tests.rs 24.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
// Copyright 2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

17
18
19
use super::*;
use assert_matches::assert_matches;
use polkadot_erasure_coding::{branches, obtain_chunks_v1 as obtain_chunks};
20
21
use polkadot_node_network_protocol::ObservedRole;
use polkadot_node_subsystem_util::TimeoutExt;
22
use polkadot_primitives::v1::{
23
	AvailableData, BlockData, CandidateCommitments, CandidateDescriptor, GroupIndex,
24
	GroupRotationInfo, HeadData, OccupiedCore, PersistedValidationData, PoV, ScheduledCore,
25
};
26
use polkadot_subsystem_testhelpers::{self as test_helpers};
27
28
29

use futures::{executor, future, Future};
use futures_timer::Delay;
30
use sc_keystore::LocalKeystore;
31
use smallvec::smallvec;
32
use sp_application_crypto::AppKey;
33
34
use sp_keystore::{SyncCryptoStore, SyncCryptoStorePtr};
use std::{sync::Arc, time::Duration};
35
36
37
38
39
40
41
42
43
44
45
46
47

macro_rules! view {
		( $( $hash:expr ),* $(,)? ) => [
			View(vec![ $( $hash.clone() ),* ])
		];
	}

macro_rules! delay {
	($delay:expr) => {
		Delay::new(Duration::from_millis($delay)).await;
	};
}

48
49
50
fn chunk_protocol_message(
	message: AvailabilityGossipMessage,
) -> protocol_v1::AvailabilityDistributionMessage {
51
52
53
54
55
56
	protocol_v1::AvailabilityDistributionMessage::Chunk(
		message.candidate_hash,
		message.erasure_chunk,
	)
}

57
58
59
60
61
struct TestHarness {
	virtual_overseer: test_helpers::TestSubsystemContextHandle<AvailabilityDistributionMessage>,
}

fn test_harness<T: Future<Output = ()>>(
62
	keystore: SyncCryptoStorePtr,
63
64
65
66
67
68
69
70
71
72
73
74
75
76
	test: impl FnOnce(TestHarness) -> T,
) {
	let _ = env_logger::builder()
		.is_test(true)
		.filter(
			Some("polkadot_availability_distribution"),
			log::LevelFilter::Trace,
		)
		.try_init();

	let pool = sp_core::testing::TaskExecutor::new();

	let (context, virtual_overseer) = test_helpers::make_subsystem_context(pool.clone());

77
	let subsystem = AvailabilityDistributionSubsystem::new(keystore, Default::default());
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
	let subsystem = subsystem.run(context);

	let test_fut = test(TestHarness { virtual_overseer });

	futures::pin_mut!(test_fut);
	futures::pin_mut!(subsystem);

	executor::block_on(future::select(test_fut, subsystem));
}

const TIMEOUT: Duration = Duration::from_millis(100);

async fn overseer_signal(
	overseer: &mut test_helpers::TestSubsystemContextHandle<AvailabilityDistributionMessage>,
	signal: OverseerSignal,
) {
	delay!(50);
	overseer
		.send(FromOverseer::Signal(signal))
		.timeout(TIMEOUT)
		.await
		.expect("10ms is more than enough for sending signals.");
}

async fn overseer_send(
	overseer: &mut test_helpers::TestSubsystemContextHandle<AvailabilityDistributionMessage>,
	msg: AvailabilityDistributionMessage,
) {
	log::trace!("Sending message:\n{:?}", &msg);
	overseer
		.send(FromOverseer::Communication { msg })
		.timeout(TIMEOUT)
		.await
		.expect("10ms is more than enough for sending messages.");
}

async fn overseer_recv(
	overseer: &mut test_helpers::TestSubsystemContextHandle<AvailabilityDistributionMessage>,
) -> AllMessages {
	log::trace!("Waiting for message ...");
	let msg = overseer
		.recv()
		.timeout(TIMEOUT)
		.await
		.expect("TIMEOUT is enough to recv.");
	log::trace!("Received message:\n{:?}", &msg);
	msg
}

fn dummy_occupied_core(para: ParaId) -> CoreState {
	CoreState::Occupied(OccupiedCore {
		para_id: para,
		next_up_on_available: None,
		occupied_since: 0,
		time_out_at: 5,
		next_up_on_time_out: None,
		availability: Default::default(),
		group_responsible: GroupIndex::from(0),
	})
}

use sp_keyring::Sr25519Keyring;

