1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
// Copyright 2015-2017 Parity Technologies (UK) Ltd.
// This file is part of Parity.

// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Parity.  If not, see <http://www.gnu.org/licenses/>.

use crypto::sha2::Sha256 as Sha256Digest;
use crypto::ripemd160::Ripemd160 as Ripemd160Digest;
use crypto::digest::Digest;
use std::cmp::min;
use util::{U256, H256, Hashable, FixedHash, BytesRef};
use ethkey::{Signature, recover as ec_recover};
use ethjson;

/// Native implementation of a built-in contract.
pub trait Impl: Send + Sync {
	/// execute this built-in on the given input, writing to the given output.
	fn execute(&self, input: &[u8], output: &mut BytesRef);
}

/// A gas pricing scheme for built-in contracts.
pub trait Pricer: Send + Sync {
	/// The gas cost of running this built-in for the given size of input data.
	fn cost(&self, in_size: usize) -> U256;
}

/// A linear pricing model. This computes a price using a base cost and a cost per-word.
struct Linear {
	base: usize,
	word: usize,
}

impl Pricer for Linear {
	fn cost(&self, in_size: usize) -> U256 {
		U256::from(self.base) + U256::from(self.word) * U256::from((in_size + 31) / 32)
	}
}

/// Pricing scheme and execution definition for a built-in contract.
pub struct Builtin {
	pricer: Box<Pricer>,
	native: Box<Impl>,
}

impl Builtin {
	/// Simple forwarder for cost.
	pub fn cost(&self, s: usize) -> U256 { self.pricer.cost(s) }

	/// Simple forwarder for execute.
	pub fn execute(&self, input: &[u8], output: &mut BytesRef) { self.native.execute(input, output) }
}

impl From<ethjson::spec::Builtin> for Builtin {
	fn from(b: ethjson::spec::Builtin) -> Self {
		let pricer = match b.pricing {
			ethjson::spec::Pricing::Linear(linear) => {
				Box::new(Linear {
					base: linear.base,
					word: linear.word,
				})
			}
		};

		Builtin {
			pricer: pricer,
			native: ethereum_builtin(&b.name),
		}
	}
}

// Ethereum builtin creator.
fn ethereum_builtin(name: &str) -> Box<Impl> {
	match name {
		"identity" => Box::new(Identity) as Box<Impl>,
		"ecrecover" => Box::new(EcRecover) as Box<Impl>,
		"sha256" => Box::new(Sha256) as Box<Impl>,
		"ripemd160" => Box::new(Ripemd160) as Box<Impl>,
		_ => panic!("invalid builtin name: {}", name),
	}
}

// Ethereum builtins:
//
// - The identity function
// - ec recovery
// - sha256
// - ripemd160

#[derive(Debug)]
struct Identity;

#[derive(Debug)]
struct EcRecover;

#[derive(Debug)]
struct Sha256;

#[derive(Debug)]
struct Ripemd160;

impl Impl for Identity {
	fn execute(&self, input: &[u8], output: &mut BytesRef) {
		output.write(0, input);
	}
}

impl Impl for EcRecover {
	fn execute(&self, i: &[u8], output: &mut BytesRef) {
		let len = min(i.len(), 128);

		let mut input = [0; 128];
		input[..len].copy_from_slice(&i[..len]);

		let hash = H256::from_slice(&input[0..32]);
		let v = H256::from_slice(&input[32..64]);
		let r = H256::from_slice(&input[64..96]);
		let s = H256::from_slice(&input[96..128]);

		let bit = match v[31] {
			27 | 28 if &v.0[..31] == &[0; 31] => v[31] - 27,
			_ => return,
		};

		let s = Signature::from_rsv(&r, &s, bit);
		if s.is_valid() {
			if let Ok(p) = ec_recover(&s, &hash) {
				let r = p.sha3();
				output.write(0, &[0; 12]);
				output.write(12, &r[12..r.len()]);
			}
		}
	}
}

impl Impl for Sha256 {
	fn execute(&self, input: &[u8], output: &mut BytesRef) {
		let mut sha = Sha256Digest::new();
		sha.input(input);

		let mut out = [0; 32];
		sha.result(&mut out);

		output.write(0, &out);
	}
}

impl Impl for Ripemd160 {
	fn execute(&self, input: &[u8], output: &mut BytesRef) {
		let mut sha = Ripemd160Digest::new();
		sha.input(input);

		let mut out = [0; 32];
		sha.result(&mut out[12..32]);

		output.write(0, &out);
	}
}

#[cfg(test)]
mod tests {
	use super::{Builtin, Linear, ethereum_builtin, Pricer};
	use ethjson;
	use util::{U256, BytesRef};

