host.rs 27.3 KB
Newer Older
// Copyright 2021 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! Validation host - is the primary interface for this crate. It allows the clients to enqueue
//! jobs for PVF execution or preparation.
//!
//! The validation host is represented by a future/task that runs an event-loop and by a handle,
//! [`ValidationHost`], that allows communication with that event-loop.

use crate::{
	Priority, Pvf, ValidationError,
	artifacts::{Artifacts, ArtifactState, ArtifactId},
	execute, prepare,
};
use std::{
	collections::HashMap,
	time::{Duration, SystemTime},
};
use always_assert::never;
use async_std::{
	path::{Path, PathBuf},
};
use polkadot_parachain::primitives::ValidationResult;
use futures::{
	Future, FutureExt, SinkExt, StreamExt,
	channel::{mpsc, oneshot},
};

/// An alias to not spell the type for the oneshot sender for the PVF execution result.
pub(crate) type ResultSender = oneshot::Sender<Result<ValidationResult, ValidationError>>;

/// A handle to the async process serving the validation host requests.
#[derive(Clone)]
pub struct ValidationHost {
	to_host_tx: mpsc::Sender<ToHost>,
}

impl ValidationHost {
	/// Execute PVF with the given code, params and priority. The result of execution will be sent
	/// to the provided result sender.
	///
	/// This is async to accommodate the fact a possibility of back-pressure. In the vast majority of
	/// situations this function should return immediately.
	///
	/// Returns an error if the request cannot be sent to the validation host, i.e. if it shut down.
	pub async fn execute_pvf(
		&mut self,
		pvf: Pvf,
		params: Vec<u8>,
		priority: Priority,
		result_tx: ResultSender,
	) -> Result<(), String> {
		self.to_host_tx
			.send(ToHost::ExecutePvf {
				pvf,
				params,
				priority,
				result_tx,
			})
			.await
			.map_err(|_| "the inner loop hung up".to_string())
	}

	/// Sends a signal to the validation host requesting to prepare a list of the given PVFs.
	///
	/// This is async to accommodate the fact a possibility of back-pressure. In the vast majority of
	/// situations this function should return immediately.
	///
	/// Returns an error if the request cannot be sent to the validation host, i.e. if it shut down.
	pub async fn heads_up(&mut self, active_pvfs: Vec<Pvf>) -> Result<(), String> {
		self.to_host_tx
			.send(ToHost::HeadsUp { active_pvfs })
			.await
			.map_err(|_| "the inner loop hung up".to_string())
	}
}

enum ToHost {
	ExecutePvf {
		pvf: Pvf,
		params: Vec<u8>,
		priority: Priority,
		result_tx: ResultSender,
	},
	HeadsUp {
		active_pvfs: Vec<Pvf>,
	},
}

/// Configuration for the validation host.
pub struct Config {
	/// The root directory where the prepared artifacts can be stored.
	pub cache_path: PathBuf,
	/// The path to the program that can be used to spawn the prepare workers.
	pub prepare_worker_program_path: PathBuf,
	/// The time alloted for a prepare worker to spawn and report to the host.
	pub prepare_worker_spawn_timeout: Duration,
	/// The maximum number of workers that can be spawned in the prepare pool for tasks with the
	/// priority below critical.
	pub prepare_workers_soft_max_num: usize,
	/// The absolute number of workers that can be spawned in the prepare pool.
	pub prepare_workers_hard_max_num: usize,
	/// The path to the program that can be used to spawn the execute workers.
	pub execute_worker_program_path: PathBuf,
	/// The time alloted for an execute worker to spawn and report to the host.
	pub execute_worker_spawn_timeout: Duration,
	/// The maximum number of execute workers that can run at the same time.
	pub execute_workers_max_num: usize,
}

impl Config {
	/// Create a new instance of the configuration.
	pub fn new(cache_path: std::path::PathBuf, program_path: std::path::PathBuf) -> Self {
		// Do not contaminate the other parts of the codebase with the types from async_std.
		let cache_path = PathBuf::from(cache_path);
		let program_path = PathBuf::from(program_path);

		Self {
			cache_path,
			prepare_worker_program_path: program_path.clone(),
			prepare_worker_spawn_timeout: Duration::from_secs(3),
			prepare_workers_soft_max_num: 8,
			prepare_workers_hard_max_num: 5,
			execute_worker_program_path: program_path,
			execute_worker_spawn_timeout: Duration::from_secs(3),
			execute_workers_max_num: 5,
		}
	}
}

