Newer
Older
// Copyright 2017-2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
use parity_scale_codec::{Decode, Encode};
use sp_std::{collections::btree_map::BTreeMap, prelude::*};
use application_crypto::KeyTypeId;
use inherents::InherentIdentifier;
use runtime_primitives::traits::{AppVerify, Header as HeaderT};
use sp_arithmetic::traits::{BaseArithmetic, Saturating};
pub use runtime_primitives::traits::{BlakeTwo256, Hash as HashT};
// Export some core primitives.
pub use polkadot_core_primitives::v1::{
AccountId, AccountIndex, AccountPublic, Balance, Block, BlockId, BlockNumber, CandidateHash,
ChainId, DownwardMessage, Hash, Header, InboundDownwardMessage, InboundHrmpMessage, Moment,
Nonce, OutboundHrmpMessage, Remark, Signature, UncheckedExtrinsic,
};
// Export some polkadot-parachain primitives
pub use polkadot_parachain::primitives::{
HeadData, HrmpChannelId, Id, UpwardMessage, ValidationCode, ValidationCodeHash,
LOWEST_PUBLIC_ID, LOWEST_USER_ID,
};
// Export some basic parachain primitives from v0.
pub use crate::v0::{
CollatorId, CollatorSignature, CompactStatement, SigningContext, ValidatorId, ValidatorIndex,
ValidatorSignature, ValidityAttestation, PARACHAIN_KEY_TYPE_ID,
#[cfg(feature = "std")]
use parity_util_mem::{MallocSizeOf, MallocSizeOfOps};
// More exports from v0 for std.
#[cfg(feature = "std")]
pub use crate::v0::{CollatorPair, ValidatorPair};
pub use sp_authority_discovery::AuthorityId as AuthorityDiscoveryId;
pub use sp_consensus_slots::Slot;
/// Signed data.
mod signed;
pub use signed::{EncodeAs, Signed, UncheckedSigned};
/// A declarations of storage keys where an external observer can find some interesting data.
pub mod well_known_keys {
use hex_literal::hex;
use sp_io::hashing::twox_64;
use sp_std::prelude::*;
// A note on generating these magic values below:
//
// The `StorageValue`, such as `ACTIVE_CONFIG` was obtained by calling:
//
// <Self as Store>::ActiveConfig::hashed_key()
//
// The `StorageMap` values require `prefix`, and for example for `hrmp_egress_channel_index`,
// it could be obtained like:
//
// <Hrmp as Store>::HrmpEgressChannelsIndex::prefix_hash();
//
/// The current slot number.
///
/// The storage entry should be accessed as a `Slot` encoded value.
pub const CURRENT_SLOT: &[u8] =
&hex!["1cb6f36e027abb2091cfb5110ab5087f06155b3cd9a8c9e5e9a23fd5dc13a5ed"];
/// The currently active host configuration.
///
/// The storage entry should be accessed as an `AbridgedHostConfiguration` encoded value.
pub const ACTIVE_CONFIG: &[u8] =
&hex!["06de3d8a54d27e44a9d5ce189618f22db4b49d95320d9021994c850f25b8e385"];
/// The upward message dispatch queue for the given para id.
///
/// The storage entry stores a tuple of two values:
///
/// - `count: u32`, the number of messages currently in the queue for given para,
/// - `total_size: u32`, the total size of all messages in the queue.
pub fn relay_dispatch_queue_size(para_id: Id) -> Vec<u8> {
let prefix = hex!["f5207f03cfdce586301014700e2c2593fad157e461d71fd4c1f936839a5f1f3e"];
para_id.using_encoded(|para_id: &[u8]| {
.iter()
.chain(twox_64(para_id).iter())
.chain(para_id.iter())
.cloned()
.collect()
})
}
/// The HRMP channel for the given identifier.
///
/// The storage entry should be accessed as an `AbridgedHrmpChannel` encoded value.
pub fn hrmp_channels(channel: HrmpChannelId) -> Vec<u8> {
let prefix = hex!["6a0da05ca59913bc38a8630590f2627cb6604cff828a6e3f579ca6c59ace013d"];
channel.using_encoded(|channel: &[u8]| {
.iter()
.chain(twox_64(channel).iter())
.chain(channel.iter())
.cloned()
.collect()
})
}
/// The list of inbound channels for the given para.
///
/// The storage entry stores a `Vec<ParaId>`
pub fn hrmp_ingress_channel_index(para_id: Id) -> Vec<u8> {
let prefix = hex!["6a0da05ca59913bc38a8630590f2627c1d3719f5b0b12c7105c073c507445948"];
para_id.using_encoded(|para_id: &[u8]| {
.iter()
.chain(twox_64(para_id).iter())
.chain(para_id.iter())
.cloned()
.collect()
})
}
/// The list of outbound channels for the given para.
