Newer
Older
// Copyright 2017-2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! Utility module for subsystems
//!
//! Many subsystems have common interests such as canceling a bunch of spawned jobs,
//! or determining what their validator ID is. These common interests are factored into
//! this module.
Peter Goodspeed-Niklaus
committed
use polkadot_node_subsystem::{
messages::{AllMessages, RuntimeApiMessage, RuntimeApiRequest, RuntimeApiSender},
Peter Goodspeed-Niklaus
committed
FromOverseer, SpawnedSubsystem, Subsystem, SubsystemContext, SubsystemError, SubsystemResult,
};
use futures::{
channel::{mpsc, oneshot},
future::Either,
prelude::*,
select,
stream::Stream,
};
use futures_timer::Delay;
use keystore::KeyStorePtr;
use parity_scale_codec::Encode;
use pin_project::{pin_project, pinned_drop};
use polkadot_primitives::v1::{
CandidateEvent, CommittedCandidateReceipt, CoreState, EncodeAs, PersistedValidationData,
GroupRotationInfo, Hash, Id as ParaId, ValidationData, OccupiedCoreAssumption,
SessionIndex, Signed, SigningContext, ValidationCode, ValidatorId, ValidatorIndex,
ValidatorPair,
Peter Goodspeed-Niklaus
committed
use sp_core::{Pair, traits::SpawnNamed};
use std::{
collections::HashMap,
convert::{TryFrom, TryInto},
marker::Unpin,
pin::Pin,
time::Duration,
};
use streamunordered::{StreamUnordered, StreamYield};
Peter Goodspeed-Niklaus
committed
/// These reexports are required so that external crates can use the `delegated_subsystem` macro properly.
pub mod reexports {
pub use sp_core::traits::SpawnNamed;
pub use polkadot_node_subsystem::{
SpawnedSubsystem,
Subsystem,
SubsystemContext,
};
}
/// Duration a job will wait after sending a stop signal before hard-aborting.
pub const JOB_GRACEFUL_STOP_DURATION: Duration = Duration::from_secs(1);
/// Capacity of channels to and from individual jobs
pub const JOB_CHANNEL_CAPACITY: usize = 64;
/// Utility errors
#[derive(Debug, derive_more::From)]
pub enum Error {
/// Attempted to send or receive on a oneshot channel which had been canceled
#[from]
Oneshot(oneshot::Canceled),
/// Attempted to send on a MPSC channel which has been canceled
#[from]
Mpsc(mpsc::SendError),
Peter Goodspeed-Niklaus
committed
/// A subsystem error
#[from]
Subsystem(SubsystemError),
/// An error in the Chain API.
#[from]
ChainApi(ChainApiError),
/// An error in the Runtime API.
asynchronous rob
committed
#[from]
RuntimeApi(RuntimeApiError),
Peter Goodspeed-Niklaus
committed
/// The type system wants this even though it doesn't make sense
#[from]
Infallible(std::convert::Infallible),
/// Attempted to convert from an AllMessages to a FromJob, and failed.
SenderConversion(String),
/// The local node is not a validator.
NotAValidator,
/// The desired job is not present in the jobs list.
JobNotFound(Hash),
Peter Goodspeed-Niklaus
committed
/// Already forwarding errors to another sender
AlreadyForwarding,
asynchronous rob
committed
/// A type alias for Runtime API receivers.
pub type RuntimeApiReceiver<T> = oneshot::Receiver<Result<T, RuntimeApiError>>;
/// Request some data from the `RuntimeApi`.
pub async fn request_from_runtime<RequestBuilder, Response, FromJob>(
parent: Hash,
sender: &mut mpsc::Sender<FromJob>,
request_builder: RequestBuilder,
asynchronous rob
committed
) -> Result<RuntimeApiReceiver<Response>, Error>
asynchronous rob
committed
RequestBuilder: FnOnce(RuntimeApiSender<Response>) -> RuntimeApiRequest,
FromJob: TryFrom<AllMessages>,
<FromJob as TryFrom<AllMessages>>::Error: std::fmt::Debug,
{
let (tx, rx) = oneshot::channel();
sender
.send(
AllMessages::RuntimeApi(RuntimeApiMessage::Request(parent, request_builder(tx)))
.try_into()
.map_err(|err| Error::SenderConversion(format!("{:?}", err)))?,
)
.await?;
Ok(rx)
}
/// Construct specialized request functions for the runtime.
