Newer
Older
// Copyright 2017-2019 Parity Technologies (UK) Ltd.
// This file is part of Substrate.
// Substrate is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Substrate is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Substrate. If not, see <http://www.gnu.org/licenses/>.
// tag::description[]
//! Cryptographic utilities.
// end::description[]
#[cfg(feature = "std")]
use rand::{RngCore, rngs::OsRng};
#[cfg(feature = "std")]
use parity_codec::{Encode, Decode};
#[cfg(feature = "std")]
use regex::Regex;
#[cfg(feature = "std")]
use base58::{FromBase58, ToBase58};
/// The root phrase for our publicly known keys.
pub const DEV_PHRASE: &str = "bottom drive obey lake curtain smoke basket hold race lonely fit walk";
/// The address of the associated root phrase for our publicly known keys.
pub const DEV_ADDRESS: &str = "5DfhGyQdFobKM8NsWvEeAKk5EQQgYe9AydgJ7rMB6E1EqRzV";
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
/// The infallible type.
#[derive(Debug)]
pub enum Infallible {}
/// The length of the junction identifier. Note that this is also referred to as the
/// `CHAIN_CODE_LENGTH` in the context of Schnorrkel.
#[cfg(feature = "std")]
pub const JUNCTION_ID_LEN: usize = 32;
/// Similar to `From`, except that the onus is on the part of the caller to ensure
/// that data passed in makes sense. Basically, you're not guaranteed to get anything
/// sensible out.
pub trait UncheckedFrom<T> {
/// Convert from an instance of `T` to Self. This is not guaranteed to be
/// whatever counts as a valid instance of `T` and it's up to the caller to
/// ensure that it makes sense.
fn unchecked_from(t: T) -> Self;
}
/// The counterpart to `UncheckedFrom`.
pub trait UncheckedInto<T> {
/// The counterpart to `unchecked_from`.
fn unchecked_into(self) -> T;
}
impl<S, T: UncheckedFrom<S>> UncheckedInto<T> for S {
fn unchecked_into(self) -> T {
T::unchecked_from(self)
}
}
/// An error with the interpretation of a secret.
#[derive(Debug, Clone, PartialEq, Eq)]
#[cfg(feature = "std")]
pub enum SecretStringError {
/// The overall format was invalid (e.g. the seed phrase contained symbols).
InvalidFormat,
/// The seed phrase provided is not a valid BIP39 phrase.
InvalidPhrase,
/// The supplied password was invalid.
InvalidPassword,
/// The seed is invalid (bad content).
InvalidSeed,
/// The seed has an invalid length.
InvalidSeedLength,
/// The derivation path was invalid (e.g. contains soft junctions when they are not supported).
InvalidPath,
}
/// A since derivation junction description. It is the single parameter used when creating
/// a new secret key from an existing secret key and, in the case of `SoftRaw` and `SoftIndex`
/// a new public key from an existing public key.
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug, Encode, Decode)]
#[cfg(feature = "std")]
pub enum DeriveJunction {
/// Soft (vanilla) derivation. Public keys have a correspondent derivation.
Soft([u8; JUNCTION_ID_LEN]),
/// Hard ("hardened") derivation. Public keys do not have a correspondent derivation.
Hard([u8; JUNCTION_ID_LEN]),
}
#[cfg(feature = "std")]
impl DeriveJunction {
/// Consume self to return a soft derive junction with the same chain code.
pub fn soften(self) -> Self { DeriveJunction::Soft(self.unwrap_inner()) }
/// Consume self to return a hard derive junction with the same chain code.
pub fn harden(self) -> Self { DeriveJunction::Hard(self.unwrap_inner()) }
/// Create a new soft (vanilla) DeriveJunction from a given, encodable, value.
///
/// If you need a hard junction, use `hard()`.
pub fn soft<T: Encode>(index: T) -> Self {
let mut cc: [u8; JUNCTION_ID_LEN] = Default::default();
index.using_encoded(|data| if data.len() > JUNCTION_ID_LEN {
let hash_result = blake2_rfc::blake2b::blake2b(JUNCTION_ID_LEN, &[], data);
let hash = hash_result.as_bytes();
cc.copy_from_slice(hash);
} else {
cc[0..data.len()].copy_from_slice(data);
});
DeriveJunction::Soft(cc)
}
/// Create a new hard (hardened) DeriveJunction from a given, encodable, value.