#[derive(Clone)]
struct TestState {
	chain_ids: Vec<ParaId>,
	validators: Vec<Sr25519Keyring>,
	validator_public: Vec<ValidatorId>,
	validator_index: Option<ValidatorIndex>,
	validator_groups: (Vec<Vec<ValidatorIndex>>, GroupRotationInfo),
	head_data: HashMap<ParaId, HeadData>,
149
	keystore: SyncCryptoStorePtr,
150
151
152
	relay_parent: Hash,
	ancestors: Vec<Hash>,
	availability_cores: Vec<CoreState>,
153
	persisted_validation_data: PersistedValidationData,
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
}

fn validator_pubkeys(val_ids: &[Sr25519Keyring]) -> Vec<ValidatorId> {
	val_ids.iter().map(|v| v.public().into()).collect()
}

impl Default for TestState {
	fn default() -> Self {
		let chain_a = ParaId::from(1);
		let chain_b = ParaId::from(2);

		let chain_ids = vec![chain_a, chain_b];

		let validators = vec![
			Sr25519Keyring::Ferdie, // <- this node, role: validator
			Sr25519Keyring::Alice,
			Sr25519Keyring::Bob,
			Sr25519Keyring::Charlie,
			Sr25519Keyring::Dave,
		];

175
		let keystore: SyncCryptoStorePtr = Arc::new(LocalKeystore::in_memory());
176

177
178
179
180
181
182
		SyncCryptoStore::sr25519_generate_new(
			&*keystore,
			ValidatorId::ID,
			Some(&validators[0].to_seed()),
		)
		.expect("Insert key into keystore");
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

		let validator_public = validator_pubkeys(&validators);

		let validator_groups = vec![vec![2, 0, 4], vec![1], vec![3]];
		let group_rotation_info = GroupRotationInfo {
			session_start_block: 0,
			group_rotation_frequency: 100,
			now: 1,
		};
		let validator_groups = (validator_groups, group_rotation_info);

		let availability_cores = vec![
			CoreState::Scheduled(ScheduledCore {
				para_id: chain_ids[0],
				collator: None,
			}),
			CoreState::Scheduled(ScheduledCore {
				para_id: chain_ids[1],
				collator: None,
			}),
		];

		let mut head_data = HashMap::new();
		head_data.insert(chain_a, HeadData(vec![4, 5, 6]));
		head_data.insert(chain_b, HeadData(vec![7, 8, 9]));

		let ancestors = vec![
			Hash::repeat_byte(0x44),
			Hash::repeat_byte(0x33),
			Hash::repeat_byte(0x22),
		];
		let relay_parent = Hash::repeat_byte(0x05);

216
		let persisted_validation_data = PersistedValidationData {
217
218
			parent_head: HeadData(vec![7, 8, 9]),
			block_number: Default::default(),
219
			hrmp_mqc_heads: Vec::new(),
220
			dmq_mqc_head: Default::default(),
221
222
223
224
225
226
227
228
229
230
231
232
		};

		let validator_index = Some((validators.len() - 1) as ValidatorIndex);

		Self {
			chain_ids,
			keystore,
			validators,
			validator_public,
			validator_groups,
			availability_cores,
			head_data,
233
			persisted_validation_data,
234
235
236
237
238
239
240
241
242
			relay_parent,
			ancestors,
			validator_index,
		}
	}
}

fn make_available_data(test: &TestState, pov: PoV) -> AvailableData {
	AvailableData {
243
		validation_data: test.persisted_validation_data.clone(),
244
245
246
247
248
249
250
251
252
253
254
255
256
		pov,
	}
}

fn make_erasure_root(test: &TestState, pov: PoV) -> Hash {
	let available_data = make_available_data(test, pov);

	let chunks = obtain_chunks(test.validators.len(), &available_data).unwrap();
	branches(&chunks).root()
}

fn make_valid_availability_gossip(
	test: &TestState,
257
	candidate_hash: CandidateHash,
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
	erasure_chunk_index: u32,
	pov: PoV,
) -> AvailabilityGossipMessage {
	let available_data = make_available_data(test, pov);

	let erasure_chunks = derive_erasure_chunks_with_proofs(test.validators.len(), &available_data);

	let erasure_chunk: ErasureChunk = erasure_chunks
		.get(erasure_chunk_index as usize)
		.expect("Must be valid or input is oob")
		.clone();

