1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
use std::collections::HashSet;
use primitives::hash::H256;
use primitives::compact::Compact;
use chain::{OutPoint, TransactionOutput, IndexedTransaction};
use storage::{SharedStore, TransactionOutputProvider};
use network::{ConsensusParams, ConsensusFork, TransactionOrdering};
use memory_pool::{MemoryPool, OrderingStrategy, Entry};
use verification::{work_required, block_reward_satoshi, transaction_sigops, median_timestamp_inclusive};

const BLOCK_VERSION: u32 = 0x20000000;
const BLOCK_HEADER_SIZE: u32 = 4 + 32 + 32 + 4 + 4 + 4;

/// Block template as described in [BIP0022](https://github.com/bitcoin/bips/blob/master/bip-0022.mediawiki#block-template-request)
pub struct BlockTemplate {
	/// Version
	pub version: u32,
	/// The hash of previous block
	pub previous_header_hash: H256,
	/// The current time as seen by the server
	pub time: u32,
	/// The compressed difficulty
	pub bits: Compact,
	/// Block height
	pub height: u32,
	/// Block transactions (excluding coinbase)
	pub transactions: Vec<IndexedTransaction>,
	/// Total funds available for the coinbase (in Satoshis)
	pub coinbase_value: u64,
	/// Number of bytes allowed in the block
	pub size_limit: u32,
	/// Number of sigops allowed in the block
	pub sigop_limit: u32,
}

/// Block size and number of signatures opcodes is limited
/// This structure should be used for storing this values.
struct SizePolicy {
	/// Current size
	current_size: u32,
	/// Max size
	max_size: u32,
	/// When current_size + size_buffer > max_size
	/// we need to start finishing the block
	size_buffer: u32,
	/// Number of transactions checked since finishing started
	finish_counter: u32,
	/// Number of transactions to check when finishing the block
	finish_limit: u32,
}

/// When appending transaction, opcode count and block size policies
/// must agree on appending the transaction to the block
#[derive(Debug, PartialEq, Copy, Clone)]
enum NextStep {
	/// Append the transaction, check the next one
	Append,
	/// Append the transaction, do not check the next one
	FinishAndAppend,
	/// Ignore transaction, check the next one
	Ignore,
	/// Ignore transaction, do not check the next one
	FinishAndIgnore,
}

impl NextStep {
	fn and(self, other: NextStep) -> Self {
		match (self, other) {
			(_, NextStep::FinishAndIgnore) |
			(NextStep::FinishAndIgnore, _) |
			(NextStep::FinishAndAppend, NextStep::Ignore) |
			(NextStep::Ignore, NextStep::FinishAndAppend) => NextStep::FinishAndIgnore,

			(NextStep::Ignore, _) |
			(_, NextStep::Ignore) => NextStep::Ignore,

			(_, NextStep::FinishAndAppend) |
			(NextStep::FinishAndAppend, _) => NextStep::FinishAndAppend,

			(NextStep::Append, NextStep::Append) => NextStep::Append,
		}
	}
}

impl SizePolicy {
	fn new(current_size: u32, max_size: u32, size_buffer: u32, finish_limit: u32) -> Self {
		SizePolicy {
			current_size: current_size,
			max_size: max_size,
			size_buffer: size_buffer,
			finish_counter: 0,
			finish_limit: finish_limit,
		}
	}

	fn decide(&mut self, size: u32) -> NextStep {
		let finishing = self.current_size + self.size_buffer > self.max_size;
		let fits = self.current_size + size <= self.max_size;
		let finish = self.finish_counter + 1 >= self.finish_limit;

		if finishing {
			self.finish_counter += 1;
		}

		match (fits, finish) {
			(true, true) => NextStep::FinishAndAppend,
			(true, false) => NextStep::Append,
			(false, true) => NextStep::FinishAndIgnore,
			(false, false) => NextStep::Ignore,
		}
	}

	fn apply(&mut self, size: u32) {
		self.current_size += size;
	}
}

/// Block assembler
pub struct BlockAssembler {
	/// Maximal block size.
	pub max_block_size: u32,
	/// Maximal # of sigops in the block.
	pub max_block_sigops: u32,
}

/// Iterator iterating over mempool transactions and yielding only those which fit the block
struct FittingTransactionsIterator<'a, T> {
	/// Shared store is used to query previous transaction outputs from database
	store: &'a TransactionOutputProvider,
	/// Memory pool transactions iterator
	iter: T,
	/// New block height
	block_height: u32,
	/// New block time
	block_time: u32,
	/// Are OP_CHECKDATASIG && OP_CHECKDATASIGVERIFY enabled for this block.
	checkdatasig_active: bool,
	/// Size policy decides if transactions size fits the block
	block_size: SizePolicy,
	/// Sigops policy decides if transactions sigops fits the block
	sigops: SizePolicy,
	/// Previous entries are needed to get previous transaction outputs
	previous_entries: Vec<&'a Entry>,
	/// Hashes of ignored entries
	ignored: HashSet<H256>,
	/// True if block is already full
	finished: bool,
}