///
/// These would otherwise get pretty repetitive.
macro_rules! specialize_requests {
// expand return type name for documentation purposes
(fn $func_name:ident( $( $param_name:ident : $param_ty:ty ),* ) -> $return_ty:ty ; $request_variant:ident;) => {
specialize_requests!{
named stringify!($request_variant) ; fn $func_name( $( $param_name : $param_ty ),* ) -> $return_ty ; $request_variant;
}
};
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
// create a single specialized request function
(named $doc_name:expr ; fn $func_name:ident( $( $param_name:ident : $param_ty:ty ),* ) -> $return_ty:ty ; $request_variant:ident;) => {
#[doc = "Request `"]
#[doc = $doc_name]
#[doc = "` from the runtime"]
pub async fn $func_name<FromJob>(
parent: Hash,
$(
$param_name: $param_ty,
)*
sender: &mut mpsc::Sender<FromJob>,
) -> Result<RuntimeApiReceiver<$return_ty>, Error>
where
FromJob: TryFrom<AllMessages>,
<FromJob as TryFrom<AllMessages>>::Error: std::fmt::Debug,
{
request_from_runtime(parent, sender, |tx| RuntimeApiRequest::$request_variant(
$( $param_name, )* tx
)).await
}
};
// recursive decompose
(
fn $func_name:ident( $( $param_name:ident : $param_ty:ty ),* ) -> $return_ty:ty ; $request_variant:ident;
$(
fn $t_func_name:ident( $( $t_param_name:ident : $t_param_ty:ty ),* ) -> $t_return_ty:ty ; $t_request_variant:ident;
)+
) => {
specialize_requests!{
fn $func_name( $( $param_name : $param_ty ),* ) -> $return_ty ; $request_variant ;
}
specialize_requests!{
$(
fn $t_func_name( $( $t_param_name : $t_param_ty ),* ) -> $t_return_ty ; $t_request_variant ;
)+
}
};
specialize_requests! {
fn request_validators() -> Vec<ValidatorId>; Validators;
fn request_validator_groups() -> (Vec<Vec<ValidatorIndex>>, GroupRotationInfo); ValidatorGroups;
fn request_availability_cores() -> Vec<CoreState>; AvailabilityCores;
fn request_full_validation_data(para_id: ParaId, assumption: OccupiedCoreAssumption) -> Option<ValidationData>; FullValidationData;
fn request_persisted_validation_data(para_id: ParaId, assumption: OccupiedCoreAssumption) -> Option<PersistedValidationData>; PersistedValidationData;
fn request_session_index_for_child() -> SessionIndex; SessionIndexForChild;
fn request_validation_code(para_id: ParaId, assumption: OccupiedCoreAssumption) -> Option<ValidationCode>; ValidationCode;
fn request_candidate_pending_availability(para_id: ParaId) -> Option<CommittedCandidateReceipt>; CandidatePendingAvailability;
fn request_candidate_events() -> Vec<CandidateEvent>; CandidateEvents;
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/// Request some data from the `RuntimeApi` via a SubsystemContext.
async fn request_from_runtime_ctx<RequestBuilder, Context, Response>(
parent: Hash,
ctx: &mut Context,
request_builder: RequestBuilder,
) -> Result<RuntimeApiReceiver<Response>, Error>
where
RequestBuilder: FnOnce(RuntimeApiSender<Response>) -> RuntimeApiRequest,
Context: SubsystemContext,
{
let (tx, rx) = oneshot::channel();
ctx
.send_message(
AllMessages::RuntimeApi(RuntimeApiMessage::Request(parent, request_builder(tx)))
.try_into()
.map_err(|err| Error::SenderConversion(format!("{:?}", err)))?,
)
.await?;
Ok(rx)
}
/// Construct specialized request functions for the runtime.
///
/// These would otherwise get pretty repetitive.
macro_rules! specialize_requests_ctx {
// expand return type name for documentation purposes
(fn $func_name:ident( $( $param_name:ident : $param_ty:ty ),* ) -> $return_ty:ty ; $request_variant:ident;) => {
specialize_requests_ctx!{
named stringify!($request_variant) ; fn $func_name( $( $param_name : $param_ty ),* ) -> $return_ty ; $request_variant;
}
};
// create a single specialized request function
(named $doc_name:expr ; fn $func_name:ident( $( $param_name:ident : $param_ty:ty ),* ) -> $return_ty:ty ; $request_variant:ident;) => {
#[doc = "Request `"]
#[doc = $doc_name]
#[doc = "` from the runtime via a `SubsystemContext`"]
pub async fn $func_name<Context: SubsystemContext>(
parent: Hash,
$(
$param_name: $param_ty,
)*
ctx: &mut Context,
) -> Result<RuntimeApiReceiver<$return_ty>, Error> {
request_from_runtime_ctx(parent, ctx, |tx| RuntimeApiRequest::$request_variant(
$( $param_name, )* tx
)).await
}
};
// recursive decompose
(
fn $func_name:ident( $( $param_name:ident : $param_ty:ty ),* ) -> $return_ty:ty ; $request_variant:ident;
$(
fn $t_func_name:ident( $( $t_param_name:ident : $t_param_ty:ty ),* ) -> $t_return_ty:ty ; $t_request_variant:ident;
)+
) => {
specialize_requests_ctx!{
fn $func_name( $( $param_name : $param_ty ),* ) -> $return_ty ; $request_variant ;
}
