Newer
Older
// Copyright 2017-2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! Module to handle which parachains/parathreads (collectively referred to as "paras") are
//! registered and which are scheduled. Doesn't manage any of the actual execution/validation logic
//! which is left to `parachains.rs`.
use sp_std::{prelude::*, result};
transaction_validity::{TransactionValidityError, ValidTransaction, TransactionValidity},
traits::{Hash as HashT, SignedExtension, DispatchInfoOf},
decl_storage, decl_module, decl_event, decl_error, ensure,
dispatch::{DispatchResult, IsSubType}, traits::{Get, Currency, ReservableCurrency},
weights::{DispatchClass, Weight},
};
use system::{self, ensure_root, ensure_signed};
use primitives::parachain::{
Id as ParaId, CollatorId, Scheduling, LOWEST_USER_ID, SwapAux, Info as ParaInfo, ActiveParas,
asynchronous rob
committed
Retriable, ValidationCode, HeadData,
use sp_runtime::transaction_validity::InvalidTransaction;
/// Parachain registration API.
pub trait Registrar<AccountId> {
/// Create a new unique parachain identity for later registration.
fn new_id() -> ParaId;
/// Checks whether the given initial head data size falls within the limit.
fn head_data_size_allowed(head_data_size: u32) -> bool;
/// Checks whether the given validation code falls within the limit.
fn code_size_allowed(code_size: u32) -> bool;
/// Fetches metadata for a para by ID, if any.
fn para_info(id: ParaId) -> Option<ParaInfo>;
/// Register a parachain with given `code` and `initial_head_data`. `id` must not yet be registered or it will
/// result in a error.
///
/// This does not enforce any code size or initial head data limits, as these
/// are governable and parameters for parachain initialization are often
/// determined long ahead-of-time. Not checking these values ensures that changes to limits
/// do not invalidate in-progress auction winners.
fn register_para(
id: ParaId,
info: ParaInfo,
asynchronous rob
committed
code: ValidationCode,
initial_head_data: HeadData,
/// Deregister a parachain with given `id`. If `id` is not currently registered, an error is returned.
fn deregister_para(id: ParaId) -> DispatchResult;
}
impl<T: Trait> Registrar<T::AccountId> for Module<T> {
fn new_id() -> ParaId {
<NextFreeId>::mutate(|n| { let r = *n; *n = ParaId::from(u32::from(*n) + 1); r })
}
fn head_data_size_allowed(head_data_size: u32) -> bool {
head_data_size <= <T as parachains::Trait>::MaxHeadDataSize::get()
}
fn code_size_allowed(code_size: u32) -> bool {
code_size <= <T as parachains::Trait>::MaxCodeSize::get()
}
fn para_info(id: ParaId) -> Option<ParaInfo> {
Self::paras(&id)
}
fn register_para(
id: ParaId,
info: ParaInfo,
asynchronous rob
committed
code: ValidationCode,
initial_head_data: HeadData,
ensure!(!Paras::contains_key(id), Error::<T>::ParaAlreadyExists);
if let Scheduling::Always = info.scheduling {
Parachains::mutate(|parachains|
match parachains.binary_search(&id) {
Ok(_) => Err(Error::<T>::ParaAlreadyExists),
Err(idx) => {
parachains.insert(idx, id);
Ok(())
}
}
)?;
}
<parachains::Module<T>>::initialize_para(id, code, initial_head_data);
Paras::insert(id, info);
Ok(())
}
fn deregister_para(id: ParaId) -> DispatchResult {
let info = Paras::take(id).ok_or(Error::<T>::InvalidChainId)?;
if let Scheduling::Always = info.scheduling {
Parachains::mutate(|parachains|
parachains.binary_search(&id)
.map(|index| parachains.remove(index))
.map_err(|_| Error::<T>::InvalidChainId)
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
)?;
}
<parachains::Module<T>>::cleanup_para(id);
Paras::remove(id);
Ok(())
}
}
type BalanceOf<T> =
<<T as Trait>::Currency as Currency<<T as system::Trait>::AccountId>>::Balance;
pub trait Trait: parachains::Trait {
/// The overarching event type.
