Newer
Older
// Copyright 2017-2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! Module to handle which parachains/parathreads (collectively referred to as "paras") are
//! registered and which are scheduled. Doesn't manage any of the actual execution/validation logic
//! which is left to `parachains.rs`.
use rstd::{prelude::*, result};
#[cfg(any(feature = "std", test))]
use rstd::marker::PhantomData;
use codec::{Encode, Decode};
transaction_validity::{TransactionValidityError, ValidTransaction, TransactionValidity},
traits::{Hash as HashT, SignedExtension}
};
decl_storage, decl_module, decl_event, decl_error, ensure,
dispatch::{DispatchResult, IsSubType}, traits::{Get, Currency, ReservableCurrency},
weights::{SimpleDispatchInfo, DispatchInfo},
};
use system::{self, ensure_root, ensure_signed};
use primitives::parachain::{
Id as ParaId, CollatorId, Scheduling, LOWEST_USER_ID, SwapAux, Info as ParaInfo, ActiveParas,
Retriable
};
use crate::parachains;
use sp_runtime::transaction_validity::InvalidTransaction;
/// Parachain registration API.
pub trait Registrar<AccountId> {
/// Create a new unique parachain identity for later registration.
fn new_id() -> ParaId;
/// Register a parachain with given `code` and `initial_head_data`. `id` must not yet be registered or it will
/// result in a error.
fn register_para(
id: ParaId,
info: ParaInfo,
code: Vec<u8>,
initial_head_data: Vec<u8>,
/// Deregister a parachain with given `id`. If `id` is not currently registered, an error is returned.
fn deregister_para(id: ParaId) -> DispatchResult;
}
impl<T: Trait> Registrar<T::AccountId> for Module<T> {
fn new_id() -> ParaId {
<NextFreeId>::mutate(|n| { let r = *n; *n = ParaId::from(u32::from(*n) + 1); r })
}
fn register_para(
id: ParaId,
info: ParaInfo,
code: Vec<u8>,
initial_head_data: Vec<u8>,
ensure!(!Paras::exists(id), Error::<T>::ParaAlreadyExists);
if let Scheduling::Always = info.scheduling {
Parachains::mutate(|parachains|
match parachains.binary_search(&id) {
Ok(_) => Err(Error::<T>::ParaAlreadyExists),
Err(idx) => {
parachains.insert(idx, id);
Ok(())
}
}
)?;
}
<parachains::Module<T>>::initialize_para(id, code, initial_head_data);
Paras::insert(id, info);
Ok(())
}
fn deregister_para(id: ParaId) -> DispatchResult {
let info = Paras::take(id).ok_or(Error::<T>::InvalidChainId)?;
if let Scheduling::Always = info.scheduling {
Parachains::mutate(|parachains|
parachains.binary_search(&id)
.map(|index| parachains.remove(index))
.map_err(|_| Error::<T>::InvalidChainId)
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
)?;
}
<parachains::Module<T>>::cleanup_para(id);
Paras::remove(id);
Ok(())
}
}
type BalanceOf<T> =
<<T as Trait>::Currency as Currency<<T as system::Trait>::AccountId>>::Balance;
pub trait Trait: parachains::Trait {
/// The overarching event type.
type Event: From<Event> + Into<<Self as system::Trait>::Event>;
/// The aggregated origin type must support the parachains origin. We require that we can
/// infallibly convert between this origin and the system origin, but in reality, they're the
/// same type, we just can't express that to the Rust type system without writing a `where`
/// clause everywhere.
type Origin: From<<Self as system::Trait>::Origin>
+ Into<result::Result<parachains::Origin, <Self as Trait>::Origin>>;
/// The system's currency for parathread payment.
type Currency: ReservableCurrency<Self::AccountId>;
/// The deposit to be paid to run a parathread.
type ParathreadDeposit: Get<BalanceOf<Self>>;
/// Handler for when two ParaIds are swapped.
type SwapAux: SwapAux;
/// The number of items in the parathread queue, aka the number of blocks in advance to schedule
/// parachain execution.
type QueueSize: Get<usize>;
/// The number of rotations that you will have as grace if you miss a block.
type MaxRetries: Get<u32>;
}
decl_storage! {
trait Store for Module<T: Trait> as Registrar {
// Vector of all parachain IDs, in ascending order.
Parachains: Vec<ParaId>;
/// The number of threads to schedule per block.
ThreadCount: u32;
/// An array of the queue of set of threads scheduled for the coming blocks; ordered by
/// ascending para ID. There can be no duplicates of para ID in each list item.
SelectedThreads: Vec<Vec<(ParaId, CollatorId)>>;
/// Parathreads/chains scheduled for execution this block. If the collator ID is set, then
/// a particular collator has already been chosen for the next block, and no other collator
/// may provide the block. In this case we allow the possibility of the combination being
/// retried in a later block, expressed by `Retriable`.
///
/// Ordered by ParaId.
Active: Vec<(ParaId, Option<(CollatorId, Retriable)>)>;
/// The next unused ParaId value. Start this high in order to keep low numbers for
/// system-level chains.
NextFreeId: ParaId = LOWEST_USER_ID;
/// Pending swap operations.
PendingSwap: map hasher(blake2_256) ParaId => Option<ParaId>;
/// Map of all registered parathreads/chains.
Paras get(paras): map hasher(blake2_256) ParaId => Option<ParaInfo>;
/// The current queue for parathreads that should be retried.
RetryQueue get(retry_queue): Vec<Vec<(ParaId, CollatorId)>>;
/// Users who have paid a parathread's deposit
Debtors: map hasher(blake2_256) ParaId => T::AccountId;
}
add_extra_genesis {
config(parachains): Vec<(ParaId, Vec<u8>, Vec<u8>)>;
config(_phdata): PhantomData<T>;
build(build::<T>);
}
}
#[cfg(feature = "std")]
fn build<T: Trait>(config: &GenesisConfig<T>) {
use sp_runtime::traits::Zero;
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
let mut p = config.parachains.clone();
p.sort_unstable_by_key(|&(ref id, _, _)| *id);
p.dedup_by_key(|&mut (ref id, _, _)| *id);
let only_ids: Vec<ParaId> = p.iter().map(|&(ref id, _, _)| id).cloned().collect();
Parachains::put(&only_ids);
for (id, code, genesis) in p {
Paras::insert(id, &primitives::parachain::PARACHAIN_INFO);
// no ingress -- a chain cannot be routed to until it is live.