/// Start the validation host.
///
/// Returns a [handle][`ValidationHost`] to the started validation host and the future. The future
/// must be polled in order for validation host to function.
///
/// The future should not return normally but if it does then that indicates an unrecoverable error.
/// In that case all pending requests will be cancelled, dropping the result senders and new ones
/// will be rejected.
pub fn start(config: Config) -> (ValidationHost, impl Future<Output = ()>) {
	let (to_host_tx, to_host_rx) = mpsc::channel(10);

	let validation_host = ValidationHost { to_host_tx };

	let (to_prepare_pool, from_prepare_pool, run_prepare_pool) = prepare::start_pool(
		config.prepare_worker_program_path.clone(),
		config.cache_path.clone(),
		config.prepare_worker_spawn_timeout,
	);

	let (to_prepare_queue_tx, from_prepare_queue_rx, run_prepare_queue) = prepare::start_queue(
		config.prepare_workers_soft_max_num,
		config.prepare_workers_hard_max_num,
		config.cache_path.clone(),
		to_prepare_pool,
		from_prepare_pool,
	);

	let (to_execute_queue_tx, run_execute_queue) = execute::start(
		config.execute_worker_program_path.to_owned(),
		config.execute_workers_max_num,
		config.execute_worker_spawn_timeout,
	);

	let (to_sweeper_tx, to_sweeper_rx) = mpsc::channel(100);
	let run_sweeper = sweeper_task(to_sweeper_rx);

	let run = async move {
		let artifacts = Artifacts::new(&config.cache_path).await;

		futures::pin_mut!(
			run_prepare_queue,
			run_prepare_pool,
			run_execute_queue,
			run_sweeper
		);

		run(
			Inner {
				cache_path: config.cache_path,
				cleanup_pulse_interval: Duration::from_secs(3600),
				artifact_ttl: Duration::from_secs(3600 * 24),
				artifacts,
				to_host_rx,
				to_prepare_queue_tx,
				from_prepare_queue_rx,
				to_execute_queue_tx,
				to_sweeper_tx,
				awaiting_prepare: AwaitingPrepare::default(),
			},
			run_prepare_pool,
			run_prepare_queue,
			run_execute_queue,
			run_sweeper,
		)
		.await
	};

	(validation_host, run)
}

/// An execution request that should execute the PVF (known in the context) and send the results
/// to the given result sender.
#[derive(Debug)]
struct PendingExecutionRequest {
	params: Vec<u8>,
	result_tx: ResultSender,
}

/// A mapping from an artifact ID which is in preparation state to the list of pending execution
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
/// requests that should be executed once the artifact's prepration is finished.
#[derive(Default)]
struct AwaitingPrepare(HashMap<ArtifactId, Vec<PendingExecutionRequest>>);

impl AwaitingPrepare {
	fn add(&mut self, artifact_id: ArtifactId, params: Vec<u8>, result_tx: ResultSender) {
		self.0
			.entry(artifact_id)
			.or_default()
			.push(PendingExecutionRequest { params, result_tx });
	}

	fn take(&mut self, artifact_id: &ArtifactId) -> Vec<PendingExecutionRequest> {
		self.0.remove(artifact_id).unwrap_or_default()
	}
}

struct Inner {
	cache_path: PathBuf,
	cleanup_pulse_interval: Duration,
	artifact_ttl: Duration,
	artifacts: Artifacts,

	to_host_rx: mpsc::Receiver<ToHost>,

	to_prepare_queue_tx: mpsc::Sender<prepare::ToQueue>,
	from_prepare_queue_rx: mpsc::UnboundedReceiver<prepare::FromQueue>,

	to_execute_queue_tx: mpsc::Sender<execute::ToQueue>,
	to_sweeper_tx: mpsc::Sender<PathBuf>,

	awaiting_prepare: AwaitingPrepare,
}

#[derive(Debug)]
struct Fatal;

async fn run(
	Inner {
		cache_path,
		cleanup_pulse_interval,
		artifact_ttl,
		mut artifacts,
		to_host_rx,
		from_prepare_queue_rx,
		mut to_prepare_queue_tx,
		mut to_execute_queue_tx,
		mut to_sweeper_tx,
		mut awaiting_prepare,
	}: Inner,
	prepare_pool: impl Future<Output = ()> + Unpin,
	prepare_queue: impl Future<Output = ()> + Unpin,
	execute_queue: impl Future<Output = ()> + Unpin,
	sweeper: impl Future<Output = ()> + Unpin,
) {
	macro_rules! break_if_fatal {
		($expr:expr) => {
			match $expr {
				Err(Fatal) => break,
				Ok(v) => v,
			}
		};
	}

	let cleanup_pulse = pulse_every(cleanup_pulse_interval).fuse();
	futures::pin_mut!(cleanup_pulse);

	let mut to_host_rx = to_host_rx.fuse();
	let mut from_prepare_queue_rx = from_prepare_queue_rx.fuse();