type Event: From<Event> + Into<<Self as system::Trait>::Event>;
/// The aggregated origin type must support the parachains origin. We require that we can
/// infallibly convert between this origin and the system origin, but in reality, they're the
/// same type, we just can't express that to the Rust type system without writing a `where`
/// clause everywhere.
type Origin: From<<Self as system::Trait>::Origin>
+ Into<result::Result<parachains::Origin, <Self as Trait>::Origin>>;
/// The system's currency for parathread payment.
type Currency: ReservableCurrency<Self::AccountId>;
/// The deposit to be paid to run a parathread.
type ParathreadDeposit: Get<BalanceOf<Self>>;
/// Handler for when two ParaIds are swapped.
type SwapAux: SwapAux;
/// The number of items in the parathread queue, aka the number of blocks in advance to schedule
/// parachain execution.
type QueueSize: Get<usize>;
/// The number of rotations that you will have as grace if you miss a block.
type MaxRetries: Get<u32>;
}
decl_storage! {
trait Store for Module<T: Trait> as Registrar {
// Vector of all parachain IDs, in ascending order.
Parachains: Vec<ParaId>;
/// The number of threads to schedule per block.
ThreadCount: u32;
/// An array of the queue of set of threads scheduled for the coming blocks; ordered by
/// ascending para ID. There can be no duplicates of para ID in each list item.
SelectedThreads: Vec<Vec<(ParaId, CollatorId)>>;
/// Parathreads/chains scheduled for execution this block. If the collator ID is set, then
/// a particular collator has already been chosen for the next block, and no other collator
/// may provide the block. In this case we allow the possibility of the combination being
/// retried in a later block, expressed by `Retriable`.
///
/// Ordered by ParaId.
Active: Vec<(ParaId, Option<(CollatorId, Retriable)>)>;
/// The next unused ParaId value. Start this high in order to keep low numbers for
/// system-level chains.
NextFreeId: ParaId = LOWEST_USER_ID;
/// Pending swap operations.
PendingSwap: map hasher(twox_64_concat) ParaId => Option<ParaId>;
/// Map of all registered parathreads/chains.
Paras get(fn paras): map hasher(twox_64_concat) ParaId => Option<ParaInfo>;
/// The current queue for parathreads that should be retried.
RetryQueue get(fn retry_queue): Vec<Vec<(ParaId, CollatorId)>>;
/// Users who have paid a parathread's deposit
Debtors: map hasher(twox_64_concat) ParaId => T::AccountId;
asynchronous rob
committed
config(parachains): Vec<(ParaId, ValidationCode, HeadData)>;
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
config(_phdata): PhantomData<T>;
build(build::<T>);
}
}
#[cfg(feature = "std")]
fn build<T: Trait>(config: &GenesisConfig<T>) {
let mut p = config.parachains.clone();
p.sort_unstable_by_key(|&(ref id, _, _)| *id);
p.dedup_by_key(|&mut (ref id, _, _)| *id);
let only_ids: Vec<ParaId> = p.iter().map(|&(ref id, _, _)| id).cloned().collect();
Parachains::put(&only_ids);
for (id, code, genesis) in p {
Paras::insert(id, &primitives::parachain::PARACHAIN_INFO);
// no ingress -- a chain cannot be routed to until it is live.
<parachains::Code>::insert(&id, &code);
<parachains::Heads>::insert(&id, &genesis);
// Save initial parachains in registrar
Paras::insert(id, ParaInfo { scheduling: Scheduling::Always })
}
}
/// Swap the existence of two items, provided by value, within an ordered list.
///
/// If neither item exists, or if both items exist this will do nothing. If exactly one of the
/// items exists, then it will be removed and the other inserted.
pub fn swap_ordered_existence<T: PartialOrd + Ord + Copy>(ids: &mut [T], one: T, other: T) {
let maybe_one_pos = ids.binary_search(&one);
let maybe_other_pos = ids.binary_search(&other);
match (maybe_one_pos, maybe_other_pos) {
(Ok(one_pos), Err(_)) => ids[one_pos] = other,
(Err(_), Ok(other_pos)) => ids[other_pos] = one,
_ => return,
};
ids.sort();
}
decl_error! {
pub enum Error for Module<T: Trait> {
/// Parachain already exists.
ParaAlreadyExists,
/// Invalid parachain ID.
InvalidChainId,
/// Invalid parathread ID.