<parachains::Code>::insert(&id, &code);
<parachains::Heads>::insert(&id, &genesis);
<parachains::Watermarks<T>>::insert(&id, T::BlockNumber::zero());
// Save initial parachains in registrar
Paras::insert(id, ParaInfo { scheduling: Scheduling::Always })
}
}
/// Swap the existence of two items, provided by value, within an ordered list.
///
/// If neither item exists, or if both items exist this will do nothing. If exactly one of the
/// items exists, then it will be removed and the other inserted.
pub fn swap_ordered_existence<T: PartialOrd + Ord + Copy>(ids: &mut [T], one: T, other: T) {
let maybe_one_pos = ids.binary_search(&one);
let maybe_other_pos = ids.binary_search(&other);
match (maybe_one_pos, maybe_other_pos) {
(Ok(one_pos), Err(_)) => ids[one_pos] = other,
(Err(_), Ok(other_pos)) => ids[other_pos] = one,
_ => return,
};
ids.sort();
}
decl_error! {
pub enum Error for Module<T: Trait> {
/// Parachain already exists.
ParaAlreadyExists,
/// Invalid parachain ID.
InvalidChainId,
/// Invalid parathread ID.
InvalidThreadId,
}
}
decl_module! {
/// Parachains module.
pub struct Module<T: Trait> for enum Call where origin: <T as system::Trait>::Origin {
type Error = Error<T>;
fn deposit_event() = default;
/// Register a parachain with given code.
/// Fails if given ID is already used.
#[weight = SimpleDispatchInfo::FixedOperational(5_000_000)]
pub fn register_para(origin,
#[compact] id: ParaId,
info: ParaInfo,
code: Vec<u8>,
initial_head_data: Vec<u8>,
ensure_root(origin)?;
<Self as Registrar<T::AccountId>>::
register_para(id, info, code, initial_head_data)
}
/// Deregister a parachain with given id
#[weight = SimpleDispatchInfo::FixedOperational(10_000)]
pub fn deregister_para(origin, #[compact] id: ParaId) -> DispatchResult {
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
ensure_root(origin)?;
<Self as Registrar<T::AccountId>>::deregister_para(id)
}
/// Reset the number of parathreads that can pay to be scheduled in a single block.
///
/// - `count`: The number of parathreads.
///
/// Must be called from Root origin.
fn set_thread_count(origin, count: u32) {
ensure_root(origin)?;
ThreadCount::put(count);
}
/// Register a parathread for immediate use.
///
/// Must be sent from a Signed origin that is able to have ParathreadDeposit reserved.
/// `code` and `initial_head_data` are used to initialize the parathread's state.
fn register_parathread(origin,
code: Vec<u8>,
initial_head_data: Vec<u8>,
) {
let who = ensure_signed(origin)?;
T::Currency::reserve(&who, T::ParathreadDeposit::get())?;
let info = ParaInfo {
scheduling: Scheduling::Dynamic,
};
let id = <Self as Registrar<T::AccountId>>::new_id();
let _ = <Self as Registrar<T::AccountId>>::
register_para(id, info, code, initial_head_data);
<Debtors<T>>::insert(id, who);
Self::deposit_event(Event::ParathreadRegistered(id));
}
/// Place a bid for a parathread to be progressed in the next block.
///
/// This is a kind of special transaction that should be heavily prioritized in the
/// transaction pool according to the `value`; only `ThreadCount` of them may be presented
/// in any single block.
fn select_parathread(origin,
#[compact] _id: ParaId,
_collator: CollatorId,
_head_hash: T::Hash,
) {
ensure_signed(origin)?;
// Everything else is checked for in the transaction `SignedExtension`.
}
/// Deregister a parathread and retrieve the deposit.
///
/// Must be sent from a `Parachain` origin which is currently a parathread.
///
/// Ensure that before calling this that any funds you want emptied from the parathread's
/// account is moved out; after this it will be impossible to retrieve them (without
/// governance intervention).
fn deregister_parathread(origin) {
let id = parachains::ensure_parachain(<T as Trait>::Origin::from(origin))?;
let info = Paras::get(id).ok_or(Error::<T>::InvalidChainId)?;
if let Scheduling::Dynamic = info.scheduling {} else { Err(Error::<T>::InvalidThreadId)? }
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
<Self as Registrar<T::AccountId>>::deregister_para(id)?;
Self::force_unschedule(|i| i == id);
let debtor = <Debtors<T>>::take(id);
let _ = T::Currency::unreserve(&debtor, T::ParathreadDeposit::get());
Self::deposit_event(Event::ParathreadRegistered(id));
}
/// Swap a parachain with another parachain or parathread. The origin must be a `Parachain`.
/// The swap will happen only if there is already an opposite swap pending. If there is not,
/// the swap will be stored in the pending swaps map, ready for a later confirmatory swap.
///
/// The `ParaId`s remain mapped to the same head data and code so external code can rely on
/// `ParaId` to be a long-term identifier of a notional "parachain". However, their
/// scheduling info (i.e. whether they're a parathread or parachain), auction information
/// and the auction deposit are switched.
fn swap(origin, #[compact] other: ParaId) {
let id = parachains::ensure_parachain(<T as Trait>::Origin::from(origin))?;
if PendingSwap::get(other) == Some(id) {
// actually do the swap.
T::SwapAux::ensure_can_swap(id, other)?;
// Remove intention to swap.
