58check(s: &str) -> Result {
Self::from_ss58check_with_version(s)
.and_then(|(r, v)| match v {
v if !v.is_custom() => Ok(r),
v if v == *DEFAULT_VERSION.lock() => Ok(r),
_ => Err(PublicError::UnknownVersion),
})
}
/// Some if the string is a properly encoded SS58Check address.
#[cfg(feature = "std")]
fn from_ss58check_with_version(s: &str) -> Result<(Self, Ss58AddressFormat), PublicError> {
let mut res = Self::default();
let len = res.as_mut().len();
let d = s.from_base58().map_err(|_| PublicError::BadBase58)?; // failure here would be invalid encoding.
if d.len() != len + 3 {
// Invalid length.
return Err(PublicError::BadLength);
}
let ver = d[0].try_into().map_err(|_: ()| PublicError::UnknownVersion)?;
if d[len + 1..len + 3] != ss58hash(&d[0..len + 1]).as_bytes()[0..2] {
// Invalid checksum.
return Err(PublicError::InvalidChecksum);
}
res.as_mut().copy_from_slice(&d[1..len + 1]);
Ok((res, ver))
}
/// Some if the string is a properly encoded SS58Check address, optionally with
/// a derivation path following.
#[cfg(feature = "std")]
fn from_string(s: &str) -> Result {
Self::from_string_with_version(s)
.and_then(|(r, v)| match v {
v if !v.is_custom() => Ok(r),
v if v == *DEFAULT_VERSION.lock() => Ok(r),
_ => Err(PublicError::UnknownVersion),
})
}
/// Return the ss58-check string for this key.
#[cfg(feature = "std")]
fn to_ss58check_with_version(&self, version: Ss58AddressFormat) -> String {
let mut v = vec![version.into()];
v.extend(self.as_ref());
let r = ss58hash(&v);
v.extend(&r.as_bytes()[0..2]);
v.to_base58()
}
/// Return the ss58-check string for this key.
#[cfg(feature = "std")]
fn to_ss58check(&self) -> String { self.to_ss58check_with_version(*DEFAULT_VERSION.lock()) }
/// Some if the string is a properly encoded SS58Check address, optionally with
/// a derivation path following.
#[cfg(feature = "std")]
fn from_string_with_version(s: &str) -> Result<(Self, Ss58AddressFormat), PublicError> {
Self::from_ss58check_with_version(s)
}
}
/// Derivable key trait.
pub trait Derive: Sized {
/// Derive a child key from a series of given junctions.
///
/// Will be `None` for public keys if there are any hard junctions in there.
#[cfg(feature = "std")]
fn derive>(&self, _path: Iter) -> Option {
None
}
}
#[cfg(feature = "std")]
const PREFIX: &[u8] = b"SS58PRE";
#[cfg(feature = "std")]
fn ss58hash(data: &[u8]) -> blake2_rfc::blake2b::Blake2bResult {
let mut context = blake2_rfc::blake2b::Blake2b::new(64);
context.update(PREFIX);
context.update(data);
context.finalize()
}
#[cfg(feature = "std")]
lazy_static::lazy_static! {
static ref DEFAULT_VERSION: Mutex
= Mutex::new(Ss58AddressFormat::SubstrateAccountDirect);
}
#[cfg(feature = "full_crypto")]
macro_rules! ss58_address_format {
( $( $identifier:tt => ($number:expr, $name:expr, $desc:tt) )* ) => (
/// A known address (sub)format/network ID for SS58.
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum Ss58AddressFormat {
$(#[doc = $desc] $identifier),*,
/// Use a manually provided numeric value.
Custom(u8),
}
static ALL_SS58_ADDRESS_FORMATS: [Ss58AddressFormat; 0 $(+ { let _ = $number; 1})*] = [
$(Ss58AddressFormat::$identifier),*,
];
impl Ss58AddressFormat {
/// All known address formats.
pub fn all() -> &'static [Ss58AddressFormat] {
&ALL_SS58_ADDRESS_FORMATS
}
/// Whether the address is custom.