InvalidThreadId,
/// Invalid para code size.
CodeTooLarge,
/// Invalid para head data size.
HeadDataTooLarge,
decl_module! {
/// Parachains module.
pub struct Module<T: Trait> for enum Call where origin: <T as system::Trait>::Origin {
type Error = Error<T>;
/// Register a parachain with given code. Must be called by root.
/// Fails if given ID is already used.
///
/// Unlike the `Registrar` trait function of the same name, this
/// checks the code and head data against size limits.
#[weight = (5_000_000_000, DispatchClass::Operational)]
pub fn register_para(origin,
#[compact] id: ParaId,
info: ParaInfo,
asynchronous rob
committed
code: ValidationCode,
initial_head_data: HeadData,
asynchronous rob
committed
<Self as Registrar<T::AccountId>>::code_size_allowed(code.0.len() as _),
Error::<T>::CodeTooLarge,
);
ensure!(
<Self as Registrar<T::AccountId>>::head_data_size_allowed(
asynchronous rob
committed
initial_head_data.0.len() as _
),
Error::<T>::HeadDataTooLarge,
);
<Self as Registrar<T::AccountId>>::
register_para(id, info, code, initial_head_data)
}
/// Deregister a parachain with given id
#[weight = (10_000_000, DispatchClass::Operational)]
pub fn deregister_para(origin, #[compact] id: ParaId) -> DispatchResult {
ensure_root(origin)?;
<Self as Registrar<T::AccountId>>::deregister_para(id)
}
/// Reset the number of parathreads that can pay to be scheduled in a single block.
///
/// - `count`: The number of parathreads.
///
/// Must be called from Root origin.
#[weight = 0]
fn set_thread_count(origin, count: u32) {
ensure_root(origin)?;
ThreadCount::put(count);
}
/// Register a parathread for immediate use.
///
/// Must be sent from a Signed origin that is able to have ParathreadDeposit reserved.
/// `code` and `initial_head_data` are used to initialize the parathread's state.
///
/// Unlike `register_para`, this function does check that the maximum code size
/// and head data size are respected, as parathread registration is an atomic
/// action.
#[weight = 0]
asynchronous rob
committed
code: ValidationCode,
initial_head_data: HeadData,
) {
let who = ensure_signed(origin)?;
<T as Trait>::Currency::reserve(&who, T::ParathreadDeposit::get())?;
let info = ParaInfo {
scheduling: Scheduling::Dynamic,
};
asynchronous rob
committed
<Self as Registrar<T::AccountId>>::code_size_allowed(code.0.len() as _),
Error::<T>::CodeTooLarge,
);
ensure!(
<Self as Registrar<T::AccountId>>::head_data_size_allowed(
asynchronous rob
committed
initial_head_data.0.len() as _
),
Error::<T>::HeadDataTooLarge,
);
let id = <Self as Registrar<T::AccountId>>::new_id();
let _ = <Self as Registrar<T::AccountId>>::
register_para(id, info, code, initial_head_data);
<Debtors<T>>::insert(id, who);
Self::deposit_event(Event::ParathreadRegistered(id));
}
/// Place a bid for a parathread to be progressed in the next block.
///
/// This is a kind of special transaction that should be heavily prioritized in the
/// transaction pool according to the `value`; only `ThreadCount` of them may be presented
/// in any single block.
#[weight = 0]
fn select_parathread(origin,
#[compact] _id: ParaId,
_collator: CollatorId,
_head_hash: T::Hash,
) {
ensure_signed(origin)?;
// Everything else is checked for in the transaction `SignedExtension`.
}
/// Deregister a parathread and retrieve the deposit.
///
/// Must be sent from a `Parachain` origin which is currently a parathread.
///
/// Ensure that before calling this that any funds you want emptied from the parathread's
/// account is moved out; after this it will be impossible to retrieve them (without
/// governance intervention).