specialize_requests_ctx!{
$(
fn $t_func_name( $( $t_param_name : $t_param_ty ),* ) -> $t_return_ty ; $t_request_variant ;
)+
}
};
}
specialize_requests_ctx! {
fn request_validators_ctx() -> Vec<ValidatorId>; Validators;
fn request_validator_groups_ctx() -> (Vec<Vec<ValidatorIndex>>, GroupRotationInfo); ValidatorGroups;
fn request_availability_cores_ctx() -> Vec<CoreState>; AvailabilityCores;
fn request_full_validation_data_ctx(para_id: ParaId, assumption: OccupiedCoreAssumption) -> Option<ValidationData>; FullValidationData;
fn request_persisted_validation_data_ctx(para_id: ParaId, assumption: OccupiedCoreAssumption) -> Option<PersistedValidationData>; PersistedValidationData;
fn request_session_index_for_child_ctx() -> SessionIndex; SessionIndexForChild;
fn request_validation_code_ctx(para_id: ParaId, assumption: OccupiedCoreAssumption) -> Option<ValidationCode>; ValidationCode;
fn request_candidate_pending_availability_ctx(para_id: ParaId) -> Option<CommittedCandidateReceipt>; CandidatePendingAvailability;
fn request_candidate_events_ctx() -> Vec<CandidateEvent>; CandidateEvents;
}
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
/// From the given set of validators, find the first key we can sign with, if any.
pub fn signing_key(validators: &[ValidatorId], keystore: &KeyStorePtr) -> Option<ValidatorPair> {
let keystore = keystore.read();
validators
.iter()
.find_map(|v| keystore.key_pair::<ValidatorPair>(&v).ok())
}
/// Local validator information
///
/// It can be created if the local node is a validator in the context of a particular
/// relay chain block.
pub struct Validator {
signing_context: SigningContext,
key: ValidatorPair,
index: ValidatorIndex,
}
impl Validator {
/// Get a struct representing this node's validator if this node is in fact a validator in the context of the given block.
pub async fn new<FromJob>(
parent: Hash,
keystore: KeyStorePtr,
mut sender: mpsc::Sender<FromJob>,
) -> Result<Self, Error>
where
FromJob: TryFrom<AllMessages>,
<FromJob as TryFrom<AllMessages>>::Error: std::fmt::Debug,
{
asynchronous rob
committed
// Note: request_validators and request_session_index_for_child do not and cannot
// run concurrently: they both have a mutable handle to the same sender.
// However, each of them returns a oneshot::Receiver, and those are resolved concurrently.
asynchronous rob
committed
let (validators, session_index) = futures::try_join!(
request_validators(parent, &mut sender).await?,
asynchronous rob
committed
request_session_index_for_child(parent, &mut sender).await?,
asynchronous rob
committed
let signing_context = SigningContext {
session_index: session_index?,
parent_hash: parent,
};
let validators = validators?;
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
Self::construct(&validators, signing_context, keystore)
}
/// Construct a validator instance without performing runtime fetches.
///
/// This can be useful if external code also needs the same data.
pub fn construct(
validators: &[ValidatorId],
signing_context: SigningContext,
keystore: KeyStorePtr,
) -> Result<Self, Error> {
let key = signing_key(validators, &keystore).ok_or(Error::NotAValidator)?;
let index = validators
.iter()
.enumerate()
.find(|(_, k)| k == &&key.public())
.map(|(idx, _)| idx as ValidatorIndex)
.expect("signing_key would have already returned NotAValidator if the item we're searching for isn't in this list; qed");
Ok(Validator {
signing_context,
key,
index,
})
}
/// Get this validator's id.
pub fn id(&self) -> ValidatorId {
self.key.public()
}
/// Get this validator's local index.
pub fn index(&self) -> ValidatorIndex {
self.index
}
/// Get the current signing context.
pub fn signing_context(&self) -> &SigningContext {
&self.signing_context
}
/// Sign a payload with this validator
pub fn sign<Payload: EncodeAs<RealPayload>, RealPayload: Encode>(
&self,
payload: Payload,
) -> Signed<Payload, RealPayload> {
Signed::sign(payload, &self.signing_context, self.index, &self.key)
}
/// Validate the payload with this validator
///
/// Validation can only succeed if `signed.validator_index() == self.index()`.
/// Normally, this will always be the case for a properly operating program,
/// but it's double-checked here anyway.
pub fn check_payload<Payload: EncodeAs<RealPayload>, RealPayload: Encode>(
&self,
signed: Signed<Payload, RealPayload>,
) -> Result<(), ()> {
if signed.validator_index() != self.index {
return Err(());
}
signed.check_signature(&self.signing_context, &self.id())
}
}
/// ToJob is expected to be an enum declaring the set of messages of interest to a particular job.