///
/// If you need a soft junction, use `soft()`.
pub fn hard<T: Encode>(index: T) -> Self {
Self::soft(index).harden()
}
/// Consume self to return the chain code.
pub fn unwrap_inner(self) -> [u8; JUNCTION_ID_LEN] {
match self {
DeriveJunction::Hard(c) | DeriveJunction::Soft(c) => c,
}
}
/// Get a reference to the inner junction id.
pub fn inner(&self) -> &[u8; JUNCTION_ID_LEN] {
match self {
DeriveJunction::Hard(ref c) | DeriveJunction::Soft(ref c) => c,
}
}
/// Return `true` if the junction is soft.
pub fn is_soft(&self) -> bool {
match *self {
DeriveJunction::Soft(_) => true,
_ => false,
}
}
/// Return `true` if the junction is hard.
pub fn is_hard(&self) -> bool {
match *self {
DeriveJunction::Hard(_) => true,
_ => false,
}
}
}
#[cfg(feature = "std")]
impl<T: AsRef<str>> From<T> for DeriveJunction {
fn from(j: T) -> DeriveJunction {
let j = j.as_ref();
let (code, hard) = if j.starts_with("/") {
(&j[1..], true)
} else {
(j, false)
};
let res = if let Ok(n) = str::parse::<u64>(code) {
// number
DeriveJunction::soft(n)
} else {
// something else
DeriveJunction::soft(code)
};
if hard {
res.harden()
} else {
res
}
}
}
/// An error type for SS58 decoding.
#[cfg(feature = "std")]
#[derive(Clone, Copy, Eq, PartialEq, Debug)]
pub enum PublicError {
/// Bad alphabet.
BadBase58,
/// Bad length.
BadLength,
/// Unknown version.
UnknownVersion,
/// Invalid checksum.
InvalidChecksum,
/// Invalid format.
InvalidFormat,
/// Invalid derivation path.
InvalidPath,
}
/// Key that can be encoded to/from SS58.
#[cfg(feature = "std")]
pub trait Ss58Codec: Sized {
/// Some if the string is a properly encoded SS58Check address.
fn from_ss58check(s: &str) -> Result<Self, PublicError>;
/// Some if the string is a properly encoded SS58Check address, optionally with
/// a derivation path following.
fn from_string(s: &str) -> Result<Self, PublicError> { Self::from_ss58check(s) }
/// Return the ss58-check string for this key.
fn to_ss58check(&self) -> String;
}
#[cfg(feature = "std")]
/// Derivable key trait.
pub trait Derive: Sized {
/// Derive a child key from a series of given junctions.
///
/// Will be `None` for public keys if there are any hard junctions in there.
fn derive<Iter: Iterator<Item=DeriveJunction>>(&self, _path: Iter) -> Option<Self> {
None
}
const PREFIX: &[u8] = b"SS58PRE";
#[cfg(feature = "std")]
fn ss58hash(data: &[u8]) -> blake2_rfc::blake2b::Blake2bResult {
let mut context = blake2_rfc::blake2b::Blake2b::new(64);
context.update(PREFIX);
context.update(data);
context.finalize()
}
#[cfg(feature = "std")]
impl<T: AsMut<[u8]> + AsRef<[u8]> + Default + Derive> Ss58Codec for T {
fn from_ss58check(s: &str) -> Result<Self, PublicError> {
let mut res = T::default();
let len = res.as_mut().len();
let d = s.from_base58().map_err(|_| PublicError::BadBase58)?; // failure here would be invalid encoding.
if d.len() != len + 3 {
// Invalid length.
return Err(PublicError::BadLength);
}
if d[0] != 42 {
// Invalid version.
return Err(PublicError::UnknownVersion);
}
if d[len+1..len+3] != ss58hash(&d[0..len+1]).as_bytes()[0..2] {
// Invalid checksum.