PendingSwap::remove(other);
Self::force_unschedule(|i| i == id || i == other);
Parachains::mutate(|ids| swap_ordered_existence(ids, id, other));
Paras::mutate(id, |i|
Paras::mutate(other, |j|
rstd::mem::swap(i, j)
)
);
<Debtors<T>>::mutate(id, |i|
<Debtors<T>>::mutate(other, |j|
rstd::mem::swap(i, j)
)
);
let _ = T::SwapAux::on_swap(id, other);
} else {
PendingSwap::insert(id, other);
}
}
/// Block initializer. Clears SelectedThreads and constructs/replaces Active.
fn on_initialize() {
let next_up = SelectedThreads::mutate(|t| {
let r = if t.len() >= T::QueueSize::get() {
// Take the first set of parathreads in queue
t.remove(0)
} else {
vec![]
};
while t.len() < T::QueueSize::get() {
t.push(vec![]);
}
r
});
// mutable so that we can replace with `None` if parathread appears in new schedule.
let mut retrying = Self::take_next_retry();
if let Some(((para, _), _)) = retrying {
// this isn't really ideal: better would be if there were an earlier pass that set
// retrying to the first item in the Missed queue that isn't already scheduled, but
// this is potentially O(m*n) in terms of missed queue size and parathread pool size.
if next_up.iter().any(|x| x.0 == para) {
retrying = None
}
}
let mut paras = Parachains::get().into_iter()
.map(|id| (id, None))
.chain(next_up.into_iter()
.map(|(para, collator)|
(para, Some((collator, Retriable::WithRetries(0))))
)
).chain(retrying.into_iter()
.map(|((para, collator), retries)|
(para, Some((collator, Retriable::WithRetries(retries + 1))))
)
).collect::<Vec<_>>();
// for Rust's timsort algorithm, sorting a concatenation of two sorted ranges is near
// O(N).
paras.sort_by_key(|&(ref id, _)| *id);
Active::put(paras);
}
fn on_finalize() {
// a block without this will panic, but let's not panic here.
if let Some(proceeded_vec) = parachains::DidUpdate::get() {
// Active is sorted and DidUpdate is a sorted subset of its elements.
//
// We just go through the contents of active and find any items that don't appear in
// DidUpdate *and* which are enabled for retry.
let mut proceeded = proceeded_vec.into_iter();
let mut i = proceeded.next();
for sched in Active::get().into_iter() {
match i {
// Scheduled parachain proceeded properly. Move onto next item.
Some(para) if para == sched.0 => i = proceeded.next(),
// Scheduled `sched` missed their block.
// Queue for retry if it's allowed.
_ => if let (i, Some((c, Retriable::WithRetries(n)))) = sched {
Self::retry_later((i, c), n)
},
}
}
}
}
}
}
decl_event!{
pub enum Event {
/// A parathread was registered; its new ID is supplied.
ParathreadRegistered(ParaId),
/// The parathread of the supplied ID was de-registered.
ParathreadDeregistered(ParaId),
}
}
impl<T: Trait> Module<T> {
/// Ensures that the given `ParaId` corresponds to a registered parathread, and returns a descriptor if so.
pub fn ensure_thread_id(id: ParaId) -> Option<ParaInfo> {
Paras::get(id).and_then(|info| if let Scheduling::Dynamic = info.scheduling {
Some(info)
} else {
None
})
}
fn retry_later(sched: (ParaId, CollatorId), retries: u32) {
if retries < T::MaxRetries::get() {
RetryQueue::mutate(|q| {
q.resize(T::MaxRetries::get() as usize, vec![]);
q[retries as usize].push(sched);
});
}
}
fn take_next_retry() -> Option<((ParaId, CollatorId), u32)> {
RetryQueue::mutate(|q| {
for (i, q) in q.iter_mut().enumerate() {
if !q.is_empty() {
return Some((q.remove(0), i as u32));
}
}
None
})
}
/// Forcibly remove the threads matching `m` from all current and future scheduling.
fn force_unschedule(m: impl Fn(ParaId) -> bool) {
RetryQueue::mutate(|qs| for q in qs.iter_mut() {
q.retain(|i| !m(i.0))
});
SelectedThreads::mutate(|qs| for q in qs.iter_mut() {
q.retain(|i| !m(i.0))
});
Active::mutate(|a| for i in a.iter_mut() {
if m(i.0) {
if let Some((_, ref mut r)) = i.1 {
*r = Retriable::Never;
}
}
});
}
}
impl<T: Trait> ActiveParas for Module<T> {
fn active_paras() -> Vec<(ParaId, Option<(CollatorId, Retriable)>)> {
Active::get()
}
}
/// Ensure that parathread selections happen prioritized by fees.
#[derive(Encode, Decode, Clone, Eq, PartialEq)]
pub struct LimitParathreadCommits<T: Trait + Send + Sync>(rstd::marker::PhantomData<T>) where
<T as system::Trait>::Call: IsSubType<Module<T>, T>;
impl<T: Trait + Send + Sync> rstd::fmt::Debug for LimitParathreadCommits<T> where
<T as system::Trait>::Call: IsSubType<Module<T>, T>
{
fn fmt(&self, f: &mut rstd::fmt::Formatter) -> rstd::fmt::Result {
write!(f, "LimitParathreadCommits<T>")
}
}
/// Custom validity errors used in Polkadot while validating transactions.
#[repr(u8)]
pub enum ValidityError {
/// Parathread ID has already been submitted for this block.
Duplicate = 0,
/// Parathread ID does not identify a parathread.