	AvailabilityGossipMessage {
		candidate_hash,
		erasure_chunk,
	}
}

#[derive(Default)]
struct TestCandidateBuilder {
	para_id: ParaId,
	head_data: HeadData,
	pov_hash: Hash,
	relay_parent: Hash,
	erasure_root: Hash,
}

impl TestCandidateBuilder {
	fn build(self) -> CommittedCandidateReceipt {
		CommittedCandidateReceipt {
			descriptor: CandidateDescriptor {
				para_id: self.para_id,
				pov_hash: self.pov_hash,
				relay_parent: self.relay_parent,
				..Default::default()
			},
			commitments: CandidateCommitments {
				head_data: self.head_data,
				erasure_root: self.erasure_root,
				..Default::default()
			},
		}
	}
}

#[test]
fn helper_integrity() {
	let test_state = TestState::default();

	let pov_block = PoV {
		block_data: BlockData(vec![42, 43, 44]),
	};

	let pov_hash = pov_block.hash();

	let candidate = TestCandidateBuilder {
		para_id: test_state.chain_ids[0],
		relay_parent: test_state.relay_parent,
		pov_hash: pov_hash,
		erasure_root: make_erasure_root(&test_state, pov_block.clone()),
		..Default::default()
	}
	.build();

	let message =
323
		make_valid_availability_gossip(&test_state, candidate.hash(), 2, pov_block.clone());
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

	let root = dbg!(&candidate.commitments.erasure_root);

	let anticipated_hash = branch_hash(
		root,
		&message.erasure_chunk.proof,
		dbg!(message.erasure_chunk.index as usize),
	)
	.expect("Must be able to derive branch hash");
	assert_eq!(
		anticipated_hash,
		BlakeTwo256::hash(&message.erasure_chunk.chunk)
	);
}

fn derive_erasure_chunks_with_proofs(
	n_validators: usize,
	available_data: &AvailableData,
) -> Vec<ErasureChunk> {
	let chunks: Vec<Vec<u8>> = obtain_chunks(n_validators, available_data).unwrap();

	// create proofs for each erasure chunk
	let branches = branches(chunks.as_ref());

	let erasure_chunks = branches
		.enumerate()
		.map(|(index, (proof, chunk))| ErasureChunk {
			chunk: chunk.to_vec(),
			index: index as _,
			proof,
		})
		.collect::<Vec<ErasureChunk>>();

	erasure_chunks
}

#[test]
fn reputation_verification() {
	let test_state = TestState::default();

	test_harness(test_state.keystore.clone(), |test_harness| async move {
		let TestHarness {
			mut virtual_overseer,
		} = test_harness;

		let expected_head_data = test_state.head_data.get(&test_state.chain_ids[0]).unwrap();

		let pov_block_a = PoV {
			block_data: BlockData(vec![42, 43, 44]),
		};

		let pov_block_b = PoV {
			block_data: BlockData(vec![45, 46, 47]),
		};

		let pov_block_c = PoV {
			block_data: BlockData(vec![48, 49, 50]),
		};

		let pov_hash_a = pov_block_a.hash();
		let pov_hash_b = pov_block_b.hash();
		let pov_hash_c = pov_block_c.hash();

		let candidates = vec![
			TestCandidateBuilder {
				para_id: test_state.chain_ids[0],
				relay_parent: test_state.relay_parent,
				pov_hash: pov_hash_a,
				erasure_root: make_erasure_root(&test_state, pov_block_a.clone()),
				..Default::default()
			}
			.build(),
			TestCandidateBuilder {
				para_id: test_state.chain_ids[0],
				relay_parent: test_state.relay_parent,
				pov_hash: pov_hash_b,
				erasure_root: make_erasure_root(&test_state, pov_block_b.clone()),
				head_data: expected_head_data.clone(),
				..Default::default()
			}
			.build(),
			TestCandidateBuilder {
				para_id: test_state.chain_ids[1],
				relay_parent: Hash::repeat_byte(0xFA),
				pov_hash: pov_hash_c,
				erasure_root: make_erasure_root(&test_state, pov_block_c.clone()),
				head_data: test_state
					.head_data
					.get(&test_state.chain_ids[1])
					.unwrap()
					.clone(),
				..Default::default()
			}
			.build(),
		];