return Err(PublicError::InvalidChecksum);
}
res.as_mut().copy_from_slice(&d[1..len+1]);
Ok(res)
}
fn to_ss58check(&self) -> String {
let mut v = vec![42u8];
v.extend(self.as_ref());
v.extend(&r.as_bytes()[0..2]);
v.to_base58()
}
fn from_string(s: &str) -> Result<Self, PublicError> {
let re = Regex::new(r"^(?P<ss58>[\w\d]+)?(?P<path>(//?[^/]+)*)$")
.expect("constructed from known-good static value; qed");
let cap = re.captures(s).ok_or(PublicError::InvalidFormat)?;
let re_junction = Regex::new(r"/(/?[^/]+)")
.expect("constructed from known-good static value; qed");
let addr = Self::from_ss58check(
cap.name("ss58")
.map(|r| r.as_str())
.unwrap_or(DEV_ADDRESS)
)?;
if cap["path"].is_empty() {
Ok(addr)
} else {
let path = re_junction.captures_iter(&cap["path"])
.map(|f| DeriveJunction::from(&f[1]));
addr.derive(path)
.ok_or(PublicError::InvalidPath)
}
/// Trait suitable for typical cryptographic PKI key public type.
pub trait Public: PartialEq + Eq {
/// A new instance from the given slice that should be 32 bytes long.
///
/// NOTE: No checking goes on to ensure this is a real public key. Only use it if
/// you are certain that the array actually is a pubkey. GIGO!
fn from_slice(data: &[u8]) -> Self;
/// Return a `Vec<u8>` filled with raw data.
#[cfg(feature = "std")]
fn to_raw_vec(&self) -> Vec<u8>;
/// Return a slice filled with raw data.
fn as_slice(&self) -> &[u8];
}
/// Trait suitable for typical cryptographic PKI key pair type.
///
/// For now it just specifies how to create a key from a phrase and derivation path.
#[cfg(feature = "std")]
/// TThe type which is used to encode a public key.
/// The type used to (minimally) encode the data required to securely create
/// a new key pair.
type Seed: Default + AsRef<[u8]> + AsMut<[u8]> + Clone;
/// The type used to represent a signature. Can be created from a key pair and a message
/// and verified with the message and a public key.
type Signature;
/// Error returned from the `derive` function.
type DeriveError;
/// Generate new secure (random) key pair.
///
/// This is only for ephemeral keys really, since you won't have access to the secret key
/// for storage. If you want a persistent key pair, use `generate_with_phrase` instead.
fn generate() -> (Self, Self::Seed) {
let mut csprng: OsRng = OsRng::new().expect("OS random generator works; qed");
let mut seed = Self::Seed::default();
csprng.fill_bytes(seed.as_mut());
(Self::from_seed(&seed), seed)
}
/// Generate new secure (random) key pair and provide the recovery phrase.
///
/// You can recover the same key later with `from_phrase`.
///
/// This is generally slower than `generate()`, so prefer that unless you need to persist
/// the key from the current session.
fn generate_with_phrase(password: Option<&str>) -> (Self, String, Self::Seed);
/// Returns the KeyPair from the English BIP39 seed `phrase`, or `None` if it's invalid.
fn from_phrase(phrase: &str, password: Option<&str>) -> Result<(Self, Self::Seed), SecretStringError>;
/// Derive a child key from a series of given junctions.
fn derive<Iter: Iterator<Item=DeriveJunction>>(&self, path: Iter) -> Result<Self, Self::DeriveError>;
/// Generate new key pair from the provided `seed`.
///
/// @WARNING: THIS WILL ONLY BE SECURE IF THE `seed` IS SECURE. If it can be guessed
/// by an attacker then they can also derive your key.
fn from_seed(seed: &Self::Seed) -> Self;
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
/// Make a new key pair from secret seed material. The slice must be the correct size or
/// it will return `None`.
///
/// @WARNING: THIS WILL ONLY BE SECURE IF THE `seed` IS SECURE. If it can be guessed
/// by an attacker then they can also derive your key.
fn from_seed_slice(seed: &[u8]) -> Result<Self, SecretStringError>;
/// Construct a key from a phrase, password and path.
fn from_standard_components<
I: Iterator<Item=DeriveJunction>
>(phrase: &str, password: Option<&str>, path: I) -> Result<Self, SecretStringError>;
/// Sign a message.
fn sign(&self, message: &[u8]) -> Self::Signature;
/// Verify a signature on a message. Returns true if the signature is good.
fn verify<P: AsRef<Self::Public>, M: AsRef<[u8]>>(sig: &Self::Signature, message: M, pubkey: P) -> bool;
/// Verify a signature on a message. Returns true if the signature is good.
fn verify_weak<P: AsRef<[u8]>, M: AsRef<[u8]>>(sig: &[u8], message: M, pubkey: P) -> bool;
/// Get the public key.
fn public(&self) -> Self::Public;
/// Interprets the string `s` in order to generate a key Pair.