#[weight = 0]
fn deregister_parathread(origin) {
let id = parachains::ensure_parachain(<T as Trait>::Origin::from(origin))?;
let info = Paras::get(id).ok_or(Error::<T>::InvalidChainId)?;
if let Scheduling::Dynamic = info.scheduling {} else { Err(Error::<T>::InvalidThreadId)? }
<Self as Registrar<T::AccountId>>::deregister_para(id)?;
Self::force_unschedule(|i| i == id);
let debtor = <Debtors<T>>::take(id);
let _ = <T as Trait>::Currency::unreserve(&debtor, T::ParathreadDeposit::get());
Self::deposit_event(Event::ParathreadRegistered(id));
}
/// Swap a parachain with another parachain or parathread. The origin must be a `Parachain`.
/// The swap will happen only if there is already an opposite swap pending. If there is not,
/// the swap will be stored in the pending swaps map, ready for a later confirmatory swap.
///
/// The `ParaId`s remain mapped to the same head data and code so external code can rely on
/// `ParaId` to be a long-term identifier of a notional "parachain". However, their
/// scheduling info (i.e. whether they're a parathread or parachain), auction information
/// and the auction deposit are switched.
#[weight = 0]
fn swap(origin, #[compact] other: ParaId) {
let id = parachains::ensure_parachain(<T as Trait>::Origin::from(origin))?;
if PendingSwap::get(other) == Some(id) {
// actually do the swap.
T::SwapAux::ensure_can_swap(id, other)?;
// Remove intention to swap.
PendingSwap::remove(other);
Self::force_unschedule(|i| i == id || i == other);
Parachains::mutate(|ids| swap_ordered_existence(ids, id, other));
Paras::mutate(id, |i|
Paras::mutate(other, |j|
)
);
<Debtors<T>>::mutate(id, |i|
<Debtors<T>>::mutate(other, |j|
)
);
let _ = T::SwapAux::on_swap(id, other);
} else {
PendingSwap::insert(id, other);
}
}
/// Block initializer. Clears SelectedThreads and constructs/replaces Active.

thiolliere
committed
fn on_initialize() -> Weight {
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
let next_up = SelectedThreads::mutate(|t| {
let r = if t.len() >= T::QueueSize::get() {
// Take the first set of parathreads in queue
t.remove(0)
} else {
vec![]
};
while t.len() < T::QueueSize::get() {
t.push(vec![]);
}
r
});
// mutable so that we can replace with `None` if parathread appears in new schedule.
let mut retrying = Self::take_next_retry();
if let Some(((para, _), _)) = retrying {
// this isn't really ideal: better would be if there were an earlier pass that set
// retrying to the first item in the Missed queue that isn't already scheduled, but
// this is potentially O(m*n) in terms of missed queue size and parathread pool size.
if next_up.iter().any(|x| x.0 == para) {
retrying = None
}
}
let mut paras = Parachains::get().into_iter()
.map(|id| (id, None))
.chain(next_up.into_iter()
.map(|(para, collator)|
(para, Some((collator, Retriable::WithRetries(0))))
)
).chain(retrying.into_iter()
.map(|((para, collator), retries)|
(para, Some((collator, Retriable::WithRetries(retries + 1))))
)
).collect::<Vec<_>>();
// for Rust's timsort algorithm, sorting a concatenation of two sorted ranges is near
// O(N).
paras.sort_by_key(|&(ref id, _)| *id);
Active::put(paras);

thiolliere
committed
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
}
fn on_finalize() {
// a block without this will panic, but let's not panic here.
if let Some(proceeded_vec) = parachains::DidUpdate::get() {
// Active is sorted and DidUpdate is a sorted subset of its elements.
//
// We just go through the contents of active and find any items that don't appear in
// DidUpdate *and* which are enabled for retry.
let mut proceeded = proceeded_vec.into_iter();
let mut i = proceeded.next();
for sched in Active::get().into_iter() {
match i {
// Scheduled parachain proceeded properly. Move onto next item.
Some(para) if para == sched.0 => i = proceeded.next(),
// Scheduled `sched` missed their block.
// Queue for retry if it's allowed.
_ => if let (i, Some((c, Retriable::WithRetries(n)))) = sched {
Self::retry_later((i, c), n)
},
}
}
}
}
}
}
decl_event!{
pub enum Event {
/// A parathread was registered; its new ID is supplied.
ParathreadRegistered(ParaId),
/// The parathread of the supplied ID was de-registered.
ParathreadDeregistered(ParaId),
}
}
impl<T: Trait> Module<T> {
/// Ensures that the given `ParaId` corresponds to a registered parathread, and returns a descriptor if so.