pub fn is_custom(&self) -> bool {
match self {
Self::Custom(_) => true,
_ => false,
}
}
}
impl From for u8 {
fn from(x: Ss58AddressFormat) -> u8 {
match x {
$(Ss58AddressFormat::$identifier => $number),*,
Ss58AddressFormat::Custom(n) => n,
}
}
}
impl TryFrom for Ss58AddressFormat {
type Error = ();
fn try_from(x: u8) -> Result {
match x {
$($number => Ok(Ss58AddressFormat::$identifier)),*,
_ => Err(()),
}
}
}
impl<'a> TryFrom<&'a str> for Ss58AddressFormat {
type Error = ();
fn try_from(x: &'a str) -> Result {
match x {
$($name => Ok(Ss58AddressFormat::$identifier)),*,
a => a.parse::().map(Ss58AddressFormat::Custom).map_err(|_| ()),
}
}
}
#[cfg(feature = "std")]
impl Default for Ss58AddressFormat {
fn default() -> Self {
*DEFAULT_VERSION.lock()
}
}
#[cfg(feature = "std")]
impl From for String {
fn from(x: Ss58AddressFormat) -> String {
match x {
$(Ss58AddressFormat::$identifier => $name.into()),*,
Ss58AddressFormat::Custom(x) => x.to_string(),
}
}
}
)
}
#[cfg(feature = "full_crypto")]
ss58_address_format!(
SubstrateAccountDirect =>
(42, "substrate", "Any Substrate network, direct checksum, standard account (*25519).")
PolkadotAccountDirect =>
(0, "polkadot", "Polkadot Relay-chain, direct checksum, standard account (*25519).")
KusamaAccountDirect =>
(2, "kusama", "Kusama Relay-chain, direct checksum, standard account (*25519).")
DothereumAccountDirect =>
(20, "dothereum", "Dothereum Para-chain, direct checksum, standard account (*25519).")
KulupuAccountDirect =>
(16, "kulupu", "Kulupu mainnet, direct checksum, standard account (*25519).")
EdgewareAccountDirect =>
(7, "edgeware", "Edgeware mainnet, direct checksum, standard account (*25519).")
);
/// Set the default "version" (actually, this is a bit of a misnomer and the version byte is
/// typically used not just to encode format/version but also network identity) that is used for
/// encoding and decoding SS58 addresses. If an unknown version is provided then it fails.
///
/// See `ss58_address_format!` for all current known "versions".
#[cfg(feature = "std")]
pub fn set_default_ss58_version(version: Ss58AddressFormat) {
*DEFAULT_VERSION.lock() = version
}
#[cfg(feature = "std")]
impl + AsRef<[u8]> + Default + Derive> Ss58Codec for T {
fn from_string(s: &str) -> Result {
let re = Regex::new(r"^(?P[\w\d ]+)?(?P(//?[^/]+)*)$")
.expect("constructed from known-good static value; qed");
let cap = re.captures(s).ok_or(PublicError::InvalidFormat)?;
let re_junction = Regex::new(r"/(/?[^/]+)")
.expect("constructed from known-good static value; qed");
let s = cap.name("ss58")
.map(|r| r.as_str())
.unwrap_or(DEV_ADDRESS);
let addr = if s.starts_with("0x") {
let d = hex::decode(&s[2..]).map_err(|_| PublicError::InvalidFormat)?;
let mut r = Self::default();
if d.len() == r.as_ref().len() {
r.as_mut().copy_from_slice(&d);
r
} else {
Err(PublicError::BadLength)?
}
} else {
Self::from_ss58check(s)?
};
if cap["path"].is_empty() {
Ok(addr)
} else {
let path = re_junction.captures_iter(&cap["path"])
.map(|f| DeriveJunction::from(&f[1]));
addr.derive(path)
.ok_or(PublicError::InvalidPath)
}
}
fn from_string_with_version(s: &str) -> Result<(Self, Ss58AddressFormat), PublicError> {
let re = Regex::new(r"^(?P[\w\d ]+)?(?P(//?[^/]+)*)$")
.expect("constructed from known-good static value; qed");
let cap = re.captures(s).ok_or(PublicError::InvalidFormat)?;
let re_junction = Regex::new(r"/(/?[^/]+)")
.expect("constructed from known-good static value; qed");
let (addr, v) = Self::from_ss58check_with_version(
cap.name("ss58")
.map(|r| r.as_str())
.unwrap_or(DEV_ADDRESS)
)?;
if cap["path"].is_empty() {
Ok((addr, v))
} else {
let path = re_junction.captures_iter(&cap["path"])
.map(|f| DeriveJunction::from(&f[1]));
addr.derive(path)
.ok_or(PublicError::InvalidPath)
.map(|a| (a, v))
}
}
}
/// Trait suitable for typical cryptographic PKI key public type.
pub trait Public: AsRef<[u8]> + AsMut<[u8]> + Default + Derive + CryptoType + PartialEq + Eq + Clone + Send + Sync {
/// A new instance from the given slice.