///
/// This takes a helper function to do the key generation from a phrase, password and
/// junction iterator.
///
/// - If `s` is a possibly `0x` prefixed 64-digit hex string, then it will be interpreted
/// directly as a `MiniSecretKey` (aka "seed" in `subkey`).
/// - If `s` is a valid BIP-39 key phrase of 12, 15, 18, 21 or 24 words, then the key will
/// be derived from it. In this case:
/// - the phrase may be followed by one or more items delimited by `/` characters.
/// - the path may be followed by `///`, in which case everything after the `///` is treated
/// as a password.
/// - If `s` begins with a `/` character it is prefixed with the Substrate public `DEV_PHRASE` and
/// interpreted as above.
///
/// In this case they are interpreted as HDKD junctions; purely numeric items are interpreted as
/// integers, non-numeric items as strings. Junctions prefixed with `/` are interpreted as soft
/// junctions, and with `//` as hard junctions.
///
/// There is no correspondence mapping between SURI strings and the keys they represent.
/// Two different non-identical strings can actually lead to the same secret being derived.
/// Notably, integer junction indices may be legally prefixed with arbitrary number of zeros.
/// Similarly an empty password (ending the SURI with `///`) is perfectly valid and will generally
/// be equivalent to no password at all.
///
/// `None` is returned if no matches are found.
fn from_string(s: &str, password_override: Option<&str>) -> Result<Self, SecretStringError> {
let hex_seed = if s.starts_with("0x") {
&s[2..]
} else {
s
};
if let Ok(d) = hex::decode(hex_seed) {
if let Ok(r) = Self::from_seed_slice(&d) {
return Ok(r)
}
}
let re = Regex::new(r"^(?P<phrase>\w+( \w+)*)?(?P<path>(//?[^/]+)*)(///(?P<password>.*))?$")
.expect("constructed from known-good static value; qed");
let cap = re.captures(s).ok_or(SecretStringError::InvalidFormat)?;
let re_junction = Regex::new(r"/(/?[^/]+)")
.expect("constructed from known-good static value; qed");
let path = re_junction.captures_iter(&cap["path"])
.map(|f| DeriveJunction::from(&f[1]));
Self::from_standard_components(
cap.name("phrase").map(|r| r.as_str()).unwrap_or(DEV_PHRASE),
password_override.or_else(|| cap.name("password").map(|m| m.as_str())),
path,
)
}
/// Return a vec filled with raw data.
fn to_raw_vec(&self) -> Vec<u8>;
}
/// An identifier for a type of cryptographic key.
///
/// 0-1024 are reserved.
pub type KeyTypeId = u32;
/// Constant key types.
pub mod key_types {
use super::KeyTypeId;
/// ED25519 public key.
pub const ED25519: KeyTypeId = 10;
/// SR25519 public key.
pub const SR25519: KeyTypeId = 20;
}
/// A trait for something that has a key type ID.
pub trait TypedKey {
/// The type ID of this key.
const KEY_TYPE: KeyTypeId;
}
#[cfg(test)]
mod tests {
use crate::DeriveJunction;
Stanislav Tkach
committed
use hex_literal::hex;
use super::*;
#[derive(Eq, PartialEq, Debug)]
enum TestPair {
Generated,
GeneratedWithPhrase,
GeneratedFromPhrase{phrase: String, password: Option<String>},
Standard{phrase: String, password: Option<String>, path: Vec<DeriveJunction>},
Seed(Vec<u8>),
}
#[derive(PartialEq, Eq, Hash)]
struct TestPublic;
impl Public for TestPublic {
fn from_slice(bytes: &[u8]) -> Self {
Self
}
fn as_slice(&self) -> &[u8] {
&[]
}
fn to_raw_vec(&self) -> Vec<u8> {
vec![]
}
}
impl Pair for TestPair {
type Signature = ();
type DeriveError = ();
fn generate() -> (Self, <Self as Pair>::Seed) { (TestPair::Generated, []) }
fn generate_with_phrase(_password: Option<&str>) -> (Self, String, <Self as Pair>::Seed) {
(TestPair::GeneratedWithPhrase, "".into(), [])
}
fn from_phrase(phrase: &str, password: Option<&str>)