	// Make sure that the task-futures are fused.
	let mut prepare_queue = prepare_queue.fuse();
	let mut prepare_pool = prepare_pool.fuse();
	let mut execute_queue = execute_queue.fuse();
	let mut sweeper = sweeper.fuse();

	loop {
		// biased to make it behave deterministically for tests.
		futures::select_biased! {
			_ = prepare_queue => {
				never!("prepare_pool: long-running task never concludes; qed");
				break;
			},
			_ = prepare_pool => {
				never!("prepare_pool: long-running task never concludes; qed");
				break;
			},
			_ = execute_queue => {
				never!("execute_queue: long-running task never concludes; qed");
				break;
			},
			_ = sweeper => {
				never!("sweeper: long-running task never concludes; qed");
				break;
			},
			() = cleanup_pulse.select_next_some() => {
				// `select_next_some` because we don't expect this to fail, but if it does, we
				// still don't fail. The tradeoff is that the compiled cache will start growing
				// in size. That is, however, rather a slow process and hopefully the operator
				// will notice it.

				break_if_fatal!(handle_cleanup_pulse(
					&cache_path,
					&mut to_sweeper_tx,
					&mut artifacts,
					artifact_ttl,
				).await);
			},
			to_host = to_host_rx.next() => {
				let to_host = break_if_fatal!(to_host.ok_or(Fatal));

				break_if_fatal!(handle_to_host(
					&cache_path,
					&mut artifacts,
					&mut to_prepare_queue_tx,
					&mut to_execute_queue_tx,
					&mut awaiting_prepare,
					to_host,
				)
				.await);
			},
			from_prepare_queue = from_prepare_queue_rx.next() => {
				let prepare::FromQueue::Prepared(artifact_id)
					= break_if_fatal!(from_prepare_queue.ok_or(Fatal));

				// Note that preparation always succeeds.
				//
				// That's because the error conditions are written into the artifact and will be
				// reported at the time of the  execution. It potentially, but not necessarily,
				// can be scheduled as a result of this function call, in case there are pending
				// executions.
				//
				// We could be eager in terms of reporting and plumb the result from the prepartion
				// worker but we don't for the sake of simplicity.
				break_if_fatal!(handle_prepare_done(
					&cache_path,
					&mut artifacts,
					&mut to_execute_queue_tx,
					&mut awaiting_prepare,
					artifact_id,
				).await);
			},
		}
	}
}

async fn handle_to_host(
	cache_path: &Path,
	artifacts: &mut Artifacts,
	prepare_queue: &mut mpsc::Sender<prepare::ToQueue>,
	execute_queue: &mut mpsc::Sender<execute::ToQueue>,
	awaiting_prepare: &mut AwaitingPrepare,
	to_host: ToHost,
) -> Result<(), Fatal> {
	match to_host {
		ToHost::ExecutePvf {
			pvf,
			params,
			priority,
			result_tx,
		} => {
			handle_execute_pvf(
				cache_path,
				artifacts,
				prepare_queue,
				execute_queue,
				awaiting_prepare,
				pvf,
				params,
				priority,
				result_tx,
			)
			.await?;
		}
		ToHost::HeadsUp { active_pvfs } => {
			handle_heads_up(artifacts, prepare_queue, active_pvfs).await?;
		}
	}