InvalidId = 1,
}
impl<T: Trait + Send + Sync> SignedExtension for LimitParathreadCommits<T> where
<T as system::Trait>::Call: IsSubType<Module<T>, T>
{
const IDENTIFIER: &'static str = "LimitParathreadCommits";
type AccountId = T::AccountId;
type Call = <T as system::Trait>::Call;
type AdditionalSigned = ();
type Pre = ();
fn additional_signed(&self)
-> rstd::result::Result<Self::AdditionalSigned, TransactionValidityError>
{
Ok(())
}
fn validate(
&self,
_who: &Self::AccountId,
call: &Self::Call,
_info: DispatchInfo,
_len: usize,
) -> TransactionValidity {
let mut r = ValidTransaction::default();
if let Some(local_call) = call.is_sub_type() {
if let Call::select_parathread(id, collator, hash) = local_call {
// ensure that the para ID is actually a parathread.
let e = TransactionValidityError::from(InvalidTransaction::Custom(ValidityError::InvalidId as u8));
<Module<T>>::ensure_thread_id(*id).ok_or(e)?;
// ensure that we haven't already had a full complement of selected parathreads.
let mut upcoming_selected_threads = SelectedThreads::get();
if upcoming_selected_threads.is_empty() {
upcoming_selected_threads.push(vec![]);
}
let i = upcoming_selected_threads.len() - 1;
let selected_threads = &mut upcoming_selected_threads[i];
let thread_count = ThreadCount::get() as usize;
ensure!(
selected_threads.len() < thread_count,
InvalidTransaction::ExhaustsResources,
);
// ensure that this is not selecting a duplicate parathread ID
let e = TransactionValidityError::from(InvalidTransaction::Custom(ValidityError::Duplicate as u8));
let pos = selected_threads
.binary_search_by(|&(ref other_id, _)| other_id.cmp(id))
.err()
.ok_or(e)?;
// ensure that this is a live bid (i.e. that the thread's chain head matches)
let e = TransactionValidityError::from(InvalidTransaction::Custom(ValidityError::InvalidId as u8));
let head = <parachains::Module<T>>::parachain_head(id).ok_or(e)?;
let actual = T::Hashing::hash(&head);
ensure!(&actual == hash, InvalidTransaction::Stale);
// updated the selected threads.
selected_threads.insert(pos, (*id, collator.clone()));
rstd::mem::drop(selected_threads);
SelectedThreads::put(upcoming_selected_threads);
// provides the state-transition for this head-data-hash; this should cue the pool
// to throw out competing transactions with lesser fees.
r.provides = vec![hash.encode()];
}
}
Ok(r)
}
}
#[cfg(test)]
mod tests {
use super::*;
use bitvec::vec::BitVec;
use sp_io::TestExternalities;
use sp_core::{H256, Pair};
use sp_runtime::{
BlakeTwo256, IdentityLookup, OnInitialize, OnFinalize, Dispatchable,
AccountIdConversion,
}, testing::{UintAuthorityId, Header}, Perbill
};
use primitives::{
parachain::{
ValidatorId, Info as ParaInfo, Scheduling, LOWEST_USER_ID, AttestedCandidate,
CandidateReceipt, HeadData, ValidityAttestation, Statement, Chain, CollatorPair,
},
Balance, BlockNumber,
};
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
impl_outer_origin, impl_outer_dispatch, assert_ok, parameter_types, assert_noop,
};
use keyring::Sr25519Keyring;
use crate::parachains;
use crate::slots;
use crate::attestations;
impl_outer_origin! {
pub enum Origin for Test {
parachains,
}
}
impl_outer_dispatch! {
pub enum Call for Test where origin: Origin {
parachains::Parachains,
registrar::Registrar,
}
}
#[derive(Clone, Eq, PartialEq)]
pub struct Test;
parameter_types! {
pub const BlockHashCount: u32 = 250;
pub const MaximumBlockWeight: u32 = 4 * 1024 * 1024;
pub const MaximumBlockLength: u32 = 4 * 1024 * 1024;
pub const AvailableBlockRatio: Perbill = Perbill::from_percent(75);
}
impl system::Trait for Test {
type Origin = Origin;
type Call = Call;
type Index = u64;
type BlockNumber = u64;
type Hash = H256;
type Hashing = BlakeTwo256;
type AccountId = u64;
type Lookup = IdentityLookup<u64>;
type Header = Header;
type Event = ();
type BlockHashCount = BlockHashCount;
type MaximumBlockWeight = MaximumBlockWeight;
type MaximumBlockLength = MaximumBlockLength;
type AvailableBlockRatio = AvailableBlockRatio;
type Version = ();
}
parameter_types! {
pub const ExistentialDeposit: Balance = 0;
pub const CreationFee: Balance = 0;
}
impl balances::Trait for Test {
type OnNewAccount = ();
type OnReapAccount = System;
type Balance = Balance;
type Event = ();
type DustRemoval = ();
type ExistentialDeposit = ExistentialDeposit;
type CreationFee = CreationFee;
}
parameter_types!{
pub const LeasePeriod: u64 = 10;
pub const EndingPeriod: u64 = 3;
}
impl slots::Trait for Test {
type Event = ();
type Currency = balances::Module<Test>;
type Parachains = Registrar;
type EndingPeriod = EndingPeriod;
type LeasePeriod = LeasePeriod;
type Randomness = RandomnessCollectiveFlip;
}
parameter_types!{
pub const AttestationPeriod: BlockNumber = 100;
}
impl attestations::Trait for Test {
type AttestationPeriod = AttestationPeriod;
type ValidatorIdentities = parachains::ValidatorIdentities<Test>;
type RewardAttestation = ();
}
parameter_types! {
pub const Period: BlockNumber = 1;
pub const Offset: BlockNumber = 0;
pub const DisabledValidatorsThreshold: Perbill = Perbill::from_percent(17);
}
impl session::Trait for Test {
type Keys = UintAuthorityId;
type ShouldEndSession = session::PeriodicSessions<Period, Offset>;
type Event = ();
type ValidatorId = u64;
type ValidatorIdOf = ();
type DisabledValidatorsThreshold = DisabledValidatorsThreshold;
}
impl parachains::Trait for Test {
type Origin = Origin;
type Call = Call;
type ParachainCurrency = balances::Module<Test>;
type ActiveParachains = Registrar;
type Registrar = Registrar;
type Randomness = RandomnessCollectiveFlip;
}
parameter_types! {
pub const ParathreadDeposit: Balance = 10;
pub const QueueSize: usize = 2;
pub const MaxRetries: u32 = 3;
}
impl Trait for Test {
type Event = ();
type Origin = Origin;
type Currency = balances::Module<Test>;
type ParathreadDeposit = ParathreadDeposit;
type SwapAux = slots::Module<Test>;
type QueueSize = QueueSize;
type MaxRetries = MaxRetries;
}
type Balances = balances::Module<Test>;
type Parachains = parachains::Module<Test>;
type System = system::Module<Test>;
type Slots = slots::Module<Test>;
type Registrar = Module<Test>;
type RandomnessCollectiveFlip = randomness_collective_flip::Module<Test>;
const AUTHORITY_KEYS: [Sr25519Keyring; 8] = [
Sr25519Keyring::Alice,
Sr25519Keyring::Bob,
Sr25519Keyring::Charlie,
Sr25519Keyring::Dave,
Sr25519Keyring::Eve,
Sr25519Keyring::Ferdie,
Sr25519Keyring::One,
Sr25519Keyring::Two,
];
fn new_test_ext(parachains: Vec<(ParaId, Vec<u8>, Vec<u8>)>) -> TestExternalities {
let mut t = system::GenesisConfig::default().build_storage::<Test>().unwrap();
let authority_keys = [
Sr25519Keyring::Alice,
Sr25519Keyring::Bob,
Sr25519Keyring::Charlie,
Sr25519Keyring::Dave,
Sr25519Keyring::Eve,
Sr25519Keyring::Ferdie,
Sr25519Keyring::One,
Sr25519Keyring::Two,
];
// stashes are the index.