///
/// Normally, this will be some subset of `Allmessages`, and a `Stop` variant.
pub trait ToJobTrait: TryFrom<AllMessages> {
/// The `Stop` variant of the ToJob enum.
const STOP: Self;
/// If the message variant contains its relay parent, return it here
fn relay_parent(&self) -> Option<Hash>;
}
/// A JobHandle manages a particular job for a subsystem.
Peter Goodspeed-Niklaus
committed
struct JobHandle<ToJob> {
abort_handle: future::AbortHandle,
to_job: mpsc::Sender<ToJob>,
finished: oneshot::Receiver<()>,
outgoing_msgs_handle: usize,
}
impl<ToJob> JobHandle<ToJob> {
/// Send a message to the job.
Peter Goodspeed-Niklaus
committed
async fn send_msg(&mut self, msg: ToJob) -> Result<(), Error> {
self.to_job.send(msg).await.map_err(Into::into)
}
}
impl<ToJob: ToJobTrait> JobHandle<ToJob> {
/// Stop this job gracefully.
///
/// If it hasn't shut itself down after `JOB_GRACEFUL_STOP_DURATION`, abort it.
Peter Goodspeed-Niklaus
committed
async fn stop(mut self) {
// we don't actually care if the message couldn't be sent
Peter Goodspeed-Niklaus
committed
if let Err(_) = self.to_job.send(ToJob::STOP).await {
// no need to wait further here: the job is either stalled or
// disconnected, and in either case, we can just abort it immediately
self.abort_handle.abort();
return;
}
let stop_timer = Delay::new(JOB_GRACEFUL_STOP_DURATION);
match future::select(stop_timer, self.finished).await {
Either::Left((_, _)) => {}
Either::Right((_, _)) => {
self.abort_handle.abort();
}
}
}
}
/// This trait governs jobs.
///
/// Jobs are instantiated and killed automatically on appropriate overseer messages.
/// Other messages are passed along to and from the job via the overseer to other
/// subsystems.
pub trait JobTrait: Unpin {
/// Message type to the job. Typically a subset of AllMessages.
type ToJob: 'static + ToJobTrait + Send;
/// Message type from the job. Typically a subset of AllMessages.
type FromJob: 'static + Into<AllMessages> + Send;
/// Job runtime error.
Peter Goodspeed-Niklaus
committed
type Error: 'static + std::fmt::Debug + Send;
/// Extra arguments this job needs to run properly.
///
/// If no extra information is needed, it is perfectly acceptable to set it to `()`.
type RunArgs: 'static + Send;
/// Subsystem-specific Prometheus metrics.
///
/// Jobs spawned by one subsystem should share the same
/// instance of metrics (use `.clone()`).
/// The `delegate_subsystem!` macro should take care of this.
type Metrics: 'static + metrics::Metrics + Send;
/// Name of the job, i.e. `CandidateBackingJob`
const NAME: &'static str;
/// Run a job for the parent block indicated
fn run(
parent: Hash,
run_args: Self::RunArgs,
Peter Goodspeed-Niklaus
committed
receiver: mpsc::Receiver<Self::ToJob>,
sender: mpsc::Sender<Self::FromJob>,
) -> Pin<Box<dyn Future<Output = Result<(), Self::Error>> + Send>>;
/// Handle a message which has no relay parent, and therefore can't be dispatched to a particular job
///
/// By default, this is implemented with a NOP function. However, if
/// ToJob occasionally has messages which do not correspond to a particular
/// parent relay hash, then this function will be spawned as a one-off
/// task to handle those messages.
// TODO: the API here is likely not precisely what we want; figure it out more
// once we're implementing a subsystem which actually needs this feature.
// In particular, we're quite likely to want this to return a future instead of
// interrupting the active thread for the duration of the handler.
fn handle_unanchored_msg(_msg: Self::ToJob) -> Result<(), Self::Error> {
Ok(())
}
}
Peter Goodspeed-Niklaus
committed
/// Error which can be returned by the jobs manager
///
/// Wraps the utility error type and the job-specific error
#[derive(Debug, derive_more::From)]
pub enum JobsError<JobError> {
/// utility error
#[from]
Utility(Error),
/// internal job error
Job(JobError),
}
/// Jobs manager for a subsystem
///
/// - Spawns new jobs for a given relay-parent on demand.
/// - Closes old jobs for a given relay-parent on demand.
/// - Dispatches messages to the appropriate job for a given relay-parent.
/// - When dropped, aborts all remaining jobs.
/// - implements `Stream<Item=Job::FromJob>`, collecting all messages from subordinate jobs.