	Ok(())
}

async fn handle_execute_pvf(
	cache_path: &Path,
	artifacts: &mut Artifacts,
	prepare_queue: &mut mpsc::Sender<prepare::ToQueue>,
	execute_queue: &mut mpsc::Sender<execute::ToQueue>,
	awaiting_prepare: &mut AwaitingPrepare,
	pvf: Pvf,
	params: Vec<u8>,
	priority: Priority,
	result_tx: ResultSender,
) -> Result<(), Fatal> {
	let artifact_id = pvf.as_artifact_id();

	if let Some(state) = artifacts.artifact_state_mut(&artifact_id) {
		match state {
			ArtifactState::Prepared {
				ref mut last_time_needed,
			} => {
				*last_time_needed = SystemTime::now();

				send_execute(
					execute_queue,
					execute::ToQueue::Enqueue {
						artifact_path: artifact_id.path(cache_path),
						params,
						result_tx,
					},
				)
				.await?;
			}
			ArtifactState::Preparing => {
				send_prepare(
					prepare_queue,
					prepare::ToQueue::Amend {
						priority,
						artifact_id: artifact_id.clone(),
					},
				)
				.await?;

				awaiting_prepare.add(artifact_id, params, result_tx);
			}
		}
	} else {
		// Artifact is unknown: register it and enqueue a job with the corresponding priority and
		//
		artifacts.insert_preparing(artifact_id.clone());
		send_prepare(prepare_queue, prepare::ToQueue::Enqueue { priority, pvf }).await?;

		awaiting_prepare.add(artifact_id, params, result_tx);
	}

	return Ok(());
}

async fn handle_heads_up(
	artifacts: &mut Artifacts,
	prepare_queue: &mut mpsc::Sender<prepare::ToQueue>,
	active_pvfs: Vec<Pvf>,
) -> Result<(), Fatal> {
	let now = SystemTime::now();

	for active_pvf in active_pvfs {
		let artifact_id = active_pvf.as_artifact_id();
		if let Some(state) = artifacts.artifact_state_mut(&artifact_id) {
			match state {
				ArtifactState::Prepared {
					last_time_needed, ..
				} => {
					*last_time_needed = now;
				}
				ArtifactState::Preparing => {
					// Already preparing. We don't need to send a priority amend either because
					// it can't get any lower than the background.
				}
			}
		} else {
			// The artifact is unknown: register it and put a background job into the prepare queue.
			artifacts.insert_preparing(artifact_id.clone());

			send_prepare(
				prepare_queue,
				prepare::ToQueue::Enqueue {
					priority: Priority::Background,
					pvf: active_pvf,
				},
			)
			.await?;
		}
	}

	Ok(())
}

async fn handle_prepare_done(
	cache_path: &Path,
	artifacts: &mut Artifacts,
	execute_queue: &mut mpsc::Sender<execute::ToQueue>,
	awaiting_prepare: &mut AwaitingPrepare,
	artifact_id: ArtifactId,
) -> Result<(), Fatal> {
	// Make some sanity checks and extract the current state.
	let state = match artifacts.artifact_state_mut(&artifact_id) {
		None => {
			// before sending request to prepare, the artifact is inserted with `preparing` state;
			// the requests are deduplicated for the same artifact id;
			// there is only one possible state change: prepare is done;
			// thus the artifact cannot be unknown, only preparing;
			// qed.
			never!("an unknown artifact was prepared: {:?}", artifact_id);
			return Ok(());
		}
		Some(ArtifactState::Prepared { .. }) => {
			// before sending request to prepare, the artifact is inserted with `preparing` state;
			// the requests are deduplicated for the same artifact id;
			// there is only one possible state change: prepare is done;
			// thus the artifact cannot be prepared, only preparing;
			// qed.
			never!("the artifact is already prepared: {:?}", artifact_id);
			return Ok(());
		}
		Some(state @ ArtifactState::Preparing) => state,
	};

	// It's finally time to dispatch all the execution requests that were waiting for this artifact
	// to be prepared.
	let artifact_path = artifact_id.path(&cache_path);
	let pending_requests = awaiting_prepare.take(&artifact_id);
	for PendingExecutionRequest { params, result_tx } in pending_requests {
		if result_tx.is_canceled() {
			// Preparation could've taken quite a bit of time and the requester may be not interested
			// in execution anymore, in which case we just skip the request.
			continue;
		}

		send_execute(
			execute_queue,
			execute::ToQueue::Enqueue {
				artifact_path: artifact_path.clone(),
				params,
				result_tx,
			},
		)
		.await?;
	}

	// Now consider the artifact prepared.
	*state = ArtifactState::Prepared {
		last_time_needed: SystemTime::now(),
	};