///
/// NOTE: No checking goes on to ensure this is a real public key. Only use it if
/// you are certain that the array actually is a pubkey. GIGO!
fn from_slice(data: &[u8]) -> Self;
/// Return a `Vec` filled with raw data.
fn to_raw_vec(&self) -> Vec { self.as_slice().to_vec() }
/// Return a slice filled with raw data.
fn as_slice(&self) -> &[u8] { self.as_ref() }
}
/// An opaque 32-byte cryptographic identifier.
#[derive(Clone, Eq, PartialEq, Ord, PartialOrd, Default, Encode, Decode)]
pub struct AccountId32([u8; 32]);
impl UncheckedFrom for AccountId32 {
fn unchecked_from(h: crate::hash::H256) -> Self {
AccountId32(h.into())
}
}
#[cfg(feature = "std")]
impl Ss58Codec for AccountId32 {}
impl AsRef<[u8]> for AccountId32 {
fn as_ref(&self) -> &[u8] {
&self.0[..]
}
}
impl AsMut<[u8]> for AccountId32 {
fn as_mut(&mut self) -> &mut [u8] {
&mut self.0[..]
}
}
impl AsRef<[u8; 32]> for AccountId32 {
fn as_ref(&self) -> &[u8; 32] {
&self.0
}
}
impl AsMut<[u8; 32]> for AccountId32 {
fn as_mut(&mut self) -> &mut [u8; 32] {
&mut self.0
}
}
impl From<[u8; 32]> for AccountId32 {
fn from(x: [u8; 32]) -> AccountId32 {
AccountId32(x)
}
}
impl<'a> sp_std::convert::TryFrom<&'a [u8]> for AccountId32 {
type Error = ();
fn try_from(x: &'a [u8]) -> Result {
if x.len() == 32 {
let mut r = AccountId32::default();
r.0.copy_from_slice(x);
Ok(r)
} else {
Err(())
}
}
}
impl From for [u8; 32] {
fn from(x: AccountId32) -> [u8; 32] {
x.0
}
}
#[cfg(feature = "std")]
impl std::fmt::Display for AccountId32 {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "{}", self.to_ss58check())
}
}
impl sp_std::fmt::Debug for AccountId32 {
#[cfg(feature = "std")]
fn fmt(&self, f: &mut sp_std::fmt::Formatter) -> sp_std::fmt::Result {
let s = self.to_ss58check();
write!(f, "{} ({}...)", crate::hexdisplay::HexDisplay::from(&self.0), &s[0..8])
}
#[cfg(not(feature = "std"))]
fn fmt(&self, _: &mut sp_std::fmt::Formatter) -> sp_std::fmt::Result {
Ok(())
}
}
#[cfg(feature = "std")]
impl serde::Serialize for AccountId32 {
fn serialize(&self, serializer: S) -> Result where S: serde::Serializer {
serializer.serialize_str(&self.to_ss58check())
}
}
#[cfg(feature = "std")]
impl<'de> serde::Deserialize<'de> for AccountId32 {
fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de> {
Ss58Codec::from_ss58check(&String::deserialize(deserializer)?)
.map_err(|e| serde::de::Error::custom(format!("{:?}", e)))
}
}
#[cfg(feature = "std")]
pub use self::dummy::*;
#[cfg(feature = "std")]
mod dummy {
use super::*;
/// Dummy cryptography. Doesn't do anything.
#[derive(Clone, Hash, Default, Eq, PartialEq)]
pub struct Dummy;
impl AsRef<[u8]> for Dummy {
fn as_ref(&self) -> &[u8] { &b""[..] }
}
impl AsMut<[u8]> for Dummy {
fn as_mut(&mut self) -> &mut[u8] {
unsafe {
#[allow(mutable_transmutes)]
sp_std::mem::transmute::<_, &'static mut [u8]>(&b""[..])