let session_keys: Vec<_> = authority_keys.iter().enumerate()
.map(|(i, _k)| (i as u64, UintAuthorityId(i as u64)))
.collect();
let authorities: Vec<_> = authority_keys.iter().map(|k| ValidatorId::from(k.public())).collect();
let balances: Vec<_> = (0..authority_keys.len()).map(|i| (i as u64, 10_000_000)).collect();
parachains::GenesisConfig {
authorities: authorities.clone(),
}.assimilate_storage::<Test>(&mut t).unwrap();
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
GenesisConfig::<Test> {
parachains,
_phdata: Default::default(),
}.assimilate_storage(&mut t).unwrap();
session::GenesisConfig::<Test> {
keys: session_keys,
}.assimilate_storage(&mut t).unwrap();
balances::GenesisConfig::<Test> {
balances,
}.assimilate_storage(&mut t).unwrap();
t.into()
}
fn init_block() {
println!("Initializing {}", System::block_number());
System::on_initialize(System::block_number());
Registrar::on_initialize(System::block_number());
Parachains::on_initialize(System::block_number());
Slots::on_initialize(System::block_number());
}
fn run_to_block(n: u64) {
println!("Running until block {}", n);
while System::block_number() < n {
if System::block_number() > 1 {
println!("Finalizing {}", System::block_number());
if !parachains::DidUpdate::exists() {
println!("Null heads update");
assert_ok!(Parachains::set_heads(system::RawOrigin::None.into(), vec![]));
}
Slots::on_finalize(System::block_number());
Parachains::on_finalize(System::block_number());
Registrar::on_finalize(System::block_number());
System::on_finalize(System::block_number());
}
System::set_block_number(System::block_number() + 1);
init_block();
}
}
fn schedule_thread(id: ParaId, head_data: &[u8], col: &CollatorId) {
let tx: LimitParathreadCommits<Test> = LimitParathreadCommits(Default::default());
let hdh = BlakeTwo256::hash(head_data);
let inner_call = super::Call::select_parathread(id, col.clone(), hdh);
let call = Call::Registrar(inner_call);
let origin = 4u64;
assert!(tx.validate(&origin, &call, Default::default(), 0).is_ok());
assert_ok!(call.dispatch(Origin::signed(origin)));
}
fn user_id(i: u32) -> ParaId {
LOWEST_USER_ID + i
}
fn attest(id: ParaId, collator: &CollatorPair, head_data: &[u8], block_data: &[u8]) -> AttestedCandidate {
let block_data_hash = BlakeTwo256::hash(block_data);
let candidate = CandidateReceipt {
parachain_index: id,
collator: collator.public(),
signature: block_data_hash.using_encoded(|d| collator.sign(d)),
head_data: HeadData(head_data.to_vec()),
egress_queue_roots: vec![],
fees: 0,
block_data_hash,
upward_messages: vec![],
};
let payload = (Statement::Valid(candidate.hash()), System::parent_hash()).encode();
let roster = Parachains::calculate_duty_roster().0.validator_duty;
AttestedCandidate {
candidate,
validity_votes: AUTHORITY_KEYS.iter()
.enumerate()
.filter(|(i, _)| roster[*i] == Chain::Parachain(id))
.map(|(_, k)| k.sign(&payload).into())
.map(ValidityAttestation::Explicit)
.collect(),
validator_indices: roster.iter()
.map(|i| i == &Chain::Parachain(id))
.collect::<BitVec>(),
}
}
#[test]
fn basic_setup_works() {
new_test_ext(vec![]).execute_with(|| {
assert_eq!(super::Parachains::get(), vec![]);
assert_eq!(ThreadCount::get(), 0);
assert_eq!(Active::get(), vec![]);
assert_eq!(NextFreeId::get(), LOWEST_USER_ID);
assert_eq!(PendingSwap::get(&ParaId::from(0u32)), None);
assert_eq!(Paras::get(&ParaId::from(0u32)), None);
});
}
#[test]
fn genesis_registration_works() {
let parachains = vec![
(5u32.into(), vec![1,2,3], vec![1]),
(100u32.into(), vec![4,5,6], vec![2,]),
];
new_test_ext(parachains).execute_with(|| {
// Need to trigger on_initialize
run_to_block(2);
// Genesis registration works
assert_eq!(Registrar::active_paras(), vec![(5u32.into(), None), (100u32.into(), None)]);
assert_eq!(
Registrar::paras(&ParaId::from(5u32)),
Some(ParaInfo { scheduling: Scheduling::Always }),
);
assert_eq!(
Registrar::paras(&ParaId::from(100u32)),
Some(ParaInfo { scheduling: Scheduling::Always }),
);
assert_eq!(Parachains::parachain_code(&ParaId::from(5u32)), Some(vec![1, 2, 3]));
assert_eq!(Parachains::parachain_code(&ParaId::from(100u32)), Some(vec![4, 5, 6]));
});
}
#[test]
fn swap_chain_and_thread_works() {
new_test_ext(vec![]).execute_with(|| {
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
assert_ok!(Registrar::set_thread_count(Origin::ROOT, 1));
// Need to trigger on_initialize
run_to_block(2);
// Register a new parathread
assert_ok!(Registrar::register_parathread(
Origin::signed(1u64),
vec![1; 3],
vec![1; 3],
));
// Lease out a new parachain
assert_ok!(Slots::new_auction(Origin::ROOT, 5, 1));
assert_ok!(Slots::bid(Origin::signed(1), 0, 1, 1, 4, 1));
run_to_block(9);
// Ensure that the thread is scheduled around the swap time.