///
/// The storage entry stores a `Vec<ParaId>`
pub fn hrmp_egress_channel_index(para_id: Id) -> Vec<u8> {
let prefix = hex!["6a0da05ca59913bc38a8630590f2627cf12b746dcf32e843354583c9702cc020"];
para_id.using_encoded(|para_id: &[u8]| {
.iter()
.chain(twox_64(para_id).iter())
.chain(para_id.iter())
.cloned()
.collect()
})
}
/// The MQC head for the downward message queue of the given para. See more in the `Dmp` module.
///
/// The storage entry stores a `Hash`. This is polkadot hash which is at the moment
/// `blake2b-256`.
pub fn dmq_mqc_head(para_id: Id) -> Vec<u8> {
let prefix = hex!["63f78c98723ddc9073523ef3beefda0c4d7fefc408aac59dbfe80a72ac8e3ce5"];
para_id.using_encoded(|para_id: &[u8]| {
.iter()
.chain(twox_64(para_id).iter())
.chain(para_id.iter())
.cloned()
.collect()
})
}
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/// The signal that indicates whether the parachain should go-ahead with the proposed validation
/// code upgrade.
///
/// The storage entry stores a value of `UpgradeGoAhead` type.
pub fn upgrade_go_ahead_signal(para_id: Id) -> Vec<u8> {
let prefix = hex!["cd710b30bd2eab0352ddcc26417aa1949e94c040f5e73d9b7addd6cb603d15d3"];
para_id.using_encoded(|para_id: &[u8]| {
prefix
.as_ref()
.iter()
.chain(twox_64(para_id).iter())
.chain(para_id.iter())
.cloned()
.collect()
})
}
/// The signal that indicates whether the parachain is disallowed to signal an upgrade at this
/// relay-parent.
///
/// The storage entry stores a value of `UpgradeRestriction` type.
pub fn upgrade_restriction_signal(para_id: Id) -> Vec<u8> {
let prefix = hex!["cd710b30bd2eab0352ddcc26417aa194f27bbb460270642b5bcaf032ea04d56a"];
para_id.using_encoded(|para_id: &[u8]| {
prefix
.as_ref()
.iter()
.chain(twox_64(para_id).iter())
.chain(para_id.iter())
.cloned()
.collect()
})
}
/// Unique identifier for the Parachains Inherent
pub const PARACHAINS_INHERENT_IDENTIFIER: InherentIdentifier = *b"parachn0";
/// The key type ID for parachain assignment key.
pub const ASSIGNMENT_KEY_TYPE_ID: KeyTypeId = KeyTypeId(*b"asgn");
/// Maximum compressed code size we support right now.
/// At the moment we have runtime upgrade on chain, which restricts scalability severely. If we want
/// to have bigger values, we should fix that first.

Shawn Tabrizi
committed
///
/// Used for:
/// * initial genesis for the Parachains configuration
/// * checking updates to this stored runtime configuration do not exceed this limit
/// * when detecting a code decompression bomb in the client
pub const MAX_CODE_SIZE: u32 = 3 * 1024 * 1024;

Shawn Tabrizi
committed
/// Maximum PoV size we support right now.
///
/// Used for:
/// * initial genesis for the Parachains configuration
/// * checking updates to this stored runtime configuration do not exceed this limit
/// * when detecting a PoV decompression bomb in the client
pub const MAX_POV_SIZE: u32 = 5 * 1024 * 1024;
// The public key of a keypair used by a validator for determining assignments
/// to approve included parachain candidates.
use application_crypto::{app_crypto, sr25519};
app_crypto!(sr25519, super::ASSIGNMENT_KEY_TYPE_ID);
}
/// The public key of a keypair used by a validator for determining assignments
/// to approve included parachain candidates.
pub type AssignmentId = assignment_app::Public;
application_crypto::with_pair! {
/// The full keypair used by a validator for determining assignments to approve included
/// parachain candidates.
pub type AssignmentPair = assignment_app::Pair;
}
#[cfg(feature = "std")]
impl MallocSizeOf for AssignmentId {
fn size_of(&self, _ops: &mut MallocSizeOfOps) -> usize {
0
}
fn constant_size() -> Option<usize> {
Some(0)
}
}
/// The index of the candidate in the list of candidates fully included as-of the block.
pub type CandidateIndex = u32;
/// Get a collator signature payload on a relay-parent, block-data combo.