impl<'a, T> FittingTransactionsIterator<'a, T> where T: Iterator<Item = &'a Entry> {
	fn new(
		store: &'a TransactionOutputProvider,
		iter: T,
		max_block_size: u32,
		max_block_sigops: u32,
		block_height: u32,
		block_time: u32,
		checkdatasig_active: bool,
	) -> Self {
		FittingTransactionsIterator {
			store: store,
			iter: iter,
			block_height: block_height,
			block_time: block_time,
			checkdatasig_active,
			// reserve some space for header and transations len field
			block_size: SizePolicy::new(BLOCK_HEADER_SIZE + 4, max_block_size, 1_000, 50),
			sigops: SizePolicy::new(0, max_block_sigops, 8, 50),
			previous_entries: Vec::new(),
			ignored: HashSet::new(),
			finished: false,
		}
	}
}

impl<'a, T> TransactionOutputProvider for FittingTransactionsIterator<'a, T> where T: Send + Sync {
	fn transaction_output(&self, prevout: &OutPoint, transaction_index: usize) -> Option<TransactionOutput> {
		self.store.transaction_output(prevout, transaction_index)
			.or_else(|| {
				self.previous_entries.iter()
					.find(|e| e.hash == prevout.hash)
					.and_then(|e| e.transaction.outputs.iter().nth(prevout.index as usize))
					.cloned()
			})
	}

	fn is_spent(&self, _outpoint: &OutPoint) -> bool {
		unimplemented!();
	}
}

impl<'a, T> Iterator for FittingTransactionsIterator<'a, T> where T: Iterator<Item = &'a Entry> + Send + Sync {
	type Item = &'a Entry;

	fn next(&mut self) -> Option<Self::Item> {
		while !self.finished {
			let entry = match self.iter.next() {
				Some(entry) => entry,
				None => {
					self.finished = true;
					return None;
				}
			};

			let transaction_size = entry.size as u32;
			let bip16_active = true;
			let sigops_count = transaction_sigops(&entry.transaction, self, bip16_active, self.checkdatasig_active) as u32;

			let size_step = self.block_size.decide(transaction_size);
			let sigops_step = self.sigops.decide(sigops_count);

			// both next checks could be checked above, but then it will break finishing
			// check if transaction is still not finalized in this block
			if !entry.transaction.is_final_in_block(self.block_height, self.block_time) {
				continue;
			}
			// check if any parent transaction has been ignored
			if !self.ignored.is_empty() && entry.transaction.inputs.iter().any(|input| self.ignored.contains(&input.previous_output.hash)) {
				continue;
			}


			match size_step.and(sigops_step) {
				NextStep::Append => {
					self.block_size.apply(transaction_size);
					self.sigops.apply(transaction_size);
					self.previous_entries.push(entry);
					return Some(entry);
				},
				NextStep::FinishAndAppend => {
					self.finished = true;
					self.block_size.apply(transaction_size);
					self.sigops.apply(transaction_size);
					self.previous_entries.push(entry);
					return Some(entry);
				},
				NextStep::Ignore => (),
				NextStep::FinishAndIgnore => {
					self.ignored.insert(entry.hash.clone());
					self.finished = true;
				},
			}
		}

		None
	}
}

impl BlockAssembler {
	pub fn create_new_block(&self, store: &SharedStore, mempool: &MemoryPool, time: u32, median_timestamp: u32, consensus: &ConsensusParams) -> BlockTemplate {
		// get best block
		// take it's hash && height
		let best_block = store.best_block();
		let previous_header_hash = best_block.hash;
		let height = best_block.number + 1;
		let bits = work_required(previous_header_hash.clone(), time, height, store.as_block_header_provider(), consensus);
		let version = BLOCK_VERSION;

		let checkdatasig_active = match consensus.fork {
			ConsensusFork::BitcoinCash(ref fork) => median_timestamp >= fork.magnetic_anomaly_time,
			_ => false
		};

		let mut coinbase_value = block_reward_satoshi(height);
		let mut transactions = Vec::new();

		let mempool_iter = mempool.iter(OrderingStrategy::ByTransactionScore);
		let tx_iter = FittingTransactionsIterator::new(
			store.as_transaction_output_provider(),
			mempool_iter,
			self.max_block_size,
			self.max_block_sigops,
			height,
			time,
			checkdatasig_active);
		for entry in tx_iter {
			// miner_fee is i64, but we can safely cast it to u64
			// memory pool should restrict miner fee to be positive
			coinbase_value += entry.miner_fee as u64;
			let tx = IndexedTransaction::new(entry.hash.clone(), entry.transaction.clone());
			transactions.push(tx);
		}

		// sort block transactions
		let median_time_past = median_timestamp_inclusive(previous_header_hash.clone(), store.as_block_header_provider());
		match consensus.fork.transaction_ordering(median_time_past) {
			TransactionOrdering::Canonical => transactions.sort_unstable_by(|tx1, tx2|
				tx1.hash.cmp(&tx2.hash)),
			// memory pool iter returns transactions in topological order
			TransactionOrdering::Topological => (),
		}