		let TestState {
			chain_ids,
			keystore: _,
			validators: _,
			validator_public,
			validator_groups,
			availability_cores,
			head_data: _,
428
			persisted_validation_data: _,
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
			relay_parent: current,
			ancestors,
			validator_index: _,
		} = test_state.clone();

		let _ = validator_groups;
		let _ = availability_cores;

		let peer_a = PeerId::random();
		let peer_b = PeerId::random();
		assert_ne!(&peer_a, &peer_b);

		log::trace!("peer A: {:?}", peer_a);
		log::trace!("peer B: {:?}", peer_b);

		log::trace!("candidate A: {:?}", candidates[0].hash());
		log::trace!("candidate B: {:?}", candidates[1].hash());

		overseer_signal(
			&mut virtual_overseer,
			OverseerSignal::ActiveLeaves(ActiveLeavesUpdate {
				activated: smallvec![current.clone()],
				deactivated: smallvec![],
			}),
		)
		.await;

		overseer_send(
			&mut virtual_overseer,
458
			AvailabilityDistributionMessage::NetworkBridgeUpdateV1(
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
				NetworkBridgeEvent::OurViewChange(view![current,]),
			),
		)
		.await;

		// obtain the validators per relay parent
		assert_matches!(
			overseer_recv(&mut virtual_overseer).await,
			AllMessages::RuntimeApi(RuntimeApiMessage::Request(
				relay_parent,
				RuntimeApiRequest::Validators(tx),
			)) => {
				assert_eq!(relay_parent, current);
				tx.send(Ok(validator_public.clone())).unwrap();
			}
		);

		let genesis = Hash::repeat_byte(0xAA);
		// query of k ancestors, we only provide one
		assert_matches!(
			overseer_recv(&mut virtual_overseer).await,
			AllMessages::ChainApi(ChainApiMessage::Ancestors {
				hash: relay_parent,
				k,
				response_channel: tx,
			}) => {
				assert_eq!(relay_parent, current);
				assert_eq!(k, AvailabilityDistributionSubsystem::K + 1);
				// 0xAA..AA will not be included, since there is no mean to determine
				// its session index
				tx.send(Ok(vec![ancestors[0].clone(), genesis])).unwrap();
			}
		);

		// state query for each of them
		assert_matches!(
			overseer_recv(&mut virtual_overseer).await,
			AllMessages::RuntimeApi(RuntimeApiMessage::Request(
				relay_parent,
				RuntimeApiRequest::SessionIndexForChild(tx)
			)) => {
				assert_eq!(relay_parent, current);
				tx.send(Ok(1 as SessionIndex)).unwrap();
			}
		);

		assert_matches!(
			overseer_recv(&mut virtual_overseer).await,
			AllMessages::RuntimeApi(RuntimeApiMessage::Request(
				relay_parent,
				RuntimeApiRequest::SessionIndexForChild(tx)
			)) => {
				assert_eq!(relay_parent, genesis);
				tx.send(Ok(1 as SessionIndex)).unwrap();
			}
		);

		// subsystem peer id collection
		// which will query the availability cores
		assert_matches!(
			overseer_recv(&mut virtual_overseer).await,
			AllMessages::RuntimeApi(RuntimeApiMessage::Request(
				relay_parent,
				RuntimeApiRequest::AvailabilityCores(tx)
			)) => {
				assert_eq!(relay_parent, ancestors[0]);
				// respond with a set of availability core states
				tx.send(Ok(vec![
					dummy_occupied_core(chain_ids[0]),
					dummy_occupied_core(chain_ids[1])
				])).unwrap();
			}
		);

		// now each of the relay parents in the view (1) will
		assert_matches!(
			overseer_recv(&mut virtual_overseer).await,
			AllMessages::RuntimeApi(RuntimeApiMessage::Request(
				relay_parent,
				RuntimeApiRequest::CandidatePendingAvailability(para, tx)
			)) => {
				assert_eq!(relay_parent, ancestors[0]);
				assert_eq!(para, chain_ids[0]);
				tx.send(Ok(Some(
					candidates[0].clone()
				))).unwrap();
			}
		);