pub fn collator_signature_payload<H: AsRef<[u8]>>(
relay_parent: &H,
para_id: &Id,
persisted_validation_data_hash: &Hash,
validation_code_hash: &ValidationCodeHash,
// 32-byte hash length is protected in a test below.
let mut payload = [0u8; 132];
payload[0..32].copy_from_slice(relay_parent.as_ref());
u32::from(*para_id).using_encoded(|s| payload[32..32 + s.len()].copy_from_slice(s));
payload[36..68].copy_from_slice(persisted_validation_data_hash.as_ref());
asynchronous rob
committed
payload[68..100].copy_from_slice(pov_hash.as_ref());
payload[100..132].copy_from_slice(validation_code_hash.as_ref());
payload
}
fn check_collator_signature<H: AsRef<[u8]>>(
relay_parent: &H,
para_id: &Id,
persisted_validation_data_hash: &Hash,
validation_code_hash: &ValidationCodeHash,
collator: &CollatorId,
signature: &CollatorSignature,
asynchronous rob
committed
let payload = collator_signature_payload(
relay_parent,
para_id,
persisted_validation_data_hash,
asynchronous rob
committed
pov_hash,
asynchronous rob
committed
);
if signature.verify(&payload[..], collator) {
Ok(())
} else {
Err(())
}
}
/// A unique descriptor of the candidate receipt.
#[derive(PartialEq, Eq, Clone, Encode, Decode)]
#[cfg_attr(feature = "std", derive(Debug, Default, Hash, MallocSizeOf))]
pub struct CandidateDescriptor<H = Hash> {
/// The ID of the para this is a candidate for.
pub para_id: Id,
/// The hash of the relay-chain block this is executed in the context of.
pub relay_parent: H,
/// The collator's sr25519 public key.
pub collator: CollatorId,
/// The blake2-256 hash of the persisted validation data. This is extra data derived from
asynchronous rob
committed
/// relay-chain state which may vary based on bitfields included before the candidate.
/// Thus it cannot be derived entirely from the relay-parent.
pub persisted_validation_data_hash: Hash,
asynchronous rob
committed
/// The root of a block's erasure encoding Merkle tree.
pub erasure_root: Hash,
asynchronous rob
committed
/// Signature on blake2-256 of components of this receipt:
/// The parachain index, the relay parent, the validation data hash, and the `pov_hash`.
asynchronous rob
committed
pub signature: CollatorSignature,
/// Hash of the para header that is being generated by this candidate.
pub para_head: Hash,
/// The blake2-256 hash of the validation code bytes.
pub validation_code_hash: ValidationCodeHash,
}
impl<H: AsRef<[u8]>> CandidateDescriptor<H> {
/// Check the signature of the collator within this descriptor.
pub fn check_collator_signature(&self) -> Result<(), ()> {
check_collator_signature(
&self.relay_parent,
&self.para_id,
&self.persisted_validation_data_hash,
&self.collator,
&self.signature,
)
}
}
/// A candidate-receipt.
#[derive(PartialEq, Eq, Clone, Encode, Decode)]
#[cfg_attr(feature = "std", derive(Debug, Default, MallocSizeOf))]
pub struct CandidateReceipt<H = Hash> {
/// The descriptor of the candidate.
pub descriptor: CandidateDescriptor<H>,
/// The hash of the encoded commitments made as a result of candidate execution.
pub commitments_hash: Hash,
}
impl<H> CandidateReceipt<H> {
/// Get a reference to the candidate descriptor.
pub fn descriptor(&self) -> &CandidateDescriptor<H> {
&self.descriptor
}
/// Computes the blake2-256 hash of the receipt.
pub fn hash(&self) -> CandidateHash
where
H: Encode,
{
CandidateHash(BlakeTwo256::hash_of(self))
}
}
/// All data pertaining to the execution of a para candidate.
#[derive(PartialEq, Eq, Clone, Encode, Decode)]
#[cfg_attr(feature = "std", derive(Debug, Default))]
pub struct FullCandidateReceipt<H = Hash, N = BlockNumber> {
/// The inner candidate receipt.
pub inner: CandidateReceipt<H>,
/// The validation data derived from the relay-chain state at that
/// point. The hash of the persisted validation data should
/// match the `persisted_validation_data_hash` in the descriptor
/// of the receipt.
pub validation_data: PersistedValidationData<H, N>,
}
/// A candidate-receipt with commitments directly included.
