1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
// Copyright 2015-2017 Parity Technologies (UK) Ltd.
// This file is part of Parity.

// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Parity.  If not, see <http://www.gnu.org/licenses/>.

use util::{U256, Uint};

pub trait Memory {
	/// Retrieve current size of the memory
	fn size(&self) -> usize;
	/// Resize (shrink or expand) the memory to specified size (fills 0)
	fn resize(&mut self, new_size: usize);
	/// Resize the memory only if its smaller
	fn expand(&mut self, new_size: usize);
	/// Write single byte to memory
	fn write_byte(&mut self, offset: U256, value: U256);
	/// Write a word to memory. Does not resize memory!
	fn write(&mut self, offset: U256, value: U256);
	/// Read a word from memory
	fn read(&self, offset: U256) -> U256;
	/// Write slice of bytes to memory. Does not resize memory!
	fn write_slice(&mut self, offset: U256, &[u8]);
	/// Retrieve part of the memory between offset and offset + size
	fn read_slice(&self, offset: U256, size: U256) -> &[u8];
	/// Retrieve writeable part of memory
	fn writeable_slice(&mut self, offset: U256, size: U256) -> &mut[u8];
	fn dump(&self);
}

/// Checks whether offset and size is valid memory range
fn is_valid_range(off: usize, size: usize)  -> bool {
	// When size is zero we haven't actually expanded the memory
	let overflow = off.overflowing_add(size).1;
	size > 0 && !overflow
}

impl Memory for Vec<u8> {
	fn dump(&self) {
		println!("MemoryDump:");
		for i in self.iter() {
			println!("{:02x} ", i);
		}
		println!("");
	}

	fn size(&self) -> usize {
		self.len()
	}

	fn read_slice(&self, init_off_u: U256, init_size_u: U256) -> &[u8] {
		let off = init_off_u.low_u64() as usize;
		let size = init_size_u.low_u64() as usize;
		if !is_valid_range(off, size) {
			&self[0..0]
		} else {
			&self[off..off+size]
		}
	}

	fn read(&self, offset: U256) -> U256 {
		let off = offset.low_u64() as usize;
		U256::from(&self[off..off+32])
	}

	fn writeable_slice(&mut self, offset: U256, size: U256) -> &mut [u8] {
		let off = offset.low_u64() as usize;
		let s = size.low_u64() as usize;
		if !is_valid_range(off, s) {
			&mut self[0..0]
		} else {
			&mut self[off..off+s]
		}
	}

	fn write_slice(&mut self, offset: U256, slice: &[u8]) {
		let off = offset.low_u64() as usize;

		// TODO [todr] Optimize?
		for pos in off..off+slice.len() {
			self[pos] = slice[pos - off];
		}
	}

	fn write(&mut self, offset: U256, value: U256) {
		let off = offset.low_u64() as usize;
		value.to_big_endian(&mut self[off..off+32]);
	}

	fn write_byte(&mut self, offset: U256, value: U256) {
		let off = offset.low_u64() as usize;
		let val = value.low_u64() as u64;
		self[off] = val as u8;
	}

	fn resize(&mut self, new_size: usize) {
		self.resize(new_size, 0);
	}

	fn expand(&mut self, size: usize) {
		if size > self.len() {
			Memory::resize(self, size)
		}
	}
}


#[test]
fn test_memory_read_and_write() {
	// given
	let mem: &mut Memory = &mut vec![];
	mem.resize(0x80 + 32);

	// when
	mem.write(U256::from(0x80), U256::from(0xabcdef));

	// then
	assert_eq!(mem.read(U256::from(0x80)), U256::from(0xabcdef));
}

#[test]
fn test_memory_read_and_write_byte() {
	// given
	let mem: &mut Memory = &mut vec![];
	mem.resize(32);

	// when
	mem.write_byte(U256::from(0x1d), U256::from(0xab));
	mem.write_byte(U256::from(0x1e), U256::from(0xcd));
	mem.write_byte(U256::from(0x1f), U256::from(0xef));

	// then
	assert_eq!(mem.read(U256::from(0x00)), U256::from(0xabcdef));
}