	Ok(())
}

async fn send_prepare(
	prepare_queue: &mut mpsc::Sender<prepare::ToQueue>,
	to_queue: prepare::ToQueue,
) -> Result<(), Fatal> {
	prepare_queue.send(to_queue).await.map_err(|_| Fatal)
}

async fn send_execute(
	execute_queue: &mut mpsc::Sender<execute::ToQueue>,
	to_queue: execute::ToQueue,
) -> Result<(), Fatal> {
	execute_queue.send(to_queue).await.map_err(|_| Fatal)
}

async fn handle_cleanup_pulse(
	cache_path: &Path,
	sweeper_tx: &mut mpsc::Sender<PathBuf>,
	artifacts: &mut Artifacts,
	artifact_ttl: Duration,
) -> Result<(), Fatal> {
	let to_remove = artifacts.prune(artifact_ttl);
	for artifact_id in to_remove {
		let artifact_path = artifact_id.path(cache_path);
		sweeper_tx.send(artifact_path).await.map_err(|_| Fatal)?;
	}

	Ok(())
}

/// A simple task which sole purpose is to delete files thrown at it.
async fn sweeper_task(mut sweeper_rx: mpsc::Receiver<PathBuf>) {
	loop {
		match sweeper_rx.next().await {
			None => break,
			Some(condemned) => {
				let _ = async_std::fs::remove_file(condemned).await;
			}
		}
	}
}

/// A stream that yields a pulse continuously at a given interval.
fn pulse_every(interval: std::time::Duration) -> impl futures::Stream<Item = ()> {
	futures::stream::unfold(interval, {
		|interval| async move {
			futures_timer::Delay::new(interval).await;
			Some(((), interval))
		}
	})
	.map(|_| ())
}

#[cfg(test)]
mod tests {
	use super::*;
	use futures::future::BoxFuture;
	use assert_matches::assert_matches;

	#[async_std::test]
	async fn pulse_test() {
		let pulse = pulse_every(Duration::from_millis(100));
		futures::pin_mut!(pulse);

		for _ in 0usize..5usize {
			let start = std::time::Instant::now();
			let _ = pulse.next().await.unwrap();

			let el = start.elapsed().as_millis();
			assert!(el > 50 && el < 150, "{}", el);
		}
	}

	/// Creates a new pvf which artifact id can be uniquely identified by the given number.
	fn artifact_id(descriminator: u32) -> ArtifactId {
		Pvf::from_discriminator(descriminator).as_artifact_id()
	}

	fn artifact_path(descriminator: u32) -> PathBuf {
		artifact_id(descriminator)
			.path(&PathBuf::from(std::env::temp_dir()))
			.to_owned()
	}

	struct Builder {
		cleanup_pulse_interval: Duration,
		artifact_ttl: Duration,
		artifacts: Artifacts,
	}

	impl Builder {
		fn default() -> Self {
			Self {
				// these are selected high to not interfere in tests in which pruning is irrelevant.
				cleanup_pulse_interval: Duration::from_secs(3600),
				artifact_ttl: Duration::from_secs(3600),

				artifacts: Artifacts::empty(),
			}
		}

		fn build(self) -> Test {
			Test::new(self)
		}
	}

	struct Test {
		to_host_tx: Option<mpsc::Sender<ToHost>>,

		to_prepare_queue_rx: mpsc::Receiver<prepare::ToQueue>,
		from_prepare_queue_tx: mpsc::UnboundedSender<prepare::FromQueue>,
		to_execute_queue_rx: mpsc::Receiver<execute::ToQueue>,
		to_sweeper_rx: mpsc::Receiver<PathBuf>,

		run: BoxFuture<'static, ()>,
	}

	impl Test {
		fn new(
			Builder {
				cleanup_pulse_interval,
				artifact_ttl,
				artifacts,
			}: Builder,
		) -> Self {
			let cache_path = PathBuf::from(std::env::temp_dir());

			let (to_host_tx, to_host_rx) = mpsc::channel(10);
			let (to_prepare_queue_tx, to_prepare_queue_rx) = mpsc::channel(10);
			let (from_prepare_queue_tx, from_prepare_queue_rx) = mpsc::unbounded();
			let (to_execute_queue_tx, to_execute_queue_rx) = mpsc::channel(10);
			let (to_sweeper_tx, to_sweeper_rx) = mpsc::channel(10);

			let mk_dummy_loop = || std::future::pending().boxed();

			let run = run(
				Inner {
					cache_path,
					cleanup_pulse_interval,
					artifact_ttl,
					artifacts,
					to_host_rx,
					to_prepare_queue_tx,
					from_prepare_queue_rx,
					to_execute_queue_tx,
					to_sweeper_tx,
					awaiting_prepare: AwaitingPrepare::default(),
				},
				mk_dummy_loop(),
				mk_dummy_loop(),
				mk_dummy_loop(),
				mk_dummy_loop(),
			)
			.boxed();