#[derive(PartialEq, Eq, Clone, Encode, Decode)]
#[cfg_attr(feature = "std", derive(Debug, Default, Hash, MallocSizeOf))]
pub struct CommittedCandidateReceipt<H = Hash> {
/// The descriptor of the candidate.
pub descriptor: CandidateDescriptor<H>,
/// The commitments of the candidate receipt.
pub commitments: CandidateCommitments,
}
impl<H> CommittedCandidateReceipt<H> {
/// Get a reference to the candidate descriptor.
pub fn descriptor(&self) -> &CandidateDescriptor<H> {
&self.descriptor
}
}
impl<H: Clone> CommittedCandidateReceipt<H> {
/// Transforms this into a plain `CandidateReceipt`.
pub fn to_plain(&self) -> CandidateReceipt<H> {
CandidateReceipt {
descriptor: self.descriptor.clone(),
commitments_hash: self.commitments.hash(),
}
}
/// Computes the hash of the committed candidate receipt.
///
/// This computes the canonical hash, not the hash of the directly encoded data.
/// Thus this is a shortcut for `candidate.to_plain().hash()`.
pub fn hash(&self) -> CandidateHash
where
H: Encode,
{
/// Does this committed candidate receipt corresponds to the given [`CandidateReceipt`]?
pub fn corresponds_to(&self, receipt: &CandidateReceipt<H>) -> bool
where
H: PartialEq,
{
receipt.descriptor == self.descriptor && receipt.commitments_hash == self.commitments.hash()
}
}
impl PartialOrd for CommittedCandidateReceipt {
fn partial_cmp(&self, other: &Self) -> Option<sp_std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl Ord for CommittedCandidateReceipt {
fn cmp(&self, other: &Self) -> sp_std::cmp::Ordering {
// TODO: compare signatures or something more sane
// https://github.com/paritytech/polkadot/issues/222
self.descriptor()
.para_id
.cmp(&other.descriptor().para_id)
.then_with(|| self.commitments.head_data.cmp(&other.commitments.head_data))
}
}
/// The validation data provides information about how to create the inputs for validation of a candidate.
/// This information is derived from the chain state and will vary from para to para, although some
/// fields may be the same for every para.
/// Since this data is used to form inputs to the validation function, it needs to be persisted by the
/// availability system to avoid dependence on availability of the relay-chain state.
/// Furthermore, the validation data acts as a way to authorize the additional data the collator needs
/// to pass to the validation function. For example, the validation function can check whether the incoming
/// messages (e.g. downward messages) were actually sent by using the data provided in the validation data
/// using so called MQC heads.
/// Since the commitments of the validation function are checked by the relay-chain, secondary checkers
/// can rely on the invariant that the relay-chain only includes para-blocks for which these checks have
/// already been done. As such, there is no need for the validation data used to inform validators and
/// collators about the checks the relay-chain will perform to be persisted by the availability system.
/// The `PersistedValidationData` should be relatively lightweight primarily because it is constructed
/// during inclusion for each candidate and therefore lies on the critical path of inclusion.
#[derive(PartialEq, Eq, Clone, Encode, Decode)]
#[cfg_attr(feature = "std", derive(Debug, Default, MallocSizeOf))]
pub struct PersistedValidationData<H = Hash, N = BlockNumber> {
/// The parent head-data.
pub parent_head: HeadData,
/// The relay-chain block number this is in the context of.
/// The relay-chain block storage root this is in the context of.
pub relay_parent_storage_root: H,
Peter Goodspeed-Niklaus
committed
/// The maximum legal size of a POV block, in bytes.
pub max_pov_size: u32,
impl<H: Encode, N: Encode> PersistedValidationData<H, N> {
/// Compute the blake2-256 hash of the persisted validation data.
pub fn hash(&self) -> Hash {
BlakeTwo256::hash_of(self)
}
}
/// Commitments made in a `CandidateReceipt`. Many of these are outputs of validation.
#[derive(PartialEq, Eq, Clone, Encode, Decode)]
#[cfg_attr(feature = "std", derive(Debug, Default, Hash, MallocSizeOf))]
pub struct CandidateCommitments<N = BlockNumber> {
/// Messages destined to be interpreted by the Relay chain itself.
pub upward_messages: Vec<UpwardMessage>,
/// Horizontal messages sent by the parachain.
pub horizontal_messages: Vec<OutboundHrmpMessage<Id>>,
/// New validation code.
pub new_validation_code: Option<ValidationCode>,
/// The head-data produced as a result of execution.
pub head_data: HeadData,
/// The number of messages processed from the DMQ.
pub processed_downward_messages: u32,
/// The mark which specifies the block number up to which all inbound HRMP messages are processed.
pub hrmp_watermark: N,
}
impl CandidateCommitments {
/// Compute the blake2-256 hash of the commitments.
pub fn hash(&self) -> Hash {
BlakeTwo256::hash_of(self)
}
}
/// A bitfield concerning availability of backed candidates.