		assert_matches!(
			overseer_recv(&mut virtual_overseer).await,
			AllMessages::RuntimeApi(RuntimeApiMessage::Request(
				relay_parent,
				RuntimeApiRequest::CandidatePendingAvailability(para, tx)
			)) => {
				assert_eq!(relay_parent, ancestors[0]);
				assert_eq!(para, chain_ids[1]);
				tx.send(Ok(Some(
					candidates[1].clone()
				))).unwrap();
			}
		);

		for _ in 0usize..1 {
			assert_matches!(
				overseer_recv(&mut virtual_overseer).await,
				AllMessages::RuntimeApi(RuntimeApiMessage::Request(
					_relay_parent,
					RuntimeApiRequest::AvailabilityCores(tx),
				)) => {
					tx.send(Ok(vec![
						CoreState::Occupied(OccupiedCore {
							para_id: chain_ids[0].clone(),
							next_up_on_available: None,
							occupied_since: 0,
							time_out_at: 10,
							next_up_on_time_out: None,
							availability: Default::default(),
							group_responsible: GroupIndex::from(0),
						}),
						CoreState::Free,
						CoreState::Free,
						CoreState::Occupied(OccupiedCore {
							para_id: chain_ids[1].clone(),
							next_up_on_available: None,
							occupied_since: 1,
							time_out_at: 7,
							next_up_on_time_out: None,
							availability: Default::default(),
							group_responsible: GroupIndex::from(0),
						}),
						CoreState::Free,
						CoreState::Free,
					])).unwrap();
				}
			);

			// query the availability cores for each of the paras (2)
			assert_matches!(
				overseer_recv(&mut virtual_overseer).await,
				AllMessages::RuntimeApi(
					RuntimeApiMessage::Request(
						_relay_parent,
						RuntimeApiRequest::CandidatePendingAvailability(para, tx),
					)
				) => {
					assert_eq!(para, chain_ids[0]);
					tx.send(Ok(Some(
						candidates[0].clone()
					))).unwrap();
				}
			);

			assert_matches!(
				overseer_recv(&mut virtual_overseer).await,
				AllMessages::RuntimeApi(RuntimeApiMessage::Request(
					_relay_parent,
					RuntimeApiRequest::CandidatePendingAvailability(para, tx),
				)) => {
					assert_eq!(para, chain_ids[1]);
					tx.send(Ok(Some(
						candidates[1].clone()
					))).unwrap();
				}
			);
		}

		let mut candidates2 = candidates.clone();
		// check if the availability store can provide the desired erasure chunks
		for i in 0usize..2 {
			log::trace!("0000");
			let avail_data = make_available_data(&test_state, pov_block_a.clone());
			let chunks =
				derive_erasure_chunks_with_proofs(test_state.validators.len(), &avail_data);

			let expected;
			// store the chunk to the av store
			assert_matches!(
				overseer_recv(&mut virtual_overseer).await,
				AllMessages::AvailabilityStore(
					AvailabilityStoreMessage::QueryDataAvailability(
						candidate_hash,
						tx,
					)
				) => {
					let index = candidates2.iter().enumerate().find(|x| { x.1.hash() == candidate_hash }).map(|x| x.0).unwrap();
					expected = dbg!(candidates2.swap_remove(index).hash());
					tx.send(
						i == 0
					).unwrap();
				}
			);

			assert_eq!(chunks.len(), test_state.validators.len());

			log::trace!("xxxx");
			// retrieve a stored chunk
			for (j, chunk) in chunks.into_iter().enumerate() {
				log::trace!("yyyy i={}, j={}", i, j);
				if i != 0 {
					// not a validator, so this never happens
					break;
				}
				assert_matches!(
					overseer_recv(&mut virtual_overseer).await,
					AllMessages::AvailabilityStore(
						AvailabilityStoreMessage::QueryChunk(
							candidate_hash,
							idx,
							tx,
						)
					) => {
						assert_eq!(candidate_hash, expected);
						assert_eq!(j as u32, chunk.index);
						assert_eq!(idx, j as u32);
						tx.send(
							Some(chunk.clone())
						).unwrap();
					}
				);
			}
		}
		// setup peer a with interest in current
		overseer_send(
			&mut virtual_overseer,
684
			AvailabilityDistributionMessage::NetworkBridgeUpdateV1(
685
686
687
688
689
690
691
				NetworkBridgeEvent::PeerConnected(peer_a.clone(), ObservedRole::Full),
			),
		)
		.await;

		overseer_send(
			&mut virtual_overseer,
692
			AvailabilityDistributionMessage::NetworkBridgeUpdateV1(
693
694
695
696
697
698
699
700
				NetworkBridgeEvent::PeerViewChange(peer_a.clone(), view![current]),
			),
		)
		.await;