}
}
}
impl CryptoType for Dummy {
type Pair = Dummy;
}
impl Derive for Dummy {}
impl Public for Dummy {
fn from_slice(_: &[u8]) -> Self { Self }
#[cfg(feature = "std")]
fn to_raw_vec(&self) -> Vec { vec![] }
fn as_slice(&self) -> &[u8] { b"" }
}
impl Pair for Dummy {
type Public = Dummy;
type Seed = Dummy;
type Signature = Dummy;
type DeriveError = ();
#[cfg(feature = "std")]
fn generate_with_phrase(_: Option<&str>) -> (Self, String, Self::Seed) { Default::default() }
#[cfg(feature = "std")]
fn from_phrase(_: &str, _: Option<&str>)
-> Result<(Self, Self::Seed), SecretStringError>
{
Ok(Default::default())
}
fn derive<
Iter: Iterator- ,
>(&self, _: Iter, _: Option) -> Result<(Self, Option), Self::DeriveError> { Ok((Self, None)) }
fn from_seed(_: &Self::Seed) -> Self { Self }
fn from_seed_slice(_: &[u8]) -> Result { Ok(Self) }
fn sign(&self, _: &[u8]) -> Self::Signature { Self }
fn verify>(_: &Self::Signature, _: M, _: &Self::Public) -> bool { true }
fn verify_weak, M: AsRef<[u8]>>(_: &[u8], _: M, _: P) -> bool { true }
fn public(&self) -> Self::Public { Self }
fn to_raw_vec(&self) -> Vec { vec![] }
}
}
/// Trait suitable for typical cryptographic PKI key pair type.
///
/// For now it just specifies how to create a key from a phrase and derivation path.
#[cfg(feature = "full_crypto")]
pub trait Pair: CryptoType + Sized + Clone + Send + Sync + 'static {
/// The type which is used to encode a public key.
type Public: Public + Hash;
/// The type used to (minimally) encode the data required to securely create
/// a new key pair.
type Seed: Default + AsRef<[u8]> + AsMut<[u8]> + Clone;
/// The type used to represent a signature. Can be created from a key pair and a message
/// and verified with the message and a public key.
type Signature: AsRef<[u8]>;
/// Error returned from the `derive` function.
type DeriveError;
/// Generate new secure (random) key pair.
///
/// This is only for ephemeral keys really, since you won't have access to the secret key
/// for storage. If you want a persistent key pair, use `generate_with_phrase` instead.
#[cfg(feature = "std")]
fn generate() -> (Self, Self::Seed) {
let mut seed = Self::Seed::default();
OsRng.fill_bytes(seed.as_mut());
(Self::from_seed(&seed), seed)
}
/// Generate new secure (random) key pair and provide the recovery phrase.
///
/// You can recover the same key later with `from_phrase`.
///
/// This is generally slower than `generate()`, so prefer that unless you need to persist
/// the key from the current session.
#[cfg(feature = "std")]
fn generate_with_phrase(password: Option<&str>) -> (Self, String, Self::Seed);
/// Returns the KeyPair from the English BIP39 seed `phrase`, or `None` if it's invalid.
#[cfg(feature = "std")]
fn from_phrase(phrase: &str, password: Option<&str>) -> Result<(Self, Self::Seed), SecretStringError>;
/// Derive a child key from a series of given junctions.
fn derive>(&self,
path: Iter,
seed: Option,
) -> Result<(Self, Option), Self::DeriveError>;
/// Generate new key pair from the provided `seed`.
///
/// @WARNING: THIS WILL ONLY BE SECURE IF THE `seed` IS SECURE. If it can be guessed
/// by an attacker then they can also derive your key.
fn from_seed(seed: &Self::Seed) -> Self;
/// Make a new key pair from secret seed material. The slice must be the correct size or
/// it will return `None`.
///
/// @WARNING: THIS WILL ONLY BE SECURE IF THE `seed` IS SECURE. If it can be guessed
/// by an attacker then they can also derive your key.
fn from_seed_slice(seed: &[u8]) -> Result;
/// Sign a message.
fn sign(&self, message: &[u8]) -> Self::Signature;
/// Verify a signature on a message. Returns true if the signature is good.
fn verify>(sig: &Self::Signature, message: M, pubkey: &Self::Public) -> bool;
/// Verify a signature on a message. Returns true if the signature is good.
fn verify_weak, M: AsRef<[u8]>>(sig: &[u8], message: M, pubkey: P) -> bool;
/// Get the public key.
fn public(&self) -> Self::Public;
/// Interprets the string `s` in order to generate a key Pair. Returns both the pair and an optional seed, in the
/// case that the pair can be expressed as a direct derivation from a seed (some cases, such as Sr25519 derivations
/// with path components, cannot).