#[derive(PartialEq, Eq, Clone, Encode, Decode, RuntimeDebug)]
pub struct AvailabilityBitfield(pub BitVec<bitvec::order::Lsb0, u8>);
impl From<BitVec<bitvec::order::Lsb0, u8>> for AvailabilityBitfield {
fn from(inner: BitVec<bitvec::order::Lsb0, u8>) -> Self {
AvailabilityBitfield(inner)
}
}
/// A signed compact statement, suitable to be sent to the chain.
pub type SignedStatement = Signed<CompactStatement>;
/// A bitfield signed by a particular validator about the availability of pending candidates.
pub type SignedAvailabilityBitfield = Signed<AvailabilityBitfield>;
/// A signed bitfield with signature not yet checked.
pub type UncheckedSignedAvailabilityBitfield = UncheckedSigned<AvailabilityBitfield>;
/// A set of signed availability bitfields. Should be sorted by validator index, ascending.
pub type SignedAvailabilityBitfields = Vec<SignedAvailabilityBitfield>;
/// A set of unchecked signed availability bitfields. Should be sorted by validator index, ascending.
pub type UncheckedSignedAvailabilityBitfields = Vec<UncheckedSignedAvailabilityBitfield>;
/// A backed (or backable, depending on context) candidate.
#[derive(Encode, Decode, Clone, PartialEq, Eq, RuntimeDebug)]
Peter Goodspeed-Niklaus
committed
#[cfg_attr(feature = "std", derive(Default))]
pub struct BackedCandidate<H = Hash> {
/// The candidate referred to.
pub candidate: CommittedCandidateReceipt<H>,
/// The validity votes themselves, expressed as signatures.
pub validity_votes: Vec<ValidityAttestation>,
/// The indices of the validators within the group, expressed as a bitfield.
pub validator_indices: BitVec<bitvec::order::Lsb0, u8>,
}
impl<H> BackedCandidate<H> {
/// Get a reference to the descriptor of the para.
pub fn descriptor(&self) -> &CandidateDescriptor<H> {
&self.candidate.descriptor
}
/// Compute this candidate's hash.
pub fn hash(&self) -> CandidateHash
where
H: Clone + Encode,
{
self.candidate.hash()
}
/// Get this candidate's receipt.
pub fn receipt(&self) -> CandidateReceipt<H>
where
H: Clone,
{
self.candidate.to_plain()
}
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
}
/// Verify the backing of the given candidate.
///
/// Provide a lookup from the index of a validator within the group assigned to this para,
/// as opposed to the index of the validator within the overall validator set, as well as
/// the number of validators in the group.
///
/// Also provide the signing context.
///
/// Returns either an error, indicating that one of the signatures was invalid or that the index
/// was out-of-bounds, or the number of signatures checked.
pub fn check_candidate_backing<H: AsRef<[u8]> + Clone + Encode>(
backed: &BackedCandidate<H>,
signing_context: &SigningContext<H>,
group_len: usize,
validator_lookup: impl Fn(usize) -> Option<ValidatorId>,
) -> Result<usize, ()> {
if backed.validator_indices.len() != group_len {
return Err(())
}
if backed.validity_votes.len() > group_len {
return Err(())
}
// this is known, even in runtime, to be blake2-256.
let hash = backed.candidate.hash();
for ((val_in_group_idx, _), attestation) in backed
.validator_indices
.iter()
.enumerate()
.filter(|(_, signed)| **signed)
.zip(backed.validity_votes.iter())
{
let validator_id = validator_lookup(val_in_group_idx).ok_or(())?;
let payload = attestation.signed_payload(hash.clone(), signing_context);
let sig = attestation.signature();
if sig.verify(&payload[..], &validator_id) {
signed += 1;
} else {
return Err(())
}
}
if signed != backed.validity_votes.len() {
return Err(())
}
Ok(signed)
}
/// The unique (during session) index of a core.
#[derive(Encode, Decode, Default, PartialOrd, Ord, Eq, PartialEq, Clone, Copy)]
#[cfg_attr(feature = "std", derive(Debug, Hash, MallocSizeOf))]
pub struct CoreIndex(pub u32);
impl From<u32> for CoreIndex {
fn from(i: u32) -> CoreIndex {
CoreIndex(i)
}
}
/// The unique (during session) index of a validator group.