#[pin_project(PinnedDrop)]
pub struct Jobs<Spawner, Job: JobTrait> {
spawner: Spawner,
running: HashMap<Hash, JobHandle<Job::ToJob>>,
#[pin]
outgoing_msgs: StreamUnordered<mpsc::Receiver<Job::FromJob>>,
job: std::marker::PhantomData<Job>,
Peter Goodspeed-Niklaus
committed
errors: Option<mpsc::Sender<(Option<Hash>, JobsError<Job::Error>)>>,
Peter Goodspeed-Niklaus
committed
impl<Spawner: SpawnNamed, Job: 'static + JobTrait> Jobs<Spawner, Job> {
/// Create a new Jobs manager which handles spawning appropriate jobs.
pub fn new(spawner: Spawner) -> Self {
Self {
spawner,
running: HashMap::new(),
outgoing_msgs: StreamUnordered::new(),
job: std::marker::PhantomData,
Peter Goodspeed-Niklaus
committed
errors: None,
Peter Goodspeed-Niklaus
committed
/// Monitor errors which may occur during handling of a spawned job.
///
/// By default, an error in a job is simply logged. Once this is called,
/// the error is forwarded onto the provided channel.
///
/// Errors if the error channel already exists.
pub fn forward_errors(
&mut self,
tx: mpsc::Sender<(Option<Hash>, JobsError<Job::Error>)>,
) -> Result<(), Error> {
if self.errors.is_some() {
return Err(Error::AlreadyForwarding);
}
Peter Goodspeed-Niklaus
committed
self.errors = Some(tx);
Ok(())
}
/// Spawn a new job for this `parent_hash`, with whatever args are appropriate.
fn spawn_job(&mut self, parent_hash: Hash, run_args: Job::RunArgs, metrics: Job::Metrics) -> Result<(), Error> {
let (to_job_tx, to_job_rx) = mpsc::channel(JOB_CHANNEL_CAPACITY);
let (from_job_tx, from_job_rx) = mpsc::channel(JOB_CHANNEL_CAPACITY);
let (finished_tx, finished) = oneshot::channel();
Peter Goodspeed-Niklaus
committed
// clone the error transmitter to move into the future
let err_tx = self.errors.clone();
let (future, abort_handle) = future::abortable(async move {
if let Err(e) = Job::run(parent_hash, run_args, metrics, to_job_rx, from_job_tx).await {
log::error!(
"{}({}) finished with an error {:?}",
Job::NAME,
parent_hash,
e,
);
Peter Goodspeed-Niklaus
committed
if let Some(mut err_tx) = err_tx {
// if we can't send the notification of error on the error channel, then
// there's no point trying to propagate this error onto the channel too
// all we can do is warn that error propagatio has failed
if let Err(e) = err_tx.send((Some(parent_hash), JobsError::Job(e))).await {
log::warn!("failed to forward error: {:?}", e);
}
}
Peter Goodspeed-Niklaus
committed
// the spawn mechanism requires that the spawned future has no output
Peter Goodspeed-Niklaus
committed
// job errors are already handled within the future, meaning
// that any errors here are due to the abortable mechanism.
// failure to abort isn't of interest.
Peter Goodspeed-Niklaus
committed
// transmission failure here is only possible if the receiver is closed,
// which means the handle is dropped, which means we don't care anymore
let _ = finished_tx.send(());
};
self.spawner.spawn(Job::NAME, future.boxed());
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
// this handle lets us remove the appropriate receiver from self.outgoing_msgs
// when it's time to stop the job.
let outgoing_msgs_handle = self.outgoing_msgs.push(from_job_rx);
let handle = JobHandle {
abort_handle,
to_job: to_job_tx,
finished,
outgoing_msgs_handle,
};
self.running.insert(parent_hash, handle);
Ok(())
}
/// Stop the job associated with this `parent_hash`.
pub async fn stop_job(&mut self, parent_hash: Hash) -> Result<(), Error> {
match self.running.remove(&parent_hash) {
Some(handle) => {
Pin::new(&mut self.outgoing_msgs).remove(handle.outgoing_msgs_handle);
handle.stop().await;
Ok(())
}
None => Err(Error::JobNotFound(parent_hash)),
}
}
/// Send a message to the appropriate job for this `parent_hash`.
/// Will not return an error if the job is not running.
async fn send_msg(&mut self, parent_hash: Hash, msg: Job::ToJob) -> Result<(), Error> {
match self.running.get_mut(&parent_hash) {
Some(job) => job.send_msg(msg).await?,
None => {
// don't bring down the subsystem, this can happen to due a race condition
},
}
Ok(())
}
}
// Note that on drop, we don't have the chance to gracefully spin down each of the remaining handles;
// we just abort them all. Still better than letting them dangle.