let col = Sr25519Keyring::One.public().into();
schedule_thread(user_id(0), &[1; 3], &col);
run_to_block(10);
let h = BlakeTwo256::hash(&[2u8; 3]);
assert_ok!(Slots::fix_deploy_data(Origin::signed(1), 0, user_id(1), h, vec![2; 3]));
assert_ok!(Slots::elaborate_deploy_data(Origin::signed(0), user_id(1), vec![2; 3]));
assert_ok!(Slots::set_offboarding(Origin::signed(user_id(1).into_account()), 1));
run_to_block(11);
// should be one active parachain and one active parathread.
assert_eq!(Registrar::active_paras(), vec![
(user_id(0), Some((col.clone(), Retriable::WithRetries(0)))),
(user_id(1), None),
]);
// One half of the swap call does not actually trigger the swap.
assert_ok!(Registrar::swap(parachains::Origin::Parachain(user_id(0)).into(), user_id(1)));
// Nothing changes from what was originally registered
assert_eq!(Registrar::paras(&user_id(0)), Some(ParaInfo { scheduling: Scheduling::Dynamic }));
assert_eq!(Registrar::paras(&user_id(1)), Some(ParaInfo { scheduling: Scheduling::Always }));
assert_eq!(super::Parachains::get(), vec![user_id(1)]);
assert_eq!(Slots::managed_ids(), vec![user_id(1)]);
assert_eq!(Slots::deposits(user_id(1)), vec![1; 3]);
assert_eq!(Slots::offboarding(user_id(1)), 1);
assert_eq!(Parachains::parachain_code(&user_id(0)), Some(vec![1u8; 3]));
assert_eq!(Parachains::parachain_head(&user_id(0)), Some(vec![1u8; 3]));
assert_eq!(Parachains::parachain_code(&user_id(1)), Some(vec![2u8; 3]));
assert_eq!(Parachains::parachain_head(&user_id(1)), Some(vec![2u8; 3]));
// Intention to swap is added
assert_eq!(PendingSwap::get(user_id(0)), Some(user_id(1)));
// Intention to swap is reciprocated, swap actually happens
assert_ok!(Registrar::swap(parachains::Origin::Parachain(user_id(1)).into(), user_id(0)));
assert_eq!(Registrar::paras(&user_id(0)), Some(ParaInfo { scheduling: Scheduling::Always }));
assert_eq!(Registrar::paras(&user_id(1)), Some(ParaInfo { scheduling: Scheduling::Dynamic }));
assert_eq!(super::Parachains::get(), vec![user_id(0)]);
assert_eq!(Slots::managed_ids(), vec![user_id(0)]);
assert_eq!(Slots::deposits(user_id(0)), vec![1; 3]);
assert_eq!(Slots::offboarding(user_id(0)), 1);
assert_eq!(Parachains::parachain_code(&user_id(0)), Some(vec![1u8; 3]));
assert_eq!(Parachains::parachain_head(&user_id(0)), Some(vec![1u8; 3]));
assert_eq!(Parachains::parachain_code(&user_id(1)), Some(vec![2u8; 3]));
assert_eq!(Parachains::parachain_head(&user_id(1)), Some(vec![2u8; 3]));
// Intention to swap is no longer present
assert_eq!(PendingSwap::get(user_id(0)), None);
assert_eq!(PendingSwap::get(user_id(1)), None);
run_to_block(12);
// thread should not be queued or scheduled any more, even though it would otherwise be
// being retried..