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
pub fn ensure_thread_id(id: ParaId) -> Option<ParaInfo> {
Paras::get(id).and_then(|info| if let Scheduling::Dynamic = info.scheduling {
Some(info)
} else {
None
})
}
fn retry_later(sched: (ParaId, CollatorId), retries: u32) {
if retries < T::MaxRetries::get() {
RetryQueue::mutate(|q| {
q.resize(T::MaxRetries::get() as usize, vec![]);
q[retries as usize].push(sched);
});
}
}
fn take_next_retry() -> Option<((ParaId, CollatorId), u32)> {
RetryQueue::mutate(|q| {
for (i, q) in q.iter_mut().enumerate() {
if !q.is_empty() {
return Some((q.remove(0), i as u32));
}
}
None
})
}
/// Forcibly remove the threads matching `m` from all current and future scheduling.
fn force_unschedule(m: impl Fn(ParaId) -> bool) {
RetryQueue::mutate(|qs| for q in qs.iter_mut() {
q.retain(|i| !m(i.0))
});
SelectedThreads::mutate(|qs| for q in qs.iter_mut() {
q.retain(|i| !m(i.0))
});
Active::mutate(|a| for i in a.iter_mut() {
if m(i.0) {
if let Some((_, ref mut r)) = i.1 {
*r = Retriable::Never;
}
}
});
}
}
impl<T: Trait> ActiveParas for Module<T> {
fn active_paras() -> Vec<(ParaId, Option<(CollatorId, Retriable)>)> {
Active::get()
}
}
/// Ensure that parathread selections happen prioritized by fees.
#[derive(Encode, Decode, Clone, Eq, PartialEq)]
pub struct LimitParathreadCommits<T: Trait + Send + Sync>(sp_std::marker::PhantomData<T>) where
<T as system::Trait>::Call: IsSubType<Module<T>, T>;
impl<T: Trait + Send + Sync> LimitParathreadCommits<T> where
<T as system::Trait>::Call: IsSubType<Module<T>, T>
{
/// Create a new `LimitParathreadCommits` struct.
pub fn new() -> Self {
LimitParathreadCommits(sp_std::marker::PhantomData)
}
}
impl<T: Trait + Send + Sync> sp_std::fmt::Debug for LimitParathreadCommits<T> where
<T as system::Trait>::Call: IsSubType<Module<T>, T>
{
fn fmt(&self, f: &mut sp_std::fmt::Formatter) -> sp_std::fmt::Result {
write!(f, "LimitParathreadCommits<T>")
}
}
/// Custom validity errors used in Polkadot while validating transactions.
#[repr(u8)]
pub enum ValidityError {
/// Parathread ID has already been submitted for this block.
Duplicate = 0,
/// Parathread ID does not identify a parathread.
InvalidId = 1,
}
impl<T: Trait + Send + Sync> SignedExtension for LimitParathreadCommits<T> where
<T as system::Trait>::Call: IsSubType<Module<T>, T>
{
const IDENTIFIER: &'static str = "LimitParathreadCommits";
type AccountId = T::AccountId;
type Call = <T as system::Trait>::Call;
type AdditionalSigned = ();
type Pre = ();
fn additional_signed(&self)
-> sp_std::result::Result<Self::AdditionalSigned, TransactionValidityError>
{
Ok(())
}
fn validate(
&self,
_who: &Self::AccountId,
call: &Self::Call,
_info: &DispatchInfoOf<Self::Call>,
_len: usize,
) -> TransactionValidity {
let mut r = ValidTransaction::default();
if let Some(local_call) = call.is_sub_type() {
if let Call::select_parathread(id, collator, hash) = local_call {
// ensure that the para ID is actually a parathread.
let e = TransactionValidityError::from(InvalidTransaction::Custom(ValidityError::InvalidId as u8));
<Module<T>>::ensure_thread_id(*id).ok_or(e)?;
// ensure that we haven't already had a full complement of selected parathreads.