#[derive(Encode, Decode, Default, Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "std", derive(Hash, MallocSizeOf))]
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
pub struct GroupIndex(pub u32);
impl From<u32> for GroupIndex {
fn from(i: u32) -> GroupIndex {
GroupIndex(i)
}
}
/// A claim on authoring the next block for a given parathread.
#[derive(Clone, Encode, Decode, Default)]
#[cfg_attr(feature = "std", derive(PartialEq, Debug))]
pub struct ParathreadClaim(pub Id, pub CollatorId);
/// An entry tracking a claim to ensure it does not pass the maximum number of retries.
#[derive(Clone, Encode, Decode, Default)]
#[cfg_attr(feature = "std", derive(PartialEq, Debug))]
pub struct ParathreadEntry {
/// The claim.
pub claim: ParathreadClaim,
/// Number of retries.
pub retries: u32,
}
/// What is occupying a specific availability core.
#[derive(Clone, Encode, Decode)]
#[cfg_attr(feature = "std", derive(PartialEq, Debug))]
pub enum CoreOccupied {
/// A parathread.
Parathread(ParathreadEntry),
/// A parachain.
Parachain,
}
/// A helper data-type for tracking validator-group rotations.
#[derive(Clone, Encode, Decode)]
#[cfg_attr(feature = "std", derive(PartialEq, Debug, MallocSizeOf))]
pub struct GroupRotationInfo<N = BlockNumber> {
/// The block number where the session started.
pub session_start_block: N,
/// How often groups rotate. 0 means never.
pub group_rotation_frequency: N,
/// The current block number.
pub now: N,
}
impl GroupRotationInfo {
/// Returns the index of the group needed to validate the core at the given index, assuming
/// the given number of cores.
///
/// `core_index` should be less than `cores`, which is capped at `u32::max()`.
pub fn group_for_core(&self, core_index: CoreIndex, cores: usize) -> GroupIndex {
if self.group_rotation_frequency == 0 {
return GroupIndex(core_index.0)
}
if cores == 0 {
return GroupIndex(0)
}
let cores = sp_std::cmp::min(cores, u32::MAX as usize);
let blocks_since_start = self.now.saturating_sub(self.session_start_block);
let rotations = blocks_since_start / self.group_rotation_frequency;
// g = c + r mod cores
let idx = (core_index.0 as usize + rotations as usize) % cores;
GroupIndex(idx as u32)
}
/// Returns the index of the group assigned to the given core. This does no checking or
/// whether the group index is in-bounds.
///
/// `core_index` should be less than `cores`, which is capped at `u32::max()`.
pub fn core_for_group(&self, group_index: GroupIndex, cores: usize) -> CoreIndex {
if self.group_rotation_frequency == 0 {
return CoreIndex(group_index.0)
}
if cores == 0 {
return CoreIndex(0)
}
let cores = sp_std::cmp::min(cores, u32::MAX as usize);
let blocks_since_start = self.now.saturating_sub(self.session_start_block);
let rotations = blocks_since_start / self.group_rotation_frequency;
let rotations = rotations % cores as u32;
// g = c + r mod cores
// c = g - r mod cores
// x = x + cores mod cores
// c = (g + cores) - r mod cores
let idx = (group_index.0 as usize + cores - rotations as usize) % cores;
CoreIndex(idx as u32)
}
/// Create a new `GroupRotationInfo` with one further rotation applied.
pub fn bump_rotation(&self) -> Self {
GroupRotationInfo {
session_start_block: self.session_start_block,
group_rotation_frequency: self.group_rotation_frequency,
now: self.next_rotation_at(),
}
}
}
impl<N: Saturating + BaseArithmetic + Copy> GroupRotationInfo<N> {
/// Returns the block number of the next rotation after the current block. If the current block
/// is 10 and the rotation frequency is 5, this should return 15.
pub fn next_rotation_at(&self) -> N {
let cycle_once = self.now + self.group_rotation_frequency;
cycle_once -
(cycle_once.saturating_sub(self.session_start_block) % self.group_rotation_frequency)
}
/// Returns the block number of the last rotation before or including the current block. If the
/// current block is 10 and the rotation frequency is 5, this should return 10.
pub fn last_rotation_at(&self) -> N {
self.now -
(self.now.saturating_sub(self.session_start_block) % self.group_rotation_frequency)
}
}
/// Information about a core which is currently occupied.
#[derive(Clone, Encode, Decode)]
#[cfg_attr(feature = "std", derive(Debug, PartialEq, MallocSizeOf))]
pub struct OccupiedCore<H = Hash, N = BlockNumber> {
// NOTE: this has no ParaId as it can be deduced from the candidate descriptor.