///
/// This takes a helper function to do the key generation from a phrase, password and
/// junction iterator.
///
/// - If `s` is a possibly `0x` prefixed 64-digit hex string, then it will be interpreted
/// directly as a `MiniSecretKey` (aka "seed" in `subkey`).
/// - If `s` is a valid BIP-39 key phrase of 12, 15, 18, 21 or 24 words, then the key will
/// be derived from it. In this case:
/// - the phrase may be followed by one or more items delimited by `/` characters.
/// - the path may be followed by `///`, in which case everything after the `///` is treated
/// as a password.
/// - If `s` begins with a `/` character it is prefixed with the Substrate public `DEV_PHRASE` and
/// interpreted as above.
///
/// In this case they are interpreted as HDKD junctions; purely numeric items are interpreted as
/// integers, non-numeric items as strings. Junctions prefixed with `/` are interpreted as soft
/// junctions, and with `//` as hard junctions.
///
/// There is no correspondence mapping between SURI strings and the keys they represent.
/// Two different non-identical strings can actually lead to the same secret being derived.
/// Notably, integer junction indices may be legally prefixed with arbitrary number of zeros.
/// Similarly an empty password (ending the SURI with `///`) is perfectly valid and will generally
/// be equivalent to no password at all.
///
/// `None` is returned if no matches are found.
#[cfg(feature = "std")]
fn from_string_with_seed(s: &str, password_override: Option<&str>)
-> Result<(Self, Option), SecretStringError>
{
let re = Regex::new(r"^(?P[\d\w ]+)?(?P(//?[^/]+)*)(///(?P.*))?$")
.expect("constructed from known-good static value; qed");
let cap = re.captures(s).ok_or(SecretStringError::InvalidFormat)?;
let re_junction = Regex::new(r"/(/?[^/]+)")
.expect("constructed from known-good static value; qed");
let path = re_junction.captures_iter(&cap["path"])
.map(|f| DeriveJunction::from(&f[1]));
let phrase = cap.name("phrase").map(|r| r.as_str()).unwrap_or(DEV_PHRASE);
let password = password_override.or_else(|| cap.name("password").map(|m| m.as_str()));
let (root, seed) = if phrase.starts_with("0x") {
hex::decode(&phrase[2..]).ok()
.and_then(|seed_vec| {
let mut seed = Self::Seed::default();
if seed.as_ref().len() == seed_vec.len() {
seed.as_mut().copy_from_slice(&seed_vec);
Some((Self::from_seed(&seed), seed))
} else {
None
}
})
.ok_or(SecretStringError::InvalidSeed)?
} else {
Self::from_phrase(phrase, password)
.map_err(|_| SecretStringError::InvalidPhrase)?
};
root.derive(path, Some(seed)).map_err(|_| SecretStringError::InvalidPath)
}
/// Interprets the string `s` in order to generate a key pair.
///
/// See [`from_string_with_seed`](Self::from_string_with_seed) for more extensive documentation.
#[cfg(feature = "std")]
fn from_string(s: &str, password_override: Option<&str>) -> Result {
Self::from_string_with_seed(s, password_override).map(|x| x.0)
}
/// Return a vec filled with raw data.
fn to_raw_vec(&self) -> Vec;
}
/// One type is wrapped by another.
pub trait IsWrappedBy: From + Into {
/// Get a reference to the inner from the outer.
fn from_ref(outer: &Outer) -> &Self;
/// Get a mutable reference to the inner from the outer.
fn from_mut(outer: &mut Outer) -> &mut Self;
}
/// Opposite of `IsWrappedBy` - denotes a type which is a simple wrapper around another type.
pub trait Wraps: Sized {
/// The inner type it is wrapping.
type Inner: IsWrappedBy;
}
impl IsWrappedBy for T where
Outer: AsRef + AsMut + From,
T: From,
{
/// Get a reference to the inner from the outer.
fn from_ref(outer: &Outer) -> &Self { outer.as_ref() }
/// Get a mutable reference to the inner from the outer.
fn from_mut(outer: &mut Outer) -> &mut Self { outer.as_mut() }
}
impl UncheckedFrom for Outer where
Outer: Wraps,
Inner: IsWrappedBy + UncheckedFrom,
{
fn unchecked_from(t: T) -> Self {
let inner: Inner = t.unchecked_into();
inner.into()
}
}
/// Type which has a particular kind of crypto associated with it.
pub trait CryptoType {
/// The pair key type of this crypto.