assert_eq!(Registrar::active_paras(), vec![(user_id(0), None)]);
});
}
#[test]
fn swap_handles_funds_correctly() {
new_test_ext(vec![]).execute_with(|| {
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
assert_ok!(Registrar::set_thread_count(Origin::ROOT, 1));
// Need to trigger on_initialize
run_to_block(2);
let initial_1_balance = Balances::free_balance(1);
let initial_2_balance = Balances::free_balance(2);
// User 1 register a new parathread
assert_ok!(Registrar::register_parathread(
Origin::signed(1),
vec![1; 3],
vec![1; 3],
));
// User 2 leases out a new parachain
assert_ok!(Slots::new_auction(Origin::ROOT, 5, 1));
assert_ok!(Slots::bid(Origin::signed(2), 0, 1, 1, 4, 1));
run_to_block(9);
// Swap the parachain and parathread
assert_ok!(Registrar::swap(parachains::Origin::Parachain(user_id(0)).into(), user_id(1)));
assert_ok!(Registrar::swap(parachains::Origin::Parachain(user_id(1)).into(), user_id(0)));
// Deregister the parathread that was originally a parachain
assert_ok!(Registrar::deregister_parathread(parachains::Origin::Parachain(user_id(1)).into()));
// Go past when a parachain loses its slot
run_to_block(50);
// Funds are correctly returned
assert_eq!(Balances::free_balance(1), initial_1_balance);
assert_eq!(Balances::free_balance(2), initial_2_balance);
});
}
#[test]
fn register_deregister_chains_works() {
let parachains = vec![
(1u32.into(), vec![1; 3], vec![1; 3]),
];
new_test_ext(parachains).execute_with(|| {
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
// Need to trigger on_initialize
run_to_block(2);
// Genesis registration works
assert_eq!(Registrar::active_paras(), vec![(1u32.into(), None)]);
assert_eq!(
Registrar::paras(&ParaId::from(1u32)),
Some(ParaInfo { scheduling: Scheduling::Always })
);
assert_eq!(Parachains::parachain_code(&ParaId::from(1u32)), Some(vec![1; 3]));
// Register a new parachain
assert_ok!(Registrar::register_para(
Origin::ROOT,
2u32.into(),
ParaInfo { scheduling: Scheduling::Always },
vec![2; 3],
vec![2; 3],
));
let orig_bal = Balances::free_balance(&3u64);
// Register a new parathread
assert_ok!(Registrar::register_parathread(
Origin::signed(3u64),
vec![3; 3],
vec![3; 3],
));
// deposit should be taken (reserved)
assert_eq!(Balances::free_balance(3u64) + ParathreadDeposit::get(), orig_bal);
assert_eq!(Balances::reserved_balance(3u64), ParathreadDeposit::get());
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
run_to_block(3);
// New paras are registered
assert_eq!(Registrar::active_paras(), vec![(1u32.into(), None), (2u32.into(), None)]);
assert_eq!(
Registrar::paras(&ParaId::from(2u32)),
Some(ParaInfo { scheduling: Scheduling::Always })
);
assert_eq!(
Registrar::paras(&user_id(0)),
Some(ParaInfo { scheduling: Scheduling::Dynamic })
);
assert_eq!(Parachains::parachain_code(&ParaId::from(2u32)), Some(vec![2; 3]));
assert_eq!(Parachains::parachain_code(&user_id(0)), Some(vec![3; 3]));
assert_ok!(Registrar::deregister_para(Origin::ROOT, 2u32.into()));
assert_ok!(Registrar::deregister_parathread(
parachains::Origin::Parachain(user_id(0)).into()
));
// reserved balance should be returned.
assert_eq!(Balances::free_balance(3u64), orig_bal);
assert_eq!(Balances::reserved_balance(3u64), 0);
run_to_block(4);
assert_eq!(Registrar::active_paras(), vec![(1u32.into(), None)]);
assert_eq!(Registrar::paras(&ParaId::from(2u32)), None);
assert_eq!(Parachains::parachain_code(&ParaId::from(2u32)), None);
assert_eq!(Registrar::paras(&user_id(0)), None);
assert_eq!(Parachains::parachain_code(&user_id(0)), None);
});
}
#[test]
fn parathread_scheduling_works() {
new_test_ext(vec![]).execute_with(|| {
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
assert_ok!(Registrar::set_thread_count(Origin::ROOT, 1));
run_to_block(2);
// Register a new parathread
assert_ok!(Registrar::register_parathread(
Origin::signed(3u64),
vec![3; 3],
vec![3; 3],
));
run_to_block(3);
// transaction submitted to get parathread progressed.
let col = Sr25519Keyring::One.public().into();
schedule_thread(user_id(0), &[3; 3], &col);
run_to_block(5);
assert_eq!(Registrar::active_paras(), vec![
(user_id(0), Some((col.clone(), Retriable::WithRetries(0))))
]);
assert_ok!(Parachains::set_heads(Origin::NONE, vec![
attest(user_id(0), &Sr25519Keyring::One.pair().into(), &[3; 3], &[0; 0])
]));
run_to_block(6);
// at next block, it shouldn't be retried.
assert_eq!(Registrar::active_paras(), vec![]);
});
}
#[test]
fn removing_scheduled_parathread_works() {
new_test_ext(vec![]).execute_with(|| {
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
assert_ok!(Registrar::set_thread_count(Origin::ROOT, 1));
run_to_block(2);
// Register some parathreads.
assert_ok!(Registrar::register_parathread(Origin::signed(3), vec![3; 3], vec![3; 3]));
run_to_block(3);
// transaction submitted to get parathread progressed.
let col = Sr25519Keyring::One.public().into();
schedule_thread(user_id(0), &[3; 3], &col);
// now we remove the parathread
assert_ok!(Registrar::deregister_parathread(
parachains::Origin::Parachain(user_id(0)).into()
));
run_to_block(5);
assert_eq!(Registrar::active_paras(), vec![]); // should not be scheduled.
assert_ok!(Registrar::register_parathread(Origin::signed(3), vec![4; 3], vec![4; 3]));
run_to_block(6);
// transaction submitted to get parathread progressed.
schedule_thread(user_id(1), &[4; 3], &col);
run_to_block(9);
// thread's slot was missed and is now being re-scheduled.
assert_ok!(Registrar::deregister_parathread(
parachains::Origin::Parachain(user_id(1)).into()
));
run_to_block(10);
// thread's rescheduled slot was missed, but should not be reschedule since it was
// removed.
assert_eq!(Registrar::active_paras(), vec![]); // should not be scheduled.
});
}
#[test]
fn parathread_rescheduling_works() {
new_test_ext(vec![]).execute_with(|| {
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
assert_ok!(Registrar::set_thread_count(Origin::ROOT, 1));
run_to_block(2);
// Register some parathreads.
assert_ok!(Registrar::register_parathread(Origin::signed(3), vec![3; 3], vec![3; 3]));
assert_ok!(Registrar::register_parathread(Origin::signed(4), vec![4; 3], vec![4; 3]));
assert_ok!(Registrar::register_parathread(Origin::signed(5), vec![5; 3], vec![5; 3]));
run_to_block(3);
// transaction submitted to get parathread progressed.
let col = Sr25519Keyring::One.public().into();
schedule_thread(user_id(0), &[3; 3], &col);
// 4x: the initial time it was scheduled, plus 3 retries.
for n in 5..9 {
run_to_block(n);
assert_eq!(Registrar::active_paras(), vec![
(user_id(0), Some((col.clone(), Retriable::WithRetries((n - 5) as u32))))
]);
}
// missed too many times. dropped.