/// If this core is freed by availability, this is the assignment that is next up on this
/// core, if any. None if there is nothing queued for this core.
pub next_up_on_available: Option<ScheduledCore>,
/// The relay-chain block number this began occupying the core at.
pub occupied_since: N,
/// The relay-chain block this will time-out at, if any.
pub time_out_at: N,
/// If this core is freed by being timed-out, this is the assignment that is next up on this
/// core. None if there is nothing queued for this core or there is no possibility of timing
/// out.
pub next_up_on_time_out: Option<ScheduledCore>,
/// A bitfield with 1 bit for each validator in the set. `1` bits mean that the corresponding
/// validators has attested to availability on-chain. A 2/3+ majority of `1` bits means that
/// this will be available.
#[cfg_attr(feature = "std", ignore_malloc_size_of = "outside type")]
pub availability: BitVec<bitvec::order::Lsb0, u8>,
/// The group assigned to distribute availability pieces of this candidate.
pub group_responsible: GroupIndex,
/// The hash of the candidate occupying the core.
pub candidate_hash: CandidateHash,
/// The descriptor of the candidate occupying the core.
pub candidate_descriptor: CandidateDescriptor<H>,
}
impl<H, N> OccupiedCore<H, N> {
/// Get the Para currently occupying this core.
pub fn para_id(&self) -> Id {
self.candidate_descriptor.para_id
}
}
/// Information about a core which is currently occupied.
#[derive(Clone, Encode, Decode)]
#[cfg_attr(feature = "std", derive(Debug, PartialEq, Default, MallocSizeOf))]
pub struct ScheduledCore {
/// The ID of a para scheduled.
pub para_id: Id,
/// The collator required to author the block, if any.
pub collator: Option<CollatorId>,
}
/// The state of a particular availability core.
#[derive(Clone, Encode, Decode)]
#[cfg_attr(feature = "std", derive(Debug, PartialEq, MallocSizeOf))]
pub enum CoreState<H = Hash, N = BlockNumber> {
#[codec(index = 0)]
Occupied(OccupiedCore<H, N>),
/// The core is currently free, with a para scheduled and given the opportunity
/// to occupy.
///
/// If a particular Collator is required to author this block, that is also present in this
/// variant.
#[codec(index = 1)]
Scheduled(ScheduledCore),
/// The core is currently free and there is nothing scheduled. This can be the case for parathread
/// cores when there are no parathread blocks queued. Parachain cores will never be left idle.
#[codec(index = 2)]
impl<N> CoreState<N> {
/// If this core state has a `para_id`, return it.
pub fn para_id(&self) -> Option<Id> {
match self {
Self::Occupied(ref core) => Some(core.para_id()),
Self::Scheduled(ScheduledCore { para_id, .. }) => Some(*para_id),
Self::Free => None,
}
}
/// Is this core state `Self::Occupied`?
pub fn is_occupied(&self) -> bool {
matches!(self, Self::Occupied(_))
}
/// An assumption being made about the state of an occupied core.
#[derive(Clone, Copy, Encode, Decode)]
#[cfg_attr(feature = "std", derive(PartialEq, Eq, Hash, Debug))]
pub enum OccupiedCoreAssumption {
/// The candidate occupying the core was made available and included to free the core.
#[codec(index = 0)]
Included,
/// The candidate occupying the core timed out and freed the core without advancing the para.
#[codec(index = 1)]
TimedOut,
/// The core was not occupied to begin with.
#[codec(index = 2)]
Free,
}
/// An even concerning a candidate.
#[derive(Clone, Encode, Decode)]
#[cfg_attr(feature = "std", derive(PartialEq, Debug, MallocSizeOf))]
pub enum CandidateEvent<H = Hash> {
/// This candidate receipt was backed in the most recent block.
/// This includes the core index the candidate is now occupying.
#[codec(index = 0)]
CandidateBacked(CandidateReceipt<H>, HeadData, CoreIndex, GroupIndex),
/// This candidate receipt was included and became a parablock at the most recent block.
/// This includes the core index the candidate was occupying as well as the group responsible
/// for backing the candidate.
#[codec(index = 1)]
CandidateIncluded(CandidateReceipt<H>, HeadData, CoreIndex, GroupIndex),
/// This candidate receipt was not made available in time and timed out.
/// This includes the core index the candidate was occupying.
#[codec(index = 2)]
CandidateTimedOut(CandidateReceipt<H>, HeadData, CoreIndex),
/// Information about validator sets of a session.
#[derive(Clone, Encode, Decode, RuntimeDebug)]
#[cfg_attr(feature = "std", derive(PartialEq, Default, MallocSizeOf))]
pub struct SessionInfo {
/// Validators in canonical ordering.
pub validators: Vec<ValidatorId>,
/// Validators' authority discovery keys for the session in canonical ordering.