let mut upcoming_selected_threads = SelectedThreads::get();
if upcoming_selected_threads.is_empty() {
upcoming_selected_threads.push(vec![]);
}
let i = upcoming_selected_threads.len() - 1;
let selected_threads = &mut upcoming_selected_threads[i];
let thread_count = ThreadCount::get() as usize;
ensure!(
selected_threads.len() < thread_count,
InvalidTransaction::ExhaustsResources,
);
// ensure that this is not selecting a duplicate parathread ID
let e = TransactionValidityError::from(InvalidTransaction::Custom(ValidityError::Duplicate as u8));
let pos = selected_threads
.binary_search_by(|&(ref other_id, _)| other_id.cmp(id))
.err()
.ok_or(e)?;
// ensure that this is a live bid (i.e. that the thread's chain head matches)
let e = TransactionValidityError::from(InvalidTransaction::Custom(ValidityError::InvalidId as u8));
let head = <parachains::Module<T>>::parachain_head(id).ok_or(e)?;
asynchronous rob
committed
let actual = T::Hashing::hash(&head.0);
ensure!(&actual == hash, InvalidTransaction::Stale);
// updated the selected threads.
selected_threads.insert(pos, (*id, collator.clone()));
sp_std::mem::drop(selected_threads);
SelectedThreads::put(upcoming_selected_threads);
// provides the state-transition for this head-data-hash; this should cue the pool
// to throw out competing transactions with lesser fees.
r.provides = vec![hash.encode()];
}
}
Ok(r)
}
}
#[cfg(test)]
mod tests {
use super::*;
use bitvec::vec::BitVec;
use sp_io::TestExternalities;
use sp_core::{H256, Pair};
use sp_runtime::{

thiolliere
committed
BlakeTwo256, IdentityLookup, Dispatchable,
AccountIdConversion, Extrinsic as ExtrinsicT,
}, testing::{UintAuthorityId, TestXt}, KeyTypeId, Perbill, curve::PiecewiseLinear,
};
use primitives::{
parachain::{
ValidatorId, Info as ParaInfo, Scheduling, LOWEST_USER_ID, AttestedCandidate,
CandidateReceipt, HeadData, ValidityAttestation, Statement, Chain,
CollatorPair, CandidateCommitments,
Balance, BlockNumber, Header, Signature,

thiolliere
committed
traits::{KeyOwnerProofSystem, OnInitialize, OnFinalize},
impl_outer_origin, impl_outer_dispatch, assert_ok, parameter_types, assert_noop,
weights::DispatchInfo,
};
use keyring::Sr25519Keyring;
use crate::parachains;
use crate::slots;
use crate::attestations;
impl_outer_origin! {
pub enum Origin for Test {
parachains,
}
}
impl_outer_dispatch! {
pub enum Call for Test where origin: Origin {
parachains::Parachains,
registrar::Registrar,
pallet_staking_reward_curve::build! {
const REWARD_CURVE: PiecewiseLinear<'static> = curve!(
min_inflation: 0_025_000,
max_inflation: 0_100_000,
ideal_stake: 0_500_000,
falloff: 0_050_000,
max_piece_count: 40,
test_precision: 0_005_000,
);
}
#[derive(Clone, Eq, PartialEq)]
pub struct Test;
parameter_types! {
pub const BlockHashCount: u32 = 250;
pub const MaximumBlockWeight: u32 = 4 * 1024 * 1024;
pub const MaximumBlockLength: u32 = 4 * 1024 * 1024;
pub const AvailableBlockRatio: Perbill = Perbill::from_percent(75);
}
impl system::Trait for Test {
type Origin = Origin;
type Call = Call;
type Index = u64;
type BlockNumber = BlockNumber;
type Hash = H256;
type Hashing = BlakeTwo256;
type AccountId = u64;
type Lookup = IdentityLookup<u64>;
type Header = Header;
type Event = ();
type BlockHashCount = BlockHashCount;