	#[test]
	fn identity() {
		let f = ethereum_builtin("identity");

		let i = [0u8, 1, 2, 3];

		let mut o2 = [255u8; 2];
		f.execute(&i[..], &mut BytesRef::Fixed(&mut o2[..]));
		assert_eq!(i[0..2], o2);

		let mut o4 = [255u8; 4];
		f.execute(&i[..], &mut BytesRef::Fixed(&mut o4[..]));
		assert_eq!(i, o4);

		let mut o8 = [255u8; 8];
		f.execute(&i[..], &mut BytesRef::Fixed(&mut o8[..]));
		assert_eq!(i, o8[..4]);
		assert_eq!([255u8; 4], o8[4..]);
	}

	#[test]
	fn sha256() {
		use rustc_serialize::hex::FromHex;
		let f = ethereum_builtin("sha256");

		let i = [0u8; 0];

		let mut o = [255u8; 32];
		f.execute(&i[..], &mut BytesRef::Fixed(&mut o[..]));
		assert_eq!(&o[..], &(FromHex::from_hex("e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855").unwrap())[..]);

		let mut o8 = [255u8; 8];
		f.execute(&i[..], &mut BytesRef::Fixed(&mut o8[..]));
		assert_eq!(&o8[..], &(FromHex::from_hex("e3b0c44298fc1c14").unwrap())[..]);

		let mut o34 = [255u8; 34];
		f.execute(&i[..], &mut BytesRef::Fixed(&mut o34[..]));
		assert_eq!(&o34[..], &(FromHex::from_hex("e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855ffff").unwrap())[..]);

		let mut ov = vec![];
		f.execute(&i[..], &mut BytesRef::Flexible(&mut ov));
		assert_eq!(&ov[..], &(FromHex::from_hex("e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855").unwrap())[..]);
	}

	#[test]
	fn ripemd160() {
		use rustc_serialize::hex::FromHex;
		let f = ethereum_builtin("ripemd160");

		let i = [0u8; 0];

		let mut o = [255u8; 32];
		f.execute(&i[..], &mut BytesRef::Fixed(&mut o[..]));
		assert_eq!(&o[..], &(FromHex::from_hex("0000000000000000000000009c1185a5c5e9fc54612808977ee8f548b2258d31").unwrap())[..]);

		let mut o8 = [255u8; 8];
		f.execute(&i[..], &mut BytesRef::Fixed(&mut o8[..]));
		assert_eq!(&o8[..], &(FromHex::from_hex("0000000000000000").unwrap())[..]);

		let mut o34 = [255u8; 34];
		f.execute(&i[..], &mut BytesRef::Fixed(&mut o34[..]));
		assert_eq!(&o34[..], &(FromHex::from_hex("0000000000000000000000009c1185a5c5e9fc54612808977ee8f548b2258d31ffff").unwrap())[..]);
	}

	#[test]
	fn ecrecover() {
		use rustc_serialize::hex::FromHex;
		/*let k = KeyPair::from_secret(b"test".sha3()).unwrap();
		let a: Address = From::from(k.public().sha3());
		println!("Address: {}", a);
		let m = b"hello world".sha3();
		println!("Message: {}", m);
		let s = k.sign(&m).unwrap();
		println!("Signed: {}", s);*/

		let f = ethereum_builtin("ecrecover");

		let i = FromHex::from_hex("47173285a8d7341e5e972fc677286384f802f8ef42a5ec5f03bbfa254cb01fad000000000000000000000000000000000000000000000000000000000000001b650acf9d3f5f0a2c799776a1254355d5f4061762a237396a99a0e0e3fc2bcd6729514a0dacb2e623ac4abd157cb18163ff942280db4d5caad66ddf941ba12e03").unwrap();

		let mut o = [255u8; 32];
		f.execute(&i[..], &mut BytesRef::Fixed(&mut o[..]));
		assert_eq!(&o[..], &(FromHex::from_hex("000000000000000000000000c08b5542d177ac6686946920409741463a15dddb").unwrap())[..]);

		let mut o8 = [255u8; 8];
		f.execute(&i[..], &mut BytesRef::Fixed(&mut o8[..]));
		assert_eq!(&o8[..], &(FromHex::from_hex("0000000000000000").unwrap())[..]);

		let mut o34 = [255u8; 34];
		f.execute(&i[..], &mut BytesRef::Fixed(&mut o34[..]));
		assert_eq!(&o34[..], &(FromHex::from_hex("000000000000000000000000c08b5542d177ac6686946920409741463a15dddbffff").unwrap())[..]);