		// setup peer b with interest in ancestor
		overseer_send(
			&mut virtual_overseer,
701
			AvailabilityDistributionMessage::NetworkBridgeUpdateV1(
702
703
704
705
706
707
708
				NetworkBridgeEvent::PeerConnected(peer_b.clone(), ObservedRole::Full),
			),
		)
		.await;

		overseer_send(
			&mut virtual_overseer,
709
			AvailabilityDistributionMessage::NetworkBridgeUpdateV1(
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
				NetworkBridgeEvent::PeerViewChange(peer_b.clone(), view![ancestors[0]]),
			),
		)
		.await;

		delay!(100);

		let valid: AvailabilityGossipMessage = make_valid_availability_gossip(
			&test_state,
			candidates[0].hash(),
			2,
			pov_block_a.clone(),
		);

		{
			// valid (first, from b)
			overseer_send(
				&mut virtual_overseer,
728
729
730
731
732
				AvailabilityDistributionMessage::NetworkBridgeUpdateV1(
					NetworkBridgeEvent::PeerMessage(
						peer_b.clone(),
						chunk_protocol_message(valid.clone()),
					),
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
				),
			)
			.await;

			assert_matches!(
				overseer_recv(&mut virtual_overseer).await,
				AllMessages::NetworkBridge(
					NetworkBridgeMessage::ReportPeer(
						peer,
						rep
					)
				) => {
					assert_eq!(peer, peer_b);
					assert_eq!(rep, BENEFIT_VALID_MESSAGE_FIRST);
				}
			);
		}

		{
			// valid (duplicate, from b)
			overseer_send(
				&mut virtual_overseer,
755
756
757
758
759
				AvailabilityDistributionMessage::NetworkBridgeUpdateV1(
					NetworkBridgeEvent::PeerMessage(
						peer_b.clone(),
						chunk_protocol_message(valid.clone()),
					),
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
				),
			)
			.await;

			assert_matches!(
				overseer_recv(&mut virtual_overseer).await,
				AllMessages::NetworkBridge(
					NetworkBridgeMessage::ReportPeer(
						peer,
						rep
					)
				) => {
					assert_eq!(peer, peer_b);
					assert_eq!(rep, COST_PEER_DUPLICATE_MESSAGE);
				}
			);
		}

		{
			// valid (second, from a)
			overseer_send(
				&mut virtual_overseer,
782
783
784
785
786
				AvailabilityDistributionMessage::NetworkBridgeUpdateV1(
					NetworkBridgeEvent::PeerMessage(
						peer_a.clone(),
						chunk_protocol_message(valid.clone()),
					),
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
				),
			)
			.await;

			assert_matches!(
				overseer_recv(&mut virtual_overseer).await,
				AllMessages::NetworkBridge(
					NetworkBridgeMessage::ReportPeer(
						peer,
						rep
					)
				) => {
					assert_eq!(peer, peer_a);
					assert_eq!(rep, BENEFIT_VALID_MESSAGE);
				}
			);
		}

		// peer a is not interested in anything anymore
		overseer_send(
			&mut virtual_overseer,
808
			AvailabilityDistributionMessage::NetworkBridgeUpdateV1(
809
810
811
812
813
814
815
816
817
				NetworkBridgeEvent::PeerViewChange(peer_a.clone(), view![]),
			),
		)
		.await;

		{
			// send the a message again, so we should detect the duplicate
			overseer_send(
				&mut virtual_overseer,
818
819
820
821
822
				AvailabilityDistributionMessage::NetworkBridgeUpdateV1(
					NetworkBridgeEvent::PeerMessage(
						peer_a.clone(),
						chunk_protocol_message(valid.clone()),
					),
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
				),
			)
			.await;

			assert_matches!(
				overseer_recv(&mut virtual_overseer).await,
				AllMessages::NetworkBridge(
					NetworkBridgeMessage::ReportPeer(
						peer,
						rep
					)
				) => {
					assert_eq!(peer, peer_a);
					assert_eq!(rep, COST_PEER_DUPLICATE_MESSAGE);
				}
			);
		}

