1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
// Copyright 2015-2017 Parity Technologies (UK) Ltd.
// This file is part of Parity.

// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Parity.  If not, see <http://www.gnu.org/licenses/>.

//! Light client header chain.
//!
//! Unlike a full node's `BlockChain` this doesn't store much in the database.
//! It stores candidates for the last 2048-4096 blocks as well as CHT roots for
//! historical blocks all the way to the genesis.
//!
//! This is separate from the `BlockChain` for two reasons:
//!   - It stores only headers (and a pruned subset of them)
//!   - To allow for flexibility in the database layout once that's incorporated.
// TODO: use DB instead of memory. DB Layout: just the contents of `candidates`/`headers`
//

use std::collections::{BTreeMap, HashMap};

use cht;

use ethcore::block_status::BlockStatus;
use ethcore::error::BlockError;
use ethcore::ids::BlockId;
use ethcore::views::HeaderView;
use util::{Bytes, H256, U256, HeapSizeOf, Mutex, RwLock};

use smallvec::SmallVec;

/// Store at least this many candidate headers at all times.
/// Also functions as the delay for computing CHTs as they aren't
/// relevant to any blocks we've got in memory.
const HISTORY: u64 = 2048;

/// Information about a block.
#[derive(Debug, Clone)]
pub struct BlockDescriptor {
	/// The block's hash
	pub hash: H256,
	/// The block's number
	pub number: u64,
	/// The block's total difficulty.
	pub total_difficulty: U256,
}

// candidate block description.
struct Candidate {
	hash: H256,
	parent_hash: H256,
	total_difficulty: U256,
}

struct Entry {
	candidates: SmallVec<[Candidate; 3]>, // 3 arbitrarily chosen
	canonical_hash: H256,
}

impl HeapSizeOf for Entry {
	fn heap_size_of_children(&self) -> usize {
		match self.candidates.spilled() {
			false => 0,
			true => self.candidates.capacity() * ::std::mem::size_of::<Candidate>(),
		}
	}
}

/// Header chain. See module docs for more details.
pub struct HeaderChain {
	genesis_header: Bytes, // special-case the genesis.
	candidates: RwLock<BTreeMap<u64, Entry>>,
	headers: RwLock<HashMap<H256, Bytes>>,
	best_block: RwLock<BlockDescriptor>,
	cht_roots: Mutex<Vec<H256>>,
}

impl HeaderChain {
	/// Create a new header chain given this genesis block.
	pub fn new(genesis: &[u8]) -> Self {
		let g_view = HeaderView::new(genesis);

		HeaderChain {
			genesis_header: genesis.to_owned(),
			best_block: RwLock::new(BlockDescriptor {
				hash: g_view.hash(),
				number: 0,
				total_difficulty: g_view.difficulty(),
			}),
			candidates: RwLock::new(BTreeMap::new()),
			headers: RwLock::new(HashMap::new()),
			cht_roots: Mutex::new(Vec::new()),
		}
	}

	/// Insert a pre-verified header.
	///
	/// This blindly trusts that the data given to it is
	/// a) valid RLP encoding of a header and
	/// b) has sensible data contained within it.
	pub fn insert(&self, header: Bytes) -> Result<(), BlockError> {
		let view = HeaderView::new(&header);
		let hash = view.hash();
		let number = view.number();
		let parent_hash = view.parent_hash();

		// hold candidates the whole time to guard import order.
		let mut candidates = self.candidates.write();

		// find parent details.
		let parent_td =
			if number == 1 {
				let g_view = HeaderView::new(&self.genesis_header);
				g_view.difficulty()
			} else {
				candidates.get(&(number - 1))
					.and_then(|entry| entry.candidates.iter().find(|c| c.hash == parent_hash))
					.map(|c| c.total_difficulty)
					.ok_or_else(|| BlockError::UnknownParent(parent_hash))?
			};

		let total_difficulty = parent_td + view.difficulty();

		// insert headers and candidates entries.
		candidates.entry(number).or_insert_with(|| Entry { candidates: SmallVec::new(), canonical_hash: hash })
			.candidates.push(Candidate {
				hash: hash,
				parent_hash: parent_hash,
				total_difficulty: total_difficulty,
		});

		self.headers.write().insert(hash, header.clone());