#[cfg(feature = "full_crypto")]
type Pair: Pair;
}
/// An identifier for a type of cryptographic key.
///
/// To avoid clashes with other modules when distributing your module publically, register your
/// `KeyTypeId` on the list here by making a PR.
///
/// Values whose first character is `_` are reserved for private use and won't conflict with any
/// public modules.
#[derive(
Copy, Clone, Default, PartialEq, Eq, PartialOrd, Ord, Hash, Encode, Decode, PassByInner,
crate::RuntimeDebug
)]
pub struct KeyTypeId(pub [u8; 4]);
impl From for KeyTypeId {
fn from(x: u32) -> Self {
Self(x.to_le_bytes())
}
}
impl From for u32 {
fn from(x: KeyTypeId) -> Self {
u32::from_le_bytes(x.0)
}
}
impl<'a> TryFrom<&'a str> for KeyTypeId {
type Error = ();
fn try_from(x: &'a str) -> Result {
let b = x.as_bytes();
if b.len() != 4 {
return Err(());
}
let mut res = KeyTypeId::default();
res.0.copy_from_slice(&b[0..4]);
Ok(res)
}
}
/// Known key types; this also functions as a global registry of key types for projects wishing to
/// avoid collisions with each other.
///
/// It's not universal in the sense that *all* key types need to be mentioned here, it's just a
/// handy place to put common key types.
pub mod key_types {
use super::KeyTypeId;
/// Key type for Babe module, build-in.
pub const BABE: KeyTypeId = KeyTypeId(*b"babe");
/// Key type for Grandpa module, build-in.
pub const GRANDPA: KeyTypeId = KeyTypeId(*b"gran");
/// Key type for controlling an account in a Substrate runtime, built-in.
pub const ACCOUNT: KeyTypeId = KeyTypeId(*b"acco");
/// Key type for Aura module, built-in.
pub const AURA: KeyTypeId = KeyTypeId(*b"aura");
/// Key type for ImOnline module, built-in.
pub const IM_ONLINE: KeyTypeId = KeyTypeId(*b"imon");
/// Key type for AuthorityDiscovery module, built-in.
pub const AUTHORITY_DISCOVERY: KeyTypeId = KeyTypeId(*b"audi");
/// A key type ID useful for tests.
pub const DUMMY: KeyTypeId = KeyTypeId(*b"dumy");
}
#[cfg(test)]
mod tests {
use crate::DeriveJunction;
use hex_literal::hex;
use super::*;
#[derive(Clone, Eq, PartialEq, Debug)]
enum TestPair {
Generated,
GeneratedWithPhrase,
GeneratedFromPhrase{phrase: String, password: Option},
Standard{phrase: String, password: Option, path: Vec},
Seed(Vec),
}
impl Default for TestPair {
fn default() -> Self {
TestPair::Generated
}
}
impl CryptoType for TestPair {
type Pair = Self;
}
#[derive(Clone, PartialEq, Eq, Hash, Default)]
struct TestPublic;
impl AsRef<[u8]> for TestPublic {
fn as_ref(&self) -> &[u8] {
&[]
}
}
impl AsMut<[u8]> for TestPublic {
fn as_mut(&mut self) -> &mut [u8] {
&mut []
}
}
impl CryptoType for TestPublic {
type Pair = TestPair;
}
impl Derive for TestPublic {}
impl Public for TestPublic {
fn from_slice(_bytes: &[u8]) -> Self {
Self
}
fn as_slice(&self) -> &[u8] {
&[]
}
fn to_raw_vec(&self) -> Vec {
vec![]
}
}
impl Pair for TestPair {
type Public = TestPublic;
type Seed = [u8; 8];
type Signature = [u8; 0];
type DeriveError = ();
fn generate() -> (Self, ::Seed) { (TestPair::Generated, [0u8; 8]) }
fn generate_with_phrase(_password: Option<&str>) -> (Self, String, ::Seed) {
(TestPair::GeneratedWithPhrase, "".into(), [0u8; 8])
}
fn from_phrase(phrase: &str, password: Option<&str>)
-> Result<(Self, ::Seed), SecretStringError>
{
Ok((TestPair::GeneratedFromPhrase {
phrase: phrase.to_owned(),
password: password.map(Into::into)
}, [0u8; 8]))
}