type MaximumBlockWeight = MaximumBlockWeight;
type DbWeight = ();
type BlockExecutionWeight = ();
type ExtrinsicBaseWeight = ();
type MaximumBlockLength = MaximumBlockLength;
type AvailableBlockRatio = AvailableBlockRatio;
type Version = ();
type AccountData = balances::AccountData<u128>;
type OnKilledAccount = Balances;
impl<C> system::offchain::SendTransactionTypes<C> for Test where
Call: From<C>,
{
type OverarchingCall = Call;
type Extrinsic = TestXt<Call, ()>;
}
}
impl balances::Trait for Test {
type ExistentialDeposit = ExistentialDeposit;
pub const LeasePeriod: BlockNumber = 10;
pub const EndingPeriod: BlockNumber = 3;
}
impl slots::Trait for Test {
type Event = ();
type Currency = balances::Module<Test>;
type Parachains = Registrar;
type EndingPeriod = EndingPeriod;
type LeasePeriod = LeasePeriod;
type Randomness = RandomnessCollectiveFlip;
pub const SlashDeferDuration: staking::EraIndex = 7;
pub const AttestationPeriod: BlockNumber = 100;
pub const MinimumPeriod: u64 = 3;
pub const SessionsPerEra: sp_staking::SessionIndex = 6;
pub const BondingDuration: staking::EraIndex = 28;
pub const MaxNominatorRewardedPerValidator: u32 = 64;
}
impl attestations::Trait for Test {
type AttestationPeriod = AttestationPeriod;
type ValidatorIdentities = parachains::ValidatorIdentities<Test>;
type RewardAttestation = ();
}
parameter_types! {
pub const Period: BlockNumber = 1;
pub const Offset: BlockNumber = 0;
pub const DisabledValidatorsThreshold: Perbill = Perbill::from_percent(17);
pub const RewardCurve: &'static PiecewiseLinear<'static> = &REWARD_CURVE;
}
impl session::Trait for Test {
type Keys = UintAuthorityId;
type ShouldEndSession = session::PeriodicSessions<Period, Offset>;
type NextSessionRotation = session::PeriodicSessions<Period, Offset>;
type Event = ();
type ValidatorId = u64;
type ValidatorIdOf = ();
type DisabledValidatorsThreshold = DisabledValidatorsThreshold;
}
parameter_types! {
pub const MaxHeadDataSize: u32 = 100;
pub const MaxCodeSize: u32 = 100;
pub const ValidationUpgradeFrequency: BlockNumber = 10;
pub const ValidationUpgradeDelay: BlockNumber = 2;
pub const SlashPeriod: BlockNumber = 50;
pub const ElectionLookahead: BlockNumber = 0;
pub const StakingUnsignedPriority: u64 = u64::max_value() / 2;
impl staking::Trait for Test {
type RewardRemainder = ();
type CurrencyToVote = ();
type Event = ();
type Currency = balances::Module<Test>;
type Slash = ();
type Reward = ();
type SessionsPerEra = SessionsPerEra;
type BondingDuration = BondingDuration;
type SlashDeferDuration = SlashDeferDuration;
type SlashCancelOrigin = system::EnsureRoot<Self::AccountId>;
type SessionInterface = Self;
type UnixTime = timestamp::Module<Test>;
type RewardCurve = RewardCurve;
type MaxNominatorRewardedPerValidator = MaxNominatorRewardedPerValidator;
type NextNewSession = Session;
type ElectionLookahead = ElectionLookahead;
type Call = Call;
type UnsignedPriority = StakingUnsignedPriority;
}
impl timestamp::Trait for Test {
type Moment = u64;
type OnTimestampSet = ();
type MinimumPeriod = MinimumPeriod;
}
impl session::historical::Trait for Test {
type FullIdentification = staking::Exposure<u64, Balance>;
type FullIdentificationOf = staking::ExposureOf<Self>;
}
// This is needed for a custom `AccountId` type which is `u64` in testing here.