			Self {
				to_host_tx: Some(to_host_tx),
				to_prepare_queue_rx,
				from_prepare_queue_tx,
				to_execute_queue_rx,
				to_sweeper_rx,
				run,
			}
		}

		fn host_handle(&mut self) -> ValidationHost {
			let to_host_tx = self.to_host_tx.take().unwrap();
			ValidationHost { to_host_tx }
		}

		async fn poll_and_recv_to_prepare_queue(&mut self) -> prepare::ToQueue {
			let to_prepare_queue_rx = &mut self.to_prepare_queue_rx;
			run_until(
				&mut self.run,
				async { to_prepare_queue_rx.next().await.unwrap() }.boxed(),
			)
			.await
		}

		async fn poll_and_recv_to_execute_queue(&mut self) -> execute::ToQueue {
			let to_execute_queue_rx = &mut self.to_execute_queue_rx;
			run_until(
				&mut self.run,
				async { to_execute_queue_rx.next().await.unwrap() }.boxed(),
			)
			.await
		}

		async fn poll_ensure_to_execute_queue_is_empty(&mut self) {
			use futures_timer::Delay;

			let to_execute_queue_rx = &mut self.to_execute_queue_rx;
			run_until(
				&mut self.run,
				async {
					futures::select! {
						_ = Delay::new(Duration::from_millis(500)).fuse() => (),
						_ = to_execute_queue_rx.next().fuse() => {
							panic!("the execute queue supposed to be empty")
						}
					}
				}
				.boxed(),
			)
			.await
		}

		async fn poll_ensure_to_sweeper_is_empty(&mut self) {
			use futures_timer::Delay;

			let to_sweeper_rx = &mut self.to_sweeper_rx;
			run_until(
				&mut self.run,
				async {
					futures::select! {
						_ = Delay::new(Duration::from_millis(500)).fuse() => (),
						msg = to_sweeper_rx.next().fuse() => {
							panic!("the sweeper supposed to be empty, but received: {:?}", msg)
						}
					}
				}
				.boxed(),
			)
			.await
		}
	}

	async fn run_until<R>(
		task: &mut (impl Future<Output = ()> + Unpin),
		mut fut: (impl Future<Output = R> + Unpin),
	) -> R {
		use std::task::Poll;

		let start = std::time::Instant::now();
		let fut = &mut fut;
		loop {
			if start.elapsed() > std::time::Duration::from_secs(2) {
				// We expect that this will take only a couple of iterations and thus to take way
				// less than a second.
				panic!("timeout");
			}

			if let Poll::Ready(r) = futures::poll!(&mut *fut) {
				break r;
			}

			if futures::poll!(&mut *task).is_ready() {
				panic!()
			}
		}
	}

	#[async_std::test]
	async fn shutdown_on_handle_drop() {
		let test = Builder::default().build();

		let join_handle = async_std::task::spawn(test.run);

		// Dropping the handle will lead to conclusion of the read part and thus will make the event
		// loop to stop, which in turn will resolve the join handle.
		drop(test.to_host_tx);
		join_handle.await;
	}

	#[async_std::test]
	async fn pruning() {
		let mock_now = SystemTime::now() - Duration::from_millis(1000);

		let mut builder = Builder::default();
		builder.cleanup_pulse_interval = Duration::from_millis(100);
		builder.artifact_ttl = Duration::from_millis(500);
		builder.artifacts.insert_prepared(artifact_id(1), mock_now);
		builder.artifacts.insert_prepared(artifact_id(2), mock_now);
		let mut test = builder.build();
		let mut host = test.host_handle();

		host.heads_up(vec![Pvf::from_discriminator(1)])
			.await
			.unwrap();

		let to_sweeper_rx = &mut test.to_sweeper_rx;
		run_until(
			&mut test.run,
			async {
				assert_eq!(to_sweeper_rx.next().await.unwrap(), artifact_path(2));
			}
			.boxed(),
		)
		.await;