#[cfg_attr(feature = "std", ignore_malloc_size_of = "outside type")]
pub discovery_keys: Vec<AuthorityDiscoveryId>,
/// The assignment keys for validators.
pub assignment_keys: Vec<AssignmentId>,
/// Validators in shuffled ordering - these are the validator groups as produced
/// by the `Scheduler` module for the session and are typically referred to by
/// `GroupIndex`.
pub validator_groups: Vec<Vec<ValidatorIndex>>,
/// The number of availability cores used by the protocol during this session.
pub n_cores: u32,
/// The zeroth delay tranche width.
pub zeroth_delay_tranche_width: u32,
/// The number of samples we do of `relay_vrf_modulo`.
pub relay_vrf_modulo_samples: u32,
/// The number of delay tranches in total.
pub n_delay_tranches: u32,
/// How many slots (BABE / SASSAFRAS) must pass before an assignment is considered a
/// no-show.
pub no_show_slots: u32,
/// The number of validators needed to approve a block.
pub needed_approvals: u32,
}
/// A vote of approval on a candidate.
#[derive(Clone, RuntimeDebug)]
pub struct ApprovalVote(pub CandidateHash);
impl ApprovalVote {
/// Yields the signing payload for this approval vote.
pub fn signing_payload(&self, session_index: SessionIndex) -> Vec<u8> {
const MAGIC: [u8; 4] = *b"APPR";
(MAGIC, &self.0, session_index).encode()
}
}
sp_api::decl_runtime_apis! {
/// The API for querying the state of parachains on-chain.
pub trait ParachainHost<H: Decode = Hash, N: Encode + Decode = BlockNumber> {
/// Get the current validators.
fn validators() -> Vec<ValidatorId>;
/// Returns the validator groups and rotation info localized based on the hypothetical child
/// of a block whose state this is invoked on. Note that `now` in the `GroupRotationInfo`
/// should be the successor of the number of the block.
fn validator_groups() -> (Vec<Vec<ValidatorIndex>>, GroupRotationInfo<N>);
/// Yields information on all availability cores as relevant to the child block.
/// Cores are either free or occupied. Free cores can have paras assigned to them.
fn availability_cores() -> Vec<CoreState<H, N>>;
/// Yields the persisted validation data for the given `ParaId` along with an assumption that
/// should be used if the para currently occupies a core.
///
/// Returns `None` if either the para is not registered or the assumption is `Freed`
/// and the para already occupies a core.
fn persisted_validation_data(para_id: Id, assumption: OccupiedCoreAssumption)
-> Option<PersistedValidationData<H, N>>;
/// Checks if the given validation outputs pass the acceptance criteria.
asynchronous rob
committed
fn check_validation_outputs(para_id: Id, outputs: CandidateCommitments) -> bool;
/// Returns the session index expected at a child of the block.
///
/// This can be used to instantiate a `SigningContext`.
fn session_index_for_child() -> SessionIndex;
/// Get the session info for the given session, if stored.
fn session_info(index: SessionIndex) -> Option<SessionInfo>;
/// Fetch the validation code used by a para, making the given `OccupiedCoreAssumption`.
///
/// Returns `None` if either the para is not registered or the assumption is `Freed`
/// and the para already occupies a core.
fn validation_code(para_id: Id, assumption: OccupiedCoreAssumption)
-> Option<ValidationCode>;
/// Get the receipt of a candidate pending availability. This returns `Some` for any paras
/// assigned to occupied cores in `availability_cores` and `None` otherwise.
fn candidate_pending_availability(para_id: Id) -> Option<CommittedCandidateReceipt<H>>;
/// Get a vector of events concerning candidates that occurred within a block.
fn candidate_events() -> Vec<CandidateEvent<H>>;
/// Get all the pending inbound messages in the downward message queue for a para.
fn dmq_contents(
recipient: Id,
) -> Vec<InboundDownwardMessage<N>>;
/// Get the contents of all channels addressed to the given recipient. Channels that have no
/// messages in them are also included.
fn inbound_hrmp_channels_contents(recipient: Id) -> BTreeMap<Id, Vec<InboundHrmpMessage<N>>>;
/// Get the validation code from its hash.
fn validation_code_by_hash(hash: ValidationCodeHash) -> Option<ValidationCode>;
/// Custom validity errors used in Polkadot while validating transactions.
#[repr(u8)]
pub enum ValidityError {
/// The Ethereum signature is invalid.
InvalidEthereumSignature = 0,
/// The signer has no claim.