		// reorganize ancestors so canonical entries are first in their
		// respective candidates vectors.
		if self.best_block.read().total_difficulty < total_difficulty {
			let mut canon_hash = hash;
			for (&height, entry) in candidates.iter_mut().rev().skip_while(|&(height, _)| *height > number) {
				if height != number && entry.canonical_hash == canon_hash { break; }

				trace!(target: "chain", "Setting new canonical block {} for block height {}",
					canon_hash, height);

				let canon_pos = entry.candidates.iter().position(|x| x.hash == canon_hash)
					.expect("blocks are only inserted if parent is present; or this is the block we just added; qed");

				// move the new canonical entry to the front and set the
				// era's canonical hash.
				entry.candidates.swap(0, canon_pos);
				entry.canonical_hash = canon_hash;

				// what about reorgs > cht::SIZE + HISTORY?
				// resetting to the last block of a given CHT should be possible.
				canon_hash = entry.candidates[0].parent_hash;
			}

			trace!(target: "chain", "New best block: ({}, {}), TD {}", number, hash, total_difficulty);
			*self.best_block.write() = BlockDescriptor {
				hash: hash,
				number: number,
				total_difficulty: total_difficulty,
			};

			// produce next CHT root if it's time.
			let earliest_era = *candidates.keys().next().expect("at least one era just created; qed");
			if earliest_era + HISTORY + cht::SIZE <= number {
				let mut values = Vec::with_capacity(cht::SIZE as usize);
				{
					let mut headers = self.headers.write();
					for i in (0..cht::SIZE).map(|x| x + earliest_era) {
						let era_entry = candidates.remove(&i)
							.expect("all eras are sequential with no gaps; qed");

						for ancient in &era_entry.candidates {
							headers.remove(&ancient.hash);
						}

						values.push((
							::rlp::encode(&i).to_vec(),
							::rlp::encode(&era_entry.canonical_hash).to_vec(),
						));
					}
				}

				let cht_root = ::util::triehash::trie_root(values);
				debug!(target: "chain", "Produced CHT {} root: {:?}", (earliest_era - 1) % cht::SIZE, cht_root);

				self.cht_roots.lock().push(cht_root);
			}
		}

		Ok(())
	}

	/// Get a block header. In the case of query by number, only canonical blocks
	/// will be returned.
	pub fn get_header(&self, id: BlockId) -> Option<Bytes> {
		match id {
			BlockId::Earliest | BlockId::Number(0) => Some(self.genesis_header.clone()),
			BlockId::Hash(hash) => self.headers.read().get(&hash).map(|x| x.to_vec()),
			BlockId::Number(num) => {
				if self.best_block.read().number < num { return None }

				self.candidates.read().get(&num).map(|entry| entry.canonical_hash)
					.and_then(|hash| self.headers.read().get(&hash).map(|x| x.to_vec()))
			}
			BlockId::Latest | BlockId::Pending => {
				let hash = self.best_block.read().hash;
				self.headers.read().get(&hash).map(|x| x.to_vec())
			}
		}
	}

	/// Get the nth CHT root, if it's been computed.
	///
	/// CHT root 0 is from block `1..2048`.
	/// CHT root 1 is from block `2049..4096`
	/// and so on.
	///
	/// This is because it's assumed that the genesis hash is known,
	/// so including it within a CHT would be redundant.
	pub fn cht_root(&self, n: usize) -> Option<H256> {
		self.cht_roots.lock().get(n).map(|h| h.clone())
	}

	/// Get the genesis hash.
	pub fn genesis_hash(&self) -> H256 {
		::util::Hashable::sha3(&self.genesis_header)
	}

	/// Get the best block's data.
	pub fn best_block(&self) -> BlockDescriptor {
		self.best_block.read().clone()
	}

	/// If there is a gap between the genesis and the rest
	/// of the stored blocks, return the first post-gap block.
	pub fn first_block(&self) -> Option<BlockDescriptor> {
		let candidates = self.candidates.read();
		match candidates.iter().next() {
			None | Some((&1, _)) => None,
			Some((&height, entry)) => Some(BlockDescriptor {
				number: height,
				hash: entry.canonical_hash,
				total_difficulty: entry.candidates.iter().find(|x| x.hash == entry.canonical_hash)
					.expect("entry always stores canonical candidate; qed").total_difficulty,
			})
		}
	}