-> Result<(Self, <Self as Pair>::Seed), SecretStringError>
{
Ok((TestPair::GeneratedFromPhrase {
phrase: phrase.to_owned(),
password: password.map(Into::into)
}, []))
fn derive<Iter: Iterator<Item=DeriveJunction>>(&self, _path: Iter)
-> Result<Self, Self::DeriveError>
{
fn from_seed(_seed: &<TestPair as Pair>::Seed) -> Self { TestPair::Seed(vec![]) }
fn sign(&self, _message: &[u8]) -> Self::Signature { () }
fn verify<P: AsRef<Self::Public>, M: AsRef<[u8]>>(
_sig: &Self::Signature,
_message: M,
_pubkey: P
) -> bool { true }
fn verify_weak<P: AsRef<[u8]>, M: AsRef<[u8]>>(
_sig: &[u8],
_message: M,
_pubkey: P
) -> bool { true }
fn from_standard_components<I: Iterator<Item=DeriveJunction>>(
phrase: &str,
password: Option<&str>,
path: I
) -> Result<Self, SecretStringError> {
Ok(TestPair::Standard {
phrase: phrase.to_owned(),
password: password.map(ToOwned::to_owned),
path: path.collect()
})
fn from_seed_slice(seed: &[u8])
-> Result<Self, SecretStringError>
{
Ok(TestPair::Seed(seed.to_owned()))
}
fn to_raw_vec(&self) -> Vec<u8> {
vec![]
}
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
}
#[test]
fn interpret_std_seed_should_work() {
assert_eq!(
TestPair::from_string("0x0123456789abcdef", None),
Ok(TestPair::Seed(hex!["0123456789abcdef"][..].to_owned()))
);
assert_eq!(
TestPair::from_string("0123456789abcdef", None),
Ok(TestPair::Seed(hex!["0123456789abcdef"][..].to_owned()))
);
}
#[test]
fn password_override_should_work() {
assert_eq!(
TestPair::from_string("hello world///password", None),
TestPair::from_string("hello world", Some("password")),
);
assert_eq!(
TestPair::from_string("hello world///password", None),
TestPair::from_string("hello world///other password", Some("password")),
);
}
#[test]
fn interpret_std_secret_string_should_work() {
assert_eq!(
TestPair::from_string("hello world", None),
Ok(TestPair::Standard{phrase: "hello world".to_owned(), password: None, path: vec![]})
);
assert_eq!(
TestPair::from_string("hello world/1", None),
Ok(TestPair::Standard{phrase: "hello world".to_owned(), password: None, path: vec![DeriveJunction::soft(1)]})
);
assert_eq!(
TestPair::from_string("hello world/DOT", None),
Ok(TestPair::Standard{phrase: "hello world".to_owned(), password: None, path: vec![DeriveJunction::soft("DOT")]})
);
assert_eq!(
TestPair::from_string("hello world//1", None),
Ok(TestPair::Standard{phrase: "hello world".to_owned(), password: None, path: vec![DeriveJunction::hard(1)]})
);
assert_eq!(
TestPair::from_string("hello world//DOT", None),
Ok(TestPair::Standard{phrase: "hello world".to_owned(), password: None, path: vec![DeriveJunction::hard("DOT")]})
);
assert_eq!(
TestPair::from_string("hello world//1/DOT", None),
Ok(TestPair::Standard{phrase: "hello world".to_owned(), password: None, path: vec![DeriveJunction::hard(1), DeriveJunction::soft("DOT")]})
);
assert_eq!(
TestPair::from_string("hello world//DOT/1", None),
Ok(TestPair::Standard{phrase: "hello world".to_owned(), password: None, path: vec![DeriveJunction::hard("DOT"), DeriveJunction::soft(1)]})
);
assert_eq!(
TestPair::from_string("hello world///password", None),
Ok(TestPair::Standard{phrase: "hello world".to_owned(), password: Some("password".to_owned()), path: vec![]})
);
assert_eq!(
TestPair::from_string("hello world//1/DOT///password", None),
Ok(TestPair::Standard{phrase: "hello world".to_owned(), password: Some("password".to_owned()), path: vec![DeriveJunction::hard(1), DeriveJunction::soft("DOT")]})
);
assert_eq!(
TestPair::from_string("hello world/1//DOT///password", None),
Ok(TestPair::Standard{phrase: "hello world".to_owned(), password: Some("password".to_owned()), path: vec![DeriveJunction::soft(1), DeriveJunction::hard("DOT")]})
);
}
}