fn derive>(&self, path_iter: Iter, _: Option<[u8; 8]>)
-> Result<(Self, Option<[u8; 8]>), Self::DeriveError>
{
Ok((match self.clone() {
TestPair::Standard {phrase, password, path} =>
TestPair::Standard { phrase, password, path: path.into_iter().chain(path_iter).collect() },
TestPair::GeneratedFromPhrase {phrase, password} =>
TestPair::Standard { phrase, password, path: path_iter.collect() },
x => if path_iter.count() == 0 { x } else { return Err(()) },
}, None))
}
fn from_seed(_seed: &::Seed) -> Self { TestPair::Seed(_seed.as_ref().to_owned()) }
fn sign(&self, _message: &[u8]) -> Self::Signature { [] }
fn verify>(_: &Self::Signature, _: M, _: &Self::Public) -> bool { true }
fn verify_weak, M: AsRef<[u8]>>(
_sig: &[u8],
_message: M,
_pubkey: P
) -> bool { true }
fn public(&self) -> Self::Public { TestPublic }
fn from_seed_slice(seed: &[u8])
-> Result
{
Ok(TestPair::Seed(seed.to_owned()))
}
fn to_raw_vec(&self) -> Vec {
vec![]
}
}
#[test]
fn interpret_std_seed_should_work() {
assert_eq!(
TestPair::from_string("0x0123456789abcdef", None),
Ok(TestPair::Seed(hex!["0123456789abcdef"][..].to_owned()))
);
}
#[test]
fn password_override_should_work() {
assert_eq!(
TestPair::from_string("hello world///password", None),
TestPair::from_string("hello world", Some("password")),
);
assert_eq!(
TestPair::from_string("hello world///password", None),
TestPair::from_string("hello world///other password", Some("password")),
);
}
#[test]
fn interpret_std_secret_string_should_work() {
assert_eq!(
TestPair::from_string("hello world", None),
Ok(TestPair::Standard{phrase: "hello world".to_owned(), password: None, path: vec![]})
);
assert_eq!(
TestPair::from_string("hello world/1", None),
Ok(TestPair::Standard{phrase: "hello world".to_owned(), password: None, path: vec![DeriveJunction::soft(1)]})
);
assert_eq!(
TestPair::from_string("hello world/DOT", None),
Ok(TestPair::Standard{phrase: "hello world".to_owned(), password: None, path: vec![DeriveJunction::soft("DOT")]})
);
assert_eq!(
TestPair::from_string("hello world//1", None),
Ok(TestPair::Standard{phrase: "hello world".to_owned(), password: None, path: vec![DeriveJunction::hard(1)]})
);
assert_eq!(
TestPair::from_string("hello world//DOT", None),
Ok(TestPair::Standard{phrase: "hello world".to_owned(), password: None, path: vec![DeriveJunction::hard("DOT")]})
);
assert_eq!(
TestPair::from_string("hello world//1/DOT", None),
Ok(TestPair::Standard{phrase: "hello world".to_owned(), password: None, path: vec![DeriveJunction::hard(1), DeriveJunction::soft("DOT")]})
);
assert_eq!(
TestPair::from_string("hello world//DOT/1", None),
Ok(TestPair::Standard{phrase: "hello world".to_owned(), password: None, path: vec![DeriveJunction::hard("DOT"), DeriveJunction::soft(1)]})
);
assert_eq!(
TestPair::from_string("hello world///password", None),
Ok(TestPair::Standard{phrase: "hello world".to_owned(), password: Some("password".to_owned()), path: vec![]})
);
assert_eq!(
TestPair::from_string("hello world//1/DOT///password", None),
Ok(TestPair::Standard{phrase: "hello world".to_owned(), password: Some("password".to_owned()), path: vec![DeriveJunction::hard(1), DeriveJunction::soft("DOT")]})
);
assert_eq!(
TestPair::from_string("hello world/1//DOT///password", None),
Ok(TestPair::Standard{phrase: "hello world".to_owned(), password: Some("password".to_owned()), path: vec![DeriveJunction::soft(1), DeriveJunction::hard("DOT")]})
);
}
}