run_to_block(9);
assert_eq!(Registrar::active_paras(), vec![]);
// schedule and miss all 3 and check that they go through the queueing system ok.
assert_ok!(Registrar::set_thread_count(Origin::ROOT, 2));
schedule_thread(user_id(0), &[3; 3], &col);
schedule_thread(user_id(1), &[4; 3], &col);
run_to_block(10);
schedule_thread(user_id(2), &[5; 3], &col);
// 0 and 1 scheduled as normal.
run_to_block(11);
assert_eq!(Registrar::active_paras(), vec![
(user_id(0), Some((col.clone(), Retriable::WithRetries(0)))),
(user_id(1), Some((col.clone(), Retriable::WithRetries(0))))
]);
// 2 scheduled, 0 retried
run_to_block(12);
assert_eq!(Registrar::active_paras(), vec![
(user_id(0), Some((col.clone(), Retriable::WithRetries(1)))),
(user_id(2), Some((col.clone(), Retriable::WithRetries(0)))),
]);
// 1 retried
run_to_block(13);
assert_eq!(Registrar::active_paras(), vec![
(user_id(1), Some((col.clone(), Retriable::WithRetries(1))))
]);
// 2 retried
run_to_block(14);
assert_eq!(Registrar::active_paras(), vec![
(user_id(2), Some((col.clone(), Retriable::WithRetries(1))))
]);
run_to_block(15);
assert_eq!(Registrar::active_paras(), vec![
(user_id(0), Some((col.clone(), Retriable::WithRetries(2))))
]);
run_to_block(16);
assert_eq!(Registrar::active_paras(), vec![
(user_id(1), Some((col.clone(), Retriable::WithRetries(2))))
]);
run_to_block(17);
assert_eq!(Registrar::active_paras(), vec![
(user_id(2), Some((col.clone(), Retriable::WithRetries(2))))
]);
});
}
#[test]
fn parathread_auction_handles_basic_errors() {
new_test_ext(vec![]).execute_with(|| {
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
run_to_block(2);
let o = Origin::signed(0);
assert_ok!(Registrar::register_parathread(o, vec![7, 8, 9], vec![1, 1, 1]));
run_to_block(3);
assert_eq!(
Registrar::paras(&user_id(0)),
Some(ParaInfo { scheduling: Scheduling::Dynamic })
);
let good_para_id = user_id(0);
let bad_para_id = user_id(1);
let bad_head_hash = <Test as system::Trait>::Hashing::hash(&vec![1, 2, 1]);
let good_head_hash = <Test as system::Trait>::Hashing::hash(&vec![1, 1, 1]);
let info = DispatchInfo::default();
// Allow for threads
assert_ok!(Registrar::set_thread_count(Origin::ROOT, 10));
// Bad parathread id
let col = CollatorId::default();
let inner = super::Call::select_parathread(bad_para_id, col.clone(), good_head_hash);
let call = Call::Registrar(inner);
assert!(
LimitParathreadCommits::<Test>(std::marker::PhantomData)
.validate(&0, &call, info, 0).is_err()
);
// Bad head data
let inner = super::Call::select_parathread(good_para_id, col.clone(), bad_head_hash);
let call = Call::Registrar(inner);
assert!(
LimitParathreadCommits::<Test>(std::marker::PhantomData)
.validate(&0, &call, info, 0).is_err()
);
// No duplicates
let inner = super::Call::select_parathread(good_para_id, col.clone(), good_head_hash);
let call = Call::Registrar(inner);
assert!(
LimitParathreadCommits::<Test>(std::marker::PhantomData)
.validate(&0, &call, info, 0).is_ok()
);
assert!(
LimitParathreadCommits::<Test>(std::marker::PhantomData)
.validate(&0, &call, info, 0).is_err()
);
});
}
#[test]
fn parathread_auction_works() {
new_test_ext(vec![]).execute_with(|| {
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
run_to_block(2);
// Register 5 parathreads
for x in 0..5 {
let o = Origin::signed(x as u64);
assert_ok!(Registrar::register_parathread(o, vec![x; 3], vec![x; 3]));
}
run_to_block(3);
for x in 0..5 {
assert_eq!(
Registrar::paras(&user_id(x)),
Some(ParaInfo { scheduling: Scheduling::Dynamic })
);
}
// Only 3 slots available... who will win??
assert_ok!(Registrar::set_thread_count(Origin::ROOT, 3));
// Everyone wants a thread
for x in 0..5 {
let para_id = user_id(x as u32);
let collator_id = CollatorId::default();
let head_hash = <Test as system::Trait>::Hashing::hash(&vec![x; 3]);
let inner = super::Call::select_parathread(para_id, collator_id, head_hash);
let call = Call::Registrar(inner);
let info = DispatchInfo::default();
// First 3 transactions win a slot
if x < 3 {
assert!(
LimitParathreadCommits::<Test>(std::marker::PhantomData)
.validate(&0, &call, info, 0)
.is_ok()
);
} else {
// All others lose
assert_noop!(
LimitParathreadCommits::<Test>(std::marker::PhantomData)
.validate(&0, &call, info, 0),
InvalidTransaction::ExhaustsResources,
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
);
}
}
// 3 Threads are selected
assert_eq!(
SelectedThreads::get()[1],
vec![
(user_id(0), CollatorId::default()),
(user_id(1), CollatorId::default()),
(user_id(2), CollatorId::default()),
]
);
// Assuming Queue Size is 2
assert_eq!(<Test as self::Trait>::QueueSize::get(), 2);
// 2 blocks later
run_to_block(5);
// Threads left queue
assert_eq!(SelectedThreads::get()[0], vec![]);
// Threads are active
assert_eq!(
Registrar::active_paras(),
vec![
(user_id(0), Some((CollatorId::default(), Retriable::WithRetries(0)))),
(user_id(1), Some((CollatorId::default(), Retriable::WithRetries(0)))),
(user_id(2), Some((CollatorId::default(), Retriable::WithRetries(0)))),
]
);
});
}
}