		let i_bad = FromHex::from_hex("47173285a8d7341e5e972fc677286384f802f8ef42a5ec5f03bbfa254cb01fad000000000000000000000000000000000000000000000000000000000000001a650acf9d3f5f0a2c799776a1254355d5f4061762a237396a99a0e0e3fc2bcd6729514a0dacb2e623ac4abd157cb18163ff942280db4d5caad66ddf941ba12e03").unwrap();
		let mut o = [255u8; 32];
		f.execute(&i_bad[..], &mut BytesRef::Fixed(&mut o[..]));
		assert_eq!(&o[..], &(FromHex::from_hex("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap())[..]);

		let i_bad = FromHex::from_hex("47173285a8d7341e5e972fc677286384f802f8ef42a5ec5f03bbfa254cb01fad000000000000000000000000000000000000000000000000000000000000001b000000000000000000000000000000000000000000000000000000000000001b0000000000000000000000000000000000000000000000000000000000000000").unwrap();
		let mut o = [255u8; 32];
		f.execute(&i_bad[..], &mut BytesRef::Fixed(&mut o[..]));
		assert_eq!(&o[..], &(FromHex::from_hex("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap())[..]);

		let i_bad = FromHex::from_hex("47173285a8d7341e5e972fc677286384f802f8ef42a5ec5f03bbfa254cb01fad000000000000000000000000000000000000000000000000000000000000001b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001b").unwrap();
		let mut o = [255u8; 32];
		f.execute(&i_bad[..], &mut BytesRef::Fixed(&mut o[..]));
		assert_eq!(&o[..], &(FromHex::from_hex("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap())[..]);

		let i_bad = FromHex::from_hex("47173285a8d7341e5e972fc677286384f802f8ef42a5ec5f03bbfa254cb01fad000000000000000000000000000000000000000000000000000000000000001bffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff000000000000000000000000000000000000000000000000000000000000001b").unwrap();
		let mut o = [255u8; 32];
		f.execute(&i_bad[..], &mut BytesRef::Fixed(&mut o[..]));
		assert_eq!(&o[..], &(FromHex::from_hex("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap())[..]);

		let i_bad = FromHex::from_hex("47173285a8d7341e5e972fc677286384f802f8ef42a5ec5f03bbfa254cb01fad000000000000000000000000000000000000000000000000000000000000001b000000000000000000000000000000000000000000000000000000000000001bffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap();
		let mut o = [255u8; 32];
		f.execute(&i_bad[..], &mut BytesRef::Fixed(&mut o[..]));
		assert_eq!(&o[..], &(FromHex::from_hex("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap())[..]);

		// TODO: Should this (corrupted version of the above) fail rather than returning some address?
	/*	let i_bad = FromHex::from_hex("48173285a8d7341e5e972fc677286384f802f8ef42a5ec5f03bbfa254cb01fad000000000000000000000000000000000000000000000000000000000000001b650acf9d3f5f0a2c799776a1254355d5f4061762a237396a99a0e0e3fc2bcd6729514a0dacb2e623ac4abd157cb18163ff942280db4d5caad66ddf941ba12e03").unwrap();
		let mut o = [255u8; 32];
		f.execute(&i_bad[..], &mut BytesRef::Fixed(&mut o[..]));
		assert_eq!(&o[..], &(FromHex::from_hex("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap())[..]);*/
	}

	#[test]
	#[should_panic]
	fn from_unknown_linear() {
		let _ = ethereum_builtin("foo");
	}

	#[test]
	fn from_named_linear() {
		let pricer = Box::new(Linear { base: 10, word: 20 });
		let b = Builtin {
			pricer: pricer as Box<Pricer>,
			native: ethereum_builtin("identity"),
		};

		assert_eq!(b.cost(0), U256::from(10));
		assert_eq!(b.cost(1), U256::from(30));
		assert_eq!(b.cost(32), U256::from(30));
		assert_eq!(b.cost(33), U256::from(50));

		let i = [0u8, 1, 2, 3];
		let mut o = [255u8; 4];
		b.execute(&i[..], &mut BytesRef::Fixed(&mut o[..]));
		assert_eq!(i, o);
	}

	#[test]
	fn from_json() {
		let b = Builtin::from(ethjson::spec::Builtin {
			name: "identity".to_owned(),
			pricing: ethjson::spec::Pricing::Linear(ethjson::spec::Linear {
				base: 10,
				word: 20,
			})
		});

		assert_eq!(b.cost(0), U256::from(10));
		assert_eq!(b.cost(1), U256::from(30));
		assert_eq!(b.cost(32), U256::from(30));
		assert_eq!(b.cost(33), U256::from(50));

		let i = [0u8, 1, 2, 3];
		let mut o = [255u8; 4];
		b.execute(&i[..], &mut BytesRef::Fixed(&mut o[..]));
		assert_eq!(i, o);
	}
}