		// Extend TTL for the first artifact and make sure we don't receive another file removal
		// request.
		host.heads_up(vec![Pvf::from_discriminator(1)])
			.await
			.unwrap();
		test.poll_ensure_to_sweeper_is_empty().await;
	}

	#[async_std::test]
	async fn amending_priority() {
		let mut test = Builder::default().build();
		let mut host = test.host_handle();

		host.heads_up(vec![Pvf::from_discriminator(1)])
			.await
			.unwrap();

		// Run until we receive a prepare request.
		let prepare_q_rx = &mut test.to_prepare_queue_rx;
		run_until(
			&mut test.run,
			async {
				assert_matches!(
					prepare_q_rx.next().await.unwrap(),
					prepare::ToQueue::Enqueue { .. }
				);
			}
			.boxed(),
		)
		.await;

		let (result_tx, _result_rx) = oneshot::channel();
		host.execute_pvf(
			Pvf::from_discriminator(1),
			vec![],
			Priority::Critical,
			result_tx,
		)
		.await
		.unwrap();

		run_until(
			&mut test.run,
			async {
				assert_matches!(
					prepare_q_rx.next().await.unwrap(),
					prepare::ToQueue::Amend { .. }
				);
			}
			.boxed(),
		)
		.await;
	}

	#[async_std::test]
	async fn execute_pvf_requests() {
		use crate::error::InvalidCandidate;

		let mut test = Builder::default().build();
		let mut host = test.host_handle();

		let (result_tx, result_rx_pvf_1_1) = oneshot::channel();
		host.execute_pvf(
			Pvf::from_discriminator(1),
			b"pvf1".to_vec(),
			Priority::Normal,
			result_tx,
		)
		.await
		.unwrap();

		let (result_tx, result_rx_pvf_1_2) = oneshot::channel();
		host.execute_pvf(
			Pvf::from_discriminator(1),
			b"pvf1".to_vec(),
			Priority::Critical,
			result_tx,
		)
		.await
		.unwrap();

		let (result_tx, result_rx_pvf_2) = oneshot::channel();
		host.execute_pvf(
			Pvf::from_discriminator(2),
			b"pvf2".to_vec(),
			Priority::Normal,
			result_tx,
		)
		.await
		.unwrap();

		assert_matches!(
			test.poll_and_recv_to_prepare_queue().await,
			prepare::ToQueue::Enqueue { .. }
		);
		assert_matches!(
			test.poll_and_recv_to_prepare_queue().await,
			prepare::ToQueue::Amend { .. }
		);
		assert_matches!(
			test.poll_and_recv_to_prepare_queue().await,
			prepare::ToQueue::Enqueue { .. }
		);

		test.from_prepare_queue_tx
			.send(prepare::FromQueue::Prepared(artifact_id(1)))
			.await
			.unwrap();
		let result_tx_pvf_1_1 = assert_matches!(
			test.poll_and_recv_to_execute_queue().await,
			execute::ToQueue::Enqueue { result_tx, .. } => result_tx
		);
		let result_tx_pvf_1_2 = assert_matches!(
			test.poll_and_recv_to_execute_queue().await,
			execute::ToQueue::Enqueue { result_tx, .. } => result_tx
		);

		test.from_prepare_queue_tx
			.send(prepare::FromQueue::Prepared(artifact_id(2)))
			.await
			.unwrap();
		let result_tx_pvf_2 = assert_matches!(
			test.poll_and_recv_to_execute_queue().await,
			execute::ToQueue::Enqueue { result_tx, .. } => result_tx
		);

		result_tx_pvf_1_1
			.send(Err(ValidationError::InvalidCandidate(
				InvalidCandidate::AmbigiousWorkerDeath,
			)))
			.unwrap();
		assert_matches!(
			result_rx_pvf_1_1.now_or_never().unwrap().unwrap(),
			Err(ValidationError::InvalidCandidate(
				InvalidCandidate::AmbigiousWorkerDeath,
			))
		);

		result_tx_pvf_1_2
			.send(Err(ValidationError::InvalidCandidate(
				InvalidCandidate::AmbigiousWorkerDeath,
			)))
			.unwrap();
		assert_matches!(
			result_rx_pvf_1_2.now_or_never().unwrap().unwrap(),
			Err(ValidationError::InvalidCandidate(
				InvalidCandidate::AmbigiousWorkerDeath,
			))
		);

		result_tx_pvf_2
			.send(Err(ValidationError::InvalidCandidate(
				InvalidCandidate::AmbigiousWorkerDeath,