#[pinned_drop]
impl<Spawner, Job: JobTrait> PinnedDrop for Jobs<Spawner, Job> {
fn drop(self: Pin<&mut Self>) {
for job_handle in self.running.values() {
job_handle.abort_handle.abort();
}
}
}
impl<Spawner, Job> Stream for Jobs<Spawner, Job>
where
Spawner: SpawnNamed,
Job: JobTrait,
{
type Item = Job::FromJob;
fn poll_next(self: Pin<&mut Self>, cx: &mut task::Context) -> task::Poll<Option<Self::Item>> {
// pin-project the outgoing messages
self.project().outgoing_msgs.poll_next(cx).map(|opt| {
opt.and_then(|(stream_yield, _)| match stream_yield {
StreamYield::Item(msg) => Some(msg),
StreamYield::Finished(_) => None,
}
}
/// A basic implementation of a subsystem.
///
/// This struct is responsible for handling message traffic between
/// this subsystem and the overseer. It spawns and kills jobs on the
/// appropriate Overseer messages, and dispatches standard traffic to
/// the appropriate job the rest of the time.
pub struct JobManager<Spawner, Context, Job: JobTrait> {
spawner: Spawner,
run_args: Job::RunArgs,
context: std::marker::PhantomData<Context>,
job: std::marker::PhantomData<Job>,
Peter Goodspeed-Niklaus
committed
errors: Option<mpsc::Sender<(Option<Hash>, JobsError<Job::Error>)>>,
}
impl<Spawner, Context, Job> JobManager<Spawner, Context, Job>
where
Spawner: SpawnNamed + Clone + Send + Unpin,
Peter Goodspeed-Niklaus
committed
Job: 'static + JobTrait,
Job::RunArgs: Clone,
Job::ToJob: TryFrom<AllMessages> + TryFrom<<Context as SubsystemContext>::Message> + Sync,
{
/// Creates a new `Subsystem`.
pub fn new(spawner: Spawner, run_args: Job::RunArgs, metrics: Job::Metrics) -> Self {
context: std::marker::PhantomData,
job: std::marker::PhantomData,
Peter Goodspeed-Niklaus
committed
errors: None,
Peter Goodspeed-Niklaus
committed
/// Monitor errors which may occur during handling of a spawned job.
///
/// By default, an error in a job is simply logged. Once this is called,
/// the error is forwarded onto the provided channel.
///
/// Errors if the error channel already exists.
pub fn forward_errors(
&mut self,
tx: mpsc::Sender<(Option<Hash>, JobsError<Job::Error>)>,
) -> Result<(), Error> {
if self.errors.is_some() {
return Err(Error::AlreadyForwarding);
}
Peter Goodspeed-Niklaus
committed
self.errors = Some(tx);
Ok(())
}
/// Run this subsystem
///
/// Conceptually, this is very simple: it just loops forever.
///
/// - On incoming overseer messages, it starts or stops jobs as appropriate.
/// - On other incoming messages, if they can be converted into Job::ToJob and
/// include a hash, then they're forwarded to the appropriate individual job.
/// - On outgoing messages from the jobs, it forwards them to the overseer.
Peter Goodspeed-Niklaus
committed
///
/// If `err_tx` is not `None`, errors are forwarded onto that channel as they occur.
/// Otherwise, most are logged and then discarded.
pub async fn run(
mut ctx: Context,
run_args: Job::RunArgs,
spawner: Spawner,
mut err_tx: Option<mpsc::Sender<(Option<Hash>, JobsError<Job::Error>)>>,
) {
let mut jobs = Jobs::new(spawner.clone());
Peter Goodspeed-Niklaus
committed
if let Some(ref err_tx) = err_tx {
jobs.forward_errors(err_tx.clone())
.expect("we never call this twice in this context; qed");
Peter Goodspeed-Niklaus
committed
}
incoming = ctx.recv().fuse() => if Self::handle_incoming(incoming, &mut jobs, &run_args, &metrics, &mut err_tx).await { break },
Peter Goodspeed-Niklaus
committed
outgoing = jobs.next().fuse() => if Self::handle_outgoing(outgoing, &mut ctx, &mut err_tx).await { break },
complete => break,
}
}
}
Peter Goodspeed-Niklaus
committed
// if we have a channel on which to forward errors, do so
async fn fwd_err(
hash: Option<Hash>,
err: JobsError<Job::Error>,
err_tx: &mut Option<mpsc::Sender<(Option<Hash>, JobsError<Job::Error>)>>,
) {
Peter Goodspeed-Niklaus
committed
if let Some(err_tx) = err_tx {
// if we can't send on the error transmission channel, we can't do anything useful about it
// still, we can at least log the failure
if let Err(e) = err_tx.send((hash, err)).await {
log::warn!("failed to forward error: {:?}", e);
}
}
}
// handle an incoming message. return true if we should break afterwards.