	/// Get block status.
	pub fn status(&self, hash: &H256) -> BlockStatus {
		match self.headers.read().contains_key(hash) {
			true => BlockStatus::InChain,
			false => BlockStatus::Unknown,
		}
	}
}

impl HeapSizeOf for HeaderChain {
	fn heap_size_of_children(&self) -> usize {
		self.candidates.read().heap_size_of_children() +
			self.headers.read().heap_size_of_children() +
			self.cht_roots.lock().heap_size_of_children()
	}
}

#[cfg(test)]
mod tests {
	use super::HeaderChain;
	use ethcore::ids::BlockId;
	use ethcore::header::Header;
	use ethcore::spec::Spec;

	#[test]
	fn basic_chain() {
		let spec = Spec::new_test();
		let genesis_header = spec.genesis_header();

		let chain = HeaderChain::new(&::rlp::encode(&genesis_header));

		let mut parent_hash = genesis_header.hash();
		let mut rolling_timestamp = genesis_header.timestamp();
		for i in 1..10000 {
			let mut header = Header::new();
			header.set_parent_hash(parent_hash);
			header.set_number(i);
			header.set_timestamp(rolling_timestamp);
			header.set_difficulty(*genesis_header.difficulty() * i.into());

			chain.insert(::rlp::encode(&header).to_vec()).unwrap();

			parent_hash = header.hash();
			rolling_timestamp += 10;
		}

		assert!(chain.get_header(BlockId::Number(10)).is_none());
		assert!(chain.get_header(BlockId::Number(9000)).is_some());
		assert!(chain.cht_root(2).is_some());
		assert!(chain.cht_root(3).is_none());
	}

	#[test]
	fn reorganize() {
		let spec = Spec::new_test();
		let genesis_header = spec.genesis_header();

		let chain = HeaderChain::new(&::rlp::encode(&genesis_header));

		let mut parent_hash = genesis_header.hash();
		let mut rolling_timestamp = genesis_header.timestamp();
		for i in 1..6 {
			let mut header = Header::new();
			header.set_parent_hash(parent_hash);
			header.set_number(i);
			header.set_timestamp(rolling_timestamp);
			header.set_difficulty(*genesis_header.difficulty() * i.into());

			chain.insert(::rlp::encode(&header).to_vec()).unwrap();

			parent_hash = header.hash();
			rolling_timestamp += 10;
		}

		{
			let mut rolling_timestamp = rolling_timestamp;
			let mut parent_hash = parent_hash;
			for i in 6..16 {
				let mut header = Header::new();
				header.set_parent_hash(parent_hash);
				header.set_number(i);
				header.set_timestamp(rolling_timestamp);
				header.set_difficulty(*genesis_header.difficulty() * i.into());

				chain.insert(::rlp::encode(&header).to_vec()).unwrap();

				parent_hash = header.hash();
				rolling_timestamp += 10;
			}
		}

		assert_eq!(chain.best_block().number, 15);

		{
			let mut rolling_timestamp = rolling_timestamp;
			let mut parent_hash = parent_hash;

			// import a shorter chain which has better TD.
			for i in 6..13 {
				let mut header = Header::new();
				header.set_parent_hash(parent_hash);
				header.set_number(i);
				header.set_timestamp(rolling_timestamp);
				header.set_difficulty(*genesis_header.difficulty() * (i * i).into());

				chain.insert(::rlp::encode(&header).to_vec()).unwrap();

				parent_hash = header.hash();
				rolling_timestamp += 11;
			}
		}

		let (mut num, mut canon_hash) = (chain.best_block().number, chain.best_block().hash);
		assert_eq!(num, 12);

		while num > 0 {
			let header: Header = ::rlp::decode(&chain.get_header(BlockId::Number(num)).unwrap());
			assert_eq!(header.hash(), canon_hash);

			canon_hash = *header.parent_hash();
			num -= 1;
		}
	}
}