		BlockTemplate {
			version: version,
			previous_header_hash: previous_header_hash,
			time: time,
			bits: bits,
			height: height,
			transactions: transactions,
			coinbase_value: coinbase_value,
			size_limit: self.max_block_size,
			sigop_limit: self.max_block_sigops,
		}
	}
}

#[cfg(test)]
mod tests {
	extern crate test_data;

	use std::sync::Arc;
	use db::BlockChainDatabase;
	use primitives::hash::H256;
	use storage::SharedStore;
	use network::{ConsensusParams, ConsensusFork, Network, BitcoinCashConsensusParams};
	use memory_pool::MemoryPool;
	use self::test_data::{ChainBuilder, TransactionBuilder};
	use super::{BlockAssembler, SizePolicy, NextStep, BlockTemplate};

	#[test]
	fn test_size_policy() {
		let mut size_policy = SizePolicy::new(0, 1000, 200, 3);
		assert_eq!(size_policy.decide(100), NextStep::Append); size_policy.apply(100);
		assert_eq!(size_policy.decide(500), NextStep::Append); size_policy.apply(500);
		assert_eq!(size_policy.decide(600), NextStep::Ignore);
		assert_eq!(size_policy.decide(200), NextStep::Append); size_policy.apply(200);
		assert_eq!(size_policy.decide(300), NextStep::Ignore);
		assert_eq!(size_policy.decide(300), NextStep::Ignore);
		// this transaction will make counter + buffer > max size
		assert_eq!(size_policy.decide(1), NextStep::Append); size_policy.apply(1);
		// so now only 3 more transactions may accepted / ignored
		assert_eq!(size_policy.decide(1), NextStep::Append); size_policy.apply(1);
		assert_eq!(size_policy.decide(1000), NextStep::Ignore);
		assert_eq!(size_policy.decide(1), NextStep::FinishAndAppend); size_policy.apply(1);
		// we should not call decide again after it returned finish...
		// but we can, let's check if result is ok
		assert_eq!(size_policy.decide(1000), NextStep::FinishAndIgnore);
	}

	#[test]
	fn test_next_step_and() {
		assert_eq!(NextStep::Append.and(NextStep::Append), NextStep::Append);
		assert_eq!(NextStep::Ignore.and(NextStep::Append), NextStep::Ignore);
		assert_eq!(NextStep::FinishAndIgnore.and(NextStep::Append), NextStep::FinishAndIgnore);
		assert_eq!(NextStep::Ignore.and(NextStep::FinishAndIgnore), NextStep::FinishAndIgnore);
		assert_eq!(NextStep::FinishAndAppend.and(NextStep::FinishAndIgnore), NextStep::FinishAndIgnore);
		assert_eq!(NextStep::FinishAndAppend.and(NextStep::Ignore), NextStep::FinishAndIgnore);
		assert_eq!(NextStep::FinishAndAppend.and(NextStep::Append), NextStep::FinishAndAppend);
	}

	#[test]
	fn test_fitting_transactions_iterator_max_block_size_reached() {
	}

	#[test]
	fn test_fitting_transactions_iterator_ignored_parent() {
		// TODO
	}

	#[test]
	fn test_fitting_transactions_iterator_locked_transaction() {
		// TODO
	}

	#[test]
	fn block_assembler_transaction_order() {
		fn construct_block(consensus: ConsensusParams) -> (BlockTemplate, H256, H256) {
			let chain = &mut ChainBuilder::new();
			TransactionBuilder::with_default_input(0).set_output(30).store(chain)	// transaction0
				.into_input(0).set_output(50).store(chain);							// transaction0 -> transaction1
			let hash0 = chain.at(0).hash();
			let hash1 = chain.at(1).hash();

			let mut pool = MemoryPool::new();
			let storage: SharedStore = Arc::new(BlockChainDatabase::init_test_chain(vec![test_data::genesis().into()]));
			pool.insert_verified(chain.at(0).into());
			pool.insert_verified(chain.at(1).into());

			(BlockAssembler {
				max_block_size: 0xffffffff,
				max_block_sigops: 0xffffffff,
			}.create_new_block(&storage, &pool, 0, 0, &consensus), hash0, hash1)
		}

		// when topological consensus is used
		let topological_consensus = ConsensusParams::new(Network::Mainnet, ConsensusFork::BitcoinCore);
		let (block, hash0, hash1) = construct_block(topological_consensus);
		assert!(hash1 < hash0);
		assert_eq!(block.transactions[0].hash, hash0);
		assert_eq!(block.transactions[1].hash, hash1);

		// when canonocal consensus is used
		let mut canonical_fork = BitcoinCashConsensusParams::new(Network::Mainnet);
		canonical_fork.magnetic_anomaly_time = 0;
		let canonical_consensus = ConsensusParams::new(Network::Mainnet, ConsensusFork::BitcoinCash(canonical_fork));
		let (block, hash0, hash1) = construct_block(canonical_consensus);
		assert!(hash1 < hash0);
		assert_eq!(block.transactions[0].hash, hash1);
		assert_eq!(block.transactions[1].hash, hash0);
	}
}