async fn handle_incoming(
incoming: SubsystemResult<FromOverseer<Context::Message>>,
jobs: &mut Jobs<Spawner, Job>,
run_args: &Job::RunArgs,
err_tx: &mut Option<mpsc::Sender<(Option<Hash>, JobsError<Job::Error>)>>,
Peter Goodspeed-Niklaus
committed
use polkadot_node_subsystem::ActiveLeavesUpdate;
use polkadot_node_subsystem::FromOverseer::{Communication, Signal};
use polkadot_node_subsystem::OverseerSignal::{ActiveLeaves, BlockFinalized, Conclude};
Ok(Signal(ActiveLeaves(ActiveLeavesUpdate {
activated,
deactivated,
}))) => {
for hash in activated {
let metrics = metrics.clone();
if let Err(e) = jobs.spawn_job(hash, run_args.clone(), metrics) {
log::error!("Failed to spawn a job: {:?}", e);
Self::fwd_err(Some(hash), e.into(), err_tx).await;
return true;
}
for hash in deactivated {
if let Err(e) = jobs.stop_job(hash).await {
log::error!("Failed to stop a job: {:?}", e);
Self::fwd_err(Some(hash), e.into(), err_tx).await;
return true;
}
}
}
Ok(Signal(Conclude)) => {
// Breaking the loop ends fn run, which drops `jobs`, which immediately drops all ongoing work.
// We can afford to wait a little while to shut them all down properly before doing that.
//
// Forwarding the stream to a drain means we wait until all of the items in the stream
// have completed. Contrast with `into_future`, which turns it into a future of `(head, rest_stream)`.
Peter Goodspeed-Niklaus
committed
use futures::sink::drain;
use futures::stream::FuturesUnordered;
if let Err(e) = jobs
.running
.drain()
.map(|(_, handle)| handle.stop())
Peter Goodspeed-Niklaus
committed
.collect::<FuturesUnordered<_>>()
.map(Ok)
.forward(drain())
.await
{
log::error!("failed to stop all jobs on conclude signal: {:?}", e);
Self::fwd_err(None, Error::from(e).into(), err_tx).await;
}
return true;
}
Ok(Communication { msg }) => {
if let Ok(to_job) = <Job::ToJob>::try_from(msg) {
match to_job.relay_parent() {
Some(hash) => {
if let Err(err) = jobs.send_msg(hash, to_job).await {
log::error!("Failed to send a message to a job: {:?}", err);
Peter Goodspeed-Niklaus
committed
Self::fwd_err(Some(hash), err.into(), err_tx).await;
return true;
}
}
None => {
if let Err(err) = Job::handle_unanchored_msg(to_job) {
log::error!("Failed to handle unhashed message: {:?}", err);
Peter Goodspeed-Niklaus
committed
Self::fwd_err(None, JobsError::Job(err), err_tx).await;
return true;
}
}
}
}
}
Ok(Signal(BlockFinalized(_))) => {}
Err(err) => {
log::error!("error receiving message from subsystem context: {:?}", err);
Peter Goodspeed-Niklaus
committed
Self::fwd_err(None, Error::from(err).into(), err_tx).await;
return true;
}
}
false
}
// handle an outgoing message. return true if we should break afterwards.
async fn handle_outgoing(
outgoing: Option<Job::FromJob>,
ctx: &mut Context,
err_tx: &mut Option<mpsc::Sender<(Option<Hash>, JobsError<Job::Error>)>>,
) -> bool {
match outgoing {
Some(msg) => {
Peter Goodspeed-Niklaus
committed
if let Err(e) = ctx.send_message(msg.into()).await {
Self::fwd_err(None, Error::from(e).into(), err_tx).await;
}
}
None => return true,
}
false
}
}
impl<Spawner, Context, Job> Subsystem<Context> for JobManager<Spawner, Context, Job>
where
Spawner: SpawnNamed + Send + Clone + Unpin + 'static,
Context: SubsystemContext,
<Context as SubsystemContext>::Message: Into<Job::ToJob>,
Peter Goodspeed-Niklaus
committed
Job: 'static + JobTrait + Send,
Job::RunArgs: Clone + Sync,
Job::ToJob: TryFrom<AllMessages> + Sync,
fn start(self, ctx: Context) -> SpawnedSubsystem {
let spawner = self.spawner.clone();
let run_args = self.run_args.clone();
let metrics = self.metrics.clone();
Peter Goodspeed-Niklaus
committed
let errors = self.errors;
let future = Box::pin(async move {
Self::run(ctx, run_args, metrics, spawner, errors).await;
});
SpawnedSubsystem {
Peter Goodspeed-Niklaus
committed
name: Job::NAME.strip_suffix("Job").unwrap_or(Job::NAME),
Peter Goodspeed-Niklaus
committed
/// Create a delegated subsystem
///
/// It is possible to create a type which implements `Subsystem` by simply doing:
///
/// ```ignore
Peter Goodspeed-Niklaus
committed
/// pub type ExampleSubsystem<Spawner, Context> = JobManager<Spawner, Context, ExampleJob>;
/// ```
///
/// However, doing this requires that job itself and all types which comprise it (i.e. `ToJob`, `FromJob`, `Error`, `RunArgs`)
/// are public, to avoid exposing private types in public interfaces. It's possible to delegate instead, which
/// can reduce the total number of public types exposed, i.e.