pub mod test_keys {
use sp_core::{crypto::KeyTypeId, sr25519};
use primitives::Signature;
pub const KEY_TYPE: KeyTypeId = KeyTypeId(*b"test");
mod app {
use super::super::Parachains;
use sp_application_crypto::{app_crypto, sr25519};
app_crypto!(sr25519, super::KEY_TYPE);
impl sp_runtime::traits::IdentifyAccount for Public {
type AccountId = u64;
fn into_account(self) -> Self::AccountId {
let id = self.0.clone().into();
Parachains::authorities().iter().position(|b| *b == id).unwrap() as u64
}
}
}
pub type ReporterId = app::Public;
pub struct ReporterAuthorityId;
impl system::offchain::AppCrypto<ReporterId, Signature> for ReporterAuthorityId {
type RuntimeAppPublic = ReporterId;
type GenericSignature = sr25519::Signature;
type GenericPublic = sr25519::Public;
}
type AuthorityId = test_keys::ReporterAuthorityId;
type Origin = Origin;
type Call = Call;
type ParachainCurrency = balances::Module<Test>;
type BlockNumberConversion = sp_runtime::traits::Identity;
type ActiveParachains = Registrar;
type Registrar = Registrar;
type Randomness = RandomnessCollectiveFlip;
type MaxCodeSize = MaxCodeSize;
type MaxHeadDataSize = MaxHeadDataSize;
type ValidationUpgradeFrequency = ValidationUpgradeFrequency;
type ValidationUpgradeDelay = ValidationUpgradeDelay;
type SlashPeriod = SlashPeriod;
type Proof = session::historical::Proof;
type KeyOwnerProofSystem = session::historical::Module<Test>;
type IdentificationTuple = <Self::KeyOwnerProofSystem as KeyOwnerProofSystem<(KeyTypeId, Vec<u8>)>>::IdentificationTuple;
type ReportOffence = ();
type BlockHashConversion = sp_runtime::traits::Identity;
}
type Extrinsic = TestXt<Call, ()>;
impl<LocalCall> system::offchain::CreateSignedTransaction<LocalCall> for Test where
Call: From<LocalCall>,
{
fn create_transaction<C: system::offchain::AppCrypto<Self::Public, Self::Signature>>(
call: Call,
_public: test_keys::ReporterId,
_account: <Test as system::Trait>::AccountId,
nonce: <Test as system::Trait>::Index,
) -> Option<(Call, <Extrinsic as ExtrinsicT>::SignaturePayload)> {
Some((call, (nonce, ())))
}
impl system::offchain::SigningTypes for Test {
type Public = test_keys::ReporterId;
type Signature = Signature;
}
parameter_types! {
pub const ParathreadDeposit: Balance = 10;
pub const QueueSize: usize = 2;
pub const MaxRetries: u32 = 3;
}
impl Trait for Test {
type Event = ();
type Origin = Origin;
type Currency = balances::Module<Test>;
type ParathreadDeposit = ParathreadDeposit;
type SwapAux = slots::Module<Test>;
type QueueSize = QueueSize;
type MaxRetries = MaxRetries;
}
type Balances = balances::Module<Test>;
type Parachains = parachains::Module<Test>;
type System = system::Module<Test>;
type Slots = slots::Module<Test>;
type Registrar = Module<Test>;
type RandomnessCollectiveFlip = randomness_collective_flip::Module<Test>;
type Session = session::Module<Test>;
type Staking = staking::Module<Test>;
const AUTHORITY_KEYS: [Sr25519Keyring; 8] = [
Sr25519Keyring::Alice,
Sr25519Keyring::Bob,
Sr25519Keyring::Charlie,
Sr25519Keyring::Dave,
Sr25519Keyring::Eve,
Sr25519Keyring::Ferdie,
Sr25519Keyring::One,
Sr25519Keyring::Two,
];
asynchronous rob
committed
fn new_test_ext(parachains: Vec<(ParaId, ValidationCode, HeadData)>) -> TestExternalities {
let mut t = system::GenesisConfig::default().build_storage::<Test>().unwrap();
let authority_keys = [
Sr25519Keyring::Alice,
Sr25519Keyring::Bob,
Sr25519Keyring::Charlie,
Sr25519Keyring::Dave,
Sr25519Keyring::Eve,
Sr25519Keyring::Ferdie,
Sr25519Keyring::One,
Sr25519Keyring::Two,
];
// stashes are the index.
let session_keys: Vec<_> = authority_keys.iter().enumerate()
.map(|(i, _k)| (i as u64, i as u64, UintAuthorityId(i as u64)))
.collect();
let authorities: Vec<_> = authority_keys.iter().map(|k| ValidatorId::from(k.public())).collect();
let balances: Vec<_> = (0..authority_keys.len()).map(|i| (i as u64, 10_000_000)).collect();
parachains::GenesisConfig {
authorities: authorities.clone(),
}.assimilate_storage::<Test>(&mut t).unwrap();
GenesisConfig::<Test> {
parachains,
_phdata: Default::default(),
}.assimilate_storage(&mut t).unwrap();