		// peer b sends a message before we have the view
		// setup peer a with interest in parent x
		overseer_send(
			&mut virtual_overseer,
845
			AvailabilityDistributionMessage::NetworkBridgeUpdateV1(
846
847
848
849
850
851
852
853
854
				NetworkBridgeEvent::PeerDisconnected(peer_b.clone()),
			),
		)
		.await;

		delay!(10);

		overseer_send(
			&mut virtual_overseer,
855
			AvailabilityDistributionMessage::NetworkBridgeUpdateV1(
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
				NetworkBridgeEvent::PeerConnected(peer_b.clone(), ObservedRole::Full),
			),
		)
		.await;

		{
			// send another message
			let valid2: AvailabilityGossipMessage = make_valid_availability_gossip(
				&test_state,
				candidates[2].hash(),
				1,
				pov_block_c.clone(),
			);

			// send the a message before we send a view update
			overseer_send(
				&mut virtual_overseer,
873
				AvailabilityDistributionMessage::NetworkBridgeUpdateV1(
874
					NetworkBridgeEvent::PeerMessage(peer_a.clone(), chunk_protocol_message(valid2)),
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
				),
			)
			.await;

			assert_matches!(
				overseer_recv(&mut virtual_overseer).await,
				AllMessages::NetworkBridge(
					NetworkBridgeMessage::ReportPeer(
						peer,
						rep
					)
				) => {
					assert_eq!(peer, peer_a);
					assert_eq!(rep, COST_NOT_A_LIVE_CANDIDATE);
				}
			);
		}
	});
}

#[test]
fn k_ancestors_in_session() {
	let pool = sp_core::testing::TaskExecutor::new();
	let (mut ctx, mut virtual_overseer) =
		test_helpers::make_subsystem_context::<AvailabilityDistributionMessage, _>(pool);

	const DATA: &[(Hash, SessionIndex)] = &[
		(Hash::repeat_byte(0x32), 3), // relay parent
		(Hash::repeat_byte(0x31), 3), // grand parent
		(Hash::repeat_byte(0x30), 3), // great ...
		(Hash::repeat_byte(0x20), 2),
		(Hash::repeat_byte(0x12), 1),
		(Hash::repeat_byte(0x11), 1),
		(Hash::repeat_byte(0x10), 1),
	];
	const K: usize = 5;

	const EXPECTED: &[Hash] = &[DATA[1].0, DATA[2].0];

	let test_fut = async move {
		assert_matches!(
			overseer_recv(&mut virtual_overseer).await,
			AllMessages::ChainApi(ChainApiMessage::Ancestors {
				hash: relay_parent,
				k,
				response_channel: tx,
			}) => {
				assert_eq!(k, K+1);
				assert_eq!(relay_parent, DATA[0].0);
				tx.send(Ok(DATA[1..=k].into_iter().map(|x| x.0).collect::<Vec<_>>())).unwrap();
			}
		);

		// query the desired session index of the relay parent
		assert_matches!(
			overseer_recv(&mut virtual_overseer).await,
			AllMessages::RuntimeApi(RuntimeApiMessage::Request(
				relay_parent,
				RuntimeApiRequest::SessionIndexForChild(tx),
			)) => {
				assert_eq!(relay_parent, DATA[0].0);
				let session: SessionIndex = DATA[0].1;
				tx.send(Ok(session)).unwrap();
			}
		);

		// query ancestors
		for i in 2usize..=(EXPECTED.len() + 1 + 1) {
			assert_matches!(
				overseer_recv(&mut virtual_overseer).await,
				AllMessages::RuntimeApi(RuntimeApiMessage::Request(
					relay_parent,
					RuntimeApiRequest::SessionIndexForChild(tx),
				)) => {
					// query is for ancestor_parent
					let x = &DATA[i];
					assert_eq!(relay_parent, x.0);
					// but needs to yield ancestor_parent's child's session index
					let x = &DATA[i-1];
					tx.send(Ok(x.1)).unwrap();
				}
			);
		}
	};

	let sut = async move {
		let ancestors = query_up_to_k_ancestors_in_same_session(&mut ctx, DATA[0].0, K)
			.await
			.unwrap();
		assert_eq!(ancestors, EXPECTED.to_vec());
	};

	futures::pin_mut!(test_fut);
	futures::pin_mut!(sut);

	executor::block_on(future::join(test_fut, sut).timeout(Duration::from_millis(1000)));
}