///
/// ```ignore
Peter Goodspeed-Niklaus
committed
/// type Manager<Spawner, Context> = JobManager<Spawner, Context, ExampleJob>;
/// pub struct ExampleSubsystem {
/// manager: Manager<Spawner, Context>,
/// }
///
/// impl<Spawner, Context> Subsystem<Context> for ExampleSubsystem<Spawner, Context> { ... }
/// ```
///
/// This dramatically reduces the number of public types in the crate; the only things which must be public are now
///
/// - `struct ExampleSubsystem` (defined by this macro)
/// - `type ToJob` (because it appears in a trait bound)
/// - `type RunArgs` (because it appears in a function signature)
///
/// Implementing this all manually is of course possible, but it's tedious; why bother? This macro exists for
/// the purpose of doing it automatically:
///
/// ```ignore
/// delegated_subsystem!(ExampleJob(ExampleRunArgs) <- ExampleToJob as ExampleSubsystem);
/// ```
#[macro_export]
macro_rules! delegated_subsystem {
($job:ident($run_args:ty, $metrics:ty) <- $to_job:ty as $subsystem:ident) => {
delegated_subsystem!($job($run_args, $metrics) <- $to_job as $subsystem; stringify!($subsystem));
($job:ident($run_args:ty, $metrics:ty) <- $to_job:ty as $subsystem:ident; $subsystem_name:expr) => {
#[doc = "Manager type for the "]
#[doc = $subsystem_name]
Peter Goodspeed-Niklaus
committed
type Manager<Spawner, Context> = $crate::JobManager<Spawner, Context, $job>;
#[doc = "An implementation of the "]
#[doc = $subsystem_name]
pub struct $subsystem<Spawner, Context> {
manager: Manager<Spawner, Context>,
}
impl<Spawner, Context> $subsystem<Spawner, Context>
where
Peter Goodspeed-Niklaus
committed
Spawner: Clone + $crate::reexports::SpawnNamed + Send + Unpin,
Context: $crate::reexports::SubsystemContext,
<Context as $crate::reexports::SubsystemContext>::Message: Into<$to_job>,
{
#[doc = "Creates a new "]
#[doc = $subsystem_name]
pub fn new(spawner: Spawner, run_args: $run_args, metrics: $metrics) -> Self {
manager: $crate::JobManager::new(spawner, run_args, metrics)
}
}
/// Run this subsystem
pub async fn run(ctx: Context, run_args: $run_args, metrics: $metrics, spawner: Spawner) {
<Manager<Spawner, Context>>::run(ctx, run_args, metrics, spawner, None).await
Peter Goodspeed-Niklaus
committed
impl<Spawner, Context> $crate::reexports::Subsystem<Context> for $subsystem<Spawner, Context>
Peter Goodspeed-Niklaus
committed
Spawner: $crate::reexports::SpawnNamed + Send + Clone + Unpin + 'static,
Context: $crate::reexports::SubsystemContext,
<Context as $crate::reexports::SubsystemContext>::Message: Into<$to_job>,
Peter Goodspeed-Niklaus
committed
fn start(self, ctx: Context) -> $crate::reexports::SpawnedSubsystem {
self.manager.start(ctx)
}
}
};
}
Peter Goodspeed-Niklaus
committed
#[cfg(test)]
mod tests {
Peter Goodspeed-Niklaus
committed
use super::{Error as UtilError, JobManager, JobTrait, JobsError, ToJobTrait};
use polkadot_node_subsystem::{
Peter Goodspeed-Niklaus
committed
messages::{AllMessages, CandidateSelectionMessage},
ActiveLeavesUpdate, FromOverseer, OverseerSignal, SpawnedSubsystem, Subsystem,
Peter Goodspeed-Niklaus
committed
};
use assert_matches::assert_matches;
Peter Goodspeed-Niklaus
committed
use futures::{
channel::mpsc,
executor,
stream::{self, StreamExt},
Peter Goodspeed-Niklaus
committed
};
use futures_timer::Delay;
use polkadot_primitives::v1::Hash;
Peter Goodspeed-Niklaus
committed
use polkadot_node_subsystem_test_helpers::{self as test_helpers, make_subsystem_context};
use std::{collections::HashMap, convert::TryFrom, pin::Pin, time::Duration};
Peter Goodspeed-Niklaus
committed
// basic usage: in a nutshell, when you want to define a subsystem, just focus on what its jobs do;
// you can leave the subsystem itself to the job manager.
// for purposes of demonstration, we're going to whip up a fake subsystem.
// this will 'select' candidates